MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems

Abstract

We introduce a toolchain MARS for Modelling, Analyzing and veRifying hybrid Systems we developed in the past years. Using MARS, we build executable models of hybrid systems using the industrial standard environment Simulink/Stateflow, which facilitates analysis by simulation. To complement simulation, formal verification of Simulink/Stateflow models is conducted in the toolchain via the following steps. First, we translate Simulink/Stateflow diagrams to Hybrid CSP (HCSP) processes by an automatic translator Sim2HCSP, where HCSP is an extension of CSP for formally modelling hybrid systems; Second, to justify the translation, another automatic translator HCSP2Sim that translates from HCSP to Simulink is provided, so that the consistency between the original Simulink/Stateflow model and the translated HCSP formal model can be checked by co-simulation; Then, the HCSP processes obtained in the first step are verified by an interactive Hybrid Hoare Logic (HHL) prover; During the verification, an invariant generator independent of the theorem prover for synthesizing invariants for differential equations and loops is needed. We demonstrate the toolchain by analysis and verification of a descent guidance control program of a lunar lander, which is a real-world industry example.

Publication
Provably Correct Systems
Mingshuai Chen
Mingshuai Chen
ZJU100 Young Professor

My research interests include formal verification, programming theory, and logical aspects of computer science.