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Abstract We introduce a toolchainMARS forModelling, Analyzing and veRifying
hybrid Systems we developed in the past years. Using MARS, we build executable
models of hybrid systems using the industrial standard environment Simulink/State-
flow, which facilitates analysis by simulation. To complement simulation, formal
verification of Simulink/Stateflow models is conducted in the toolchain via the fol-
lowing steps: first, we translate Simulink/Stateflow diagrams to Hybrid CSP (HCSP)
processes by an automatic translator Sim2HCSP, whereHCSP is an extension of CSP
for formally modelling hybrid systems; second, to justify the translation, another
automatic translator HCSP2Sim that translates from HCSP to Simulink is provided,
so that the consistency between the original Simulink/Stateflowmodel and the trans-
latedHCSP formalmodel can be checked by co-simulation; then, theHCSPprocesses
obtained in the first step are verified by an interactive Hybrid Hoare Logic (HHL)
prover; during the verification, an invariant generator independent of the theorem
prover for synthesizing invariants for differential equations and loops is needed. We
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will demonstrate the toolchain by analysis and verification of a descent guidance
control program of a lunar lander, which is a real-world industry example.

1 Introduction

Hybrid systems combine discrete controllers and continuous plants, and occur ubiq-
uitously in safety-critical application areas such as transportation and avionics. To
guarantee the correctness, formal techniques on modelling and verification of hybrid
systems have been proposed [2, 20, 26, 28]. Besides, as a complementary activity
to verification, several approaches have also been proposed for testing such systems
[1, 3, 9]. However, the deep interactions between discrete and continuous compo-
nents, and in addition, the complex continuous dynamics described by (non-linear)
differential equations, make the formal analysis and verification of hybrid systems
extremely difficult.Most existingworkmentioned above can only dealwith restricted
systems, e.g., [2, 20] deal with dynamic and hybrid systems with a decidable reacha-
bility problem; [26] considered how to verify hybrid systems using simulation seman-
tics, which cannot guarantee the correctness of hybrid systems in general because of
the inherent incompleteness of simulation; while it is difficult to handle communi-
cation and parallelism using the approach in [28].

To develop reliable complicated hybrid systems, we propose the toolchainMARS
for Modelling, Analyzing and veRifing hybrid systems. As shown in Fig. 1, the

M
AR

S

Simulink/Stateflow model

HCSP model in the form of
HHL Specifica ons

Sim2HCSP

HHL prover

Invariant 
generator

EHS2PHS

HCSP2Sim

Fig. 1 Verification architecture



MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 41

architecture of MARS is composed of three parts: a translator Sim2HCSP, an HHL
prover, and an invariant generator. At the top level, we build executable models of
hybrid systems in the graphical environment Simulink/Stateflow. As an industrial de-
facto standard for designing embedded systems, Simulink/Stateflow facilitates the
building of an executable model for a complicated system. Specifically, analysis and
validation of a Simulink/Stateflow model can be conducted by simulation. However,
simulation is inherently incomplete in coverage of system test cases and unsound
due to numerical error. As a remedy, it deserves to further verify Simulink/Stateflow
models in a formal verification tool.

In our approach, the translator Sim2HCSP is designed to translate Simulink/S-
tateflow models to HCSP [17, 39]. By extending CSP with differential equations,
HCSP is a formal specification language for modelling hybrid systems, and mean-
while, it is the input language of the interactiveHHL prover. By applying Sim2HCSP,
the translation from Simulink/Stateflow to HCSP is fully automatic. Complemen-
tary to Sim2HCSP, an automatic inverse translator HCSP2Sim is implemented to
justify its correctness. We use HCSP2Sim to translate the HCSP model result-
ing from Sim2HCSP back to Simulink, and check the consistency between the
output Simulink/Stateflow model and the original Simulink/Stateflow model by
co-simulation.

The HHL prover is then applied to verify the above HCSP models obtained from
Sim2HCSP. The HHL prover is a theorem prover for Hybrid Hoare Logic (HHL)
[21, 35]. As the input of the HHL prover, the HCSP models are written in the form
of HHL specifications. Each HHL specification consists of an HCSP process, a pre-
/post-condition that specifies the initial and terminal states of the process, and a
history formula that records the whole execution history of the process, respectively.
HHL defines a set of axioms and inference rules to deduce such a specification.
Finally, by applying the HHL prover, the specification to be proved will be trans-
formed into an equivalent set of logical formulas, which will be proved by applying
axioms of corresponding logics in an interactive or automatic way.

To handle differential equations, we use the concept of differential invariants to
characterize their properties without solving them [22, 29]. For computing differ-
ential invariants, we have implemented an independent invariant generator, which
will be called during the verification in the HHL prover. The invariant generator
integrates both the quantifier elimination and SOS (sum-of-squares) based methods
for computing differential invariants of polynomial equations, and can also deal with
non-polynomial systems by transformation techniques we proposed in [23], which
is implemented as EHS2PHS in Fig. 1.

To evaluate MARS, we report our experience in using MARS on a case study in
real industry, i.e. a descent guidance control program of a lunar lander, which is a
closed-loop control system with non-linear differential equations.1

In our previous work [36], we studied the same example and verified it by com-
bining several different verification techniques including simulation, bounded model

1The toolchain MARS and the verification of the lunar lander example can be found at http://lcs.
ios.ac.cn/~znj/tools/MARS_v1.1.zip.

http://lcs.ios.ac.cn/~znj/tools/MARS_v1.1.zip
http://lcs.ios.ac.cn/~znj/tools/MARS_v1.1.zip
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checking and theorem proving. In this chapter, we mainly focus on the tool imple-
mentation and integration, rather than on the case study itself as in [36]. The new
contribution of this chapter is threefold:

• Firstly,we implement the reverse translatorHCSP2Sim fromHCSP to Simulink, to
justify the correctness of the translation tool Sim2HCSP from Simulink to HCSP
by co-simulation. This is not considered in the original version of Sim2HCSP
presented in [40];

• Secondly, based on the invariant generation techniques proposed in [22, 23], we
implement an invariant generator for differential equations and integrate it into the
HHL prover. In [36], the invariants of related dynamics are synthesized manually.
Besides, the tool EHS2PHS that abstracts a non-polynomial hybrid system by
a polynomial one based on the technique in [23] is integrated to the invariant
generator;

• Finally, we provide a seamless integration of all the tools on modelling, analysis
and verification of hybrid systems as a toolchain MARS.

1.1 Related Work

There are some work on tools for formal verification of Simulink/Stateflow dia-
grams addressing both discrete and continuous blocks. In [5] Chen et al. proposed an
approach that translates Simulink models to a real-time specification language and
then validated the models via a generic theorem prover. However, their approach can
only handle a special class of differential equations with closed form solutions, and
cannot handle Stateflow diagrams. Tools based on numerical simulation or approxi-
mation are proposed. STRONG [12] performs bounded time reachability and safety
verification for linear hybrid systems based on robust test generation and coverage.
Breach [13] uses sensitivity analysis to compute approximate reachable sets and ana-
lyzes properties in the form of MITL based on numerical simulation. C2E2 [14] ana-
lyzes the discrete-continuous Stateflowmodels annotated with discrepancy functions
by transforming them to hybrid automata, and then checks bounded time invariant
properties of the models based on simulation.

There are some tools for verifying hybrid systems modelled by formal specifi-
cation languages. The tool d/dt [4] provides reachability analysis and safety veri-
fication of hybrid systems with linear continuous dynamics and uncertain bounded
input. iSAT-ODE [15] is a numerical SMT solver based on interval arithmetic that
can conduct bounded model checking for hybrid systems. Flow* [6] computes over-
approximations of the reachable sets of continuous dynamical and hybrid systems in
a bounded time. Both iSAT-ODEand Flow* are able to handle non-polynomialODEs
(ordinary differential equations). Based on deductivemethod, the interactive theorem
prover KeYmaera [30] (and its newly developed version KeYmaera X [16]) verifies
hybrid systems specified using differential dynamic logic. These tools, however, are
not directly applicable to Simulink/Stateflow models.
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Organization. The rest of the chapter is organized as follows: Sect. 2 introduces the
tool Sim2HCSP for translating Simulink/Stateflow models, as well as its inverse
HCSP2Sim. Sections3 and 4 introduce the HHL prover for verifying HCSP models
and the invariant generator respectively. In each of the sections, the corresponding
tool is demonstrated by the descent guidance control program of a lunar lander.
Section5 concludes the chapter.

2 Sim2HCSP Translator

In this section, we demonstrate a fully automatic translator Sim2HCSP [40, 42] that
encodes Simulink/Stateflow diagrams into HCSP processes.

Simulink/Stateflow As an industrial de-facto standard, Simulink [31] is extensively
used for modelling, simulating and analyzing multidomain dynamic and embedded
systems. It provides a graphical block diagramming tool and a customizable set of
block libraries for building executable models of embedded systems and their envi-
ronments. A Simulink model contains a set of blocks, subsystems, and wires, where
blocks and subsystems cooperate by sending messages through the wires between
them. For an elementary bloc k, it basically gets input signals and computes the out-
put signals assisted by a set of user-defined parameters to alter its functionalities. One
typical parameter is the sample time, which defines how frequently the computation
is taken. Two special values, 0 and−1, may be set for sample time, where 0 indicates
that the block is used for simulating the physical environment and hence computes
continuously, and −1 signifies that the sample time of the block is not determined
yet, which will be determined by the sample times of the in-coming wires to the
block. Thus, blocks are classified into two categories, i.e. continuous and discrete,
according to their sample times.

As a toolbox integrated into Simulink, Stateflow offers the modelling capabilities
of statecharts for reactive systems. It can be used to construct Simulink blocks, fed
with Simulink inputs and produces Simulink outputs. A Stateflow diagram has a
hierarchical structure, which can be an AND diagram, for which states are arranged
in parallel and all of them become active whenever the diagram is activated; or an
OR diagram, for which states are connected with transitions and only one of them
becomes active when the diagram is activated. A Stateflow diagram consists of an
alphabet of events and variables, a finite set of states, and transition networks.

Hybrid CSP Hybrid CSP (HCSP) [17, 39] is a formal modelling language for hybrid
systems which extends CSP [18] by introducing differential equations, time con-
structs, and interrupts. InHCSP, exchanging data among processes is solely described
by communications, and no shared variable is allowed between different processes
in parallel. We denote by dVar and cVar the countable set of discrete and continuous
variables respectively, and by Chan ranged over ch, ch1, . . ., the countable set of
channels. The syntax of HCSP is given as follows:
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P =̂ skip | x := e | ch?x | ch!e | P; Q | B → P | P � Q | P∗
| 〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉 � �i∈I (ioi → Qi )

S =̂ P | S‖S

Here ch, chi ∈ Chan, ioi stands for a communication event, i.e. either chi?x or chi !e,
x ∈ dVar ∪ cVar, s ∈ cVar, B and e are Boolean and arithmetic expressions respec-
tively, P, Q, Qi are sequential processes, and S stands for a system, i.e. an HCSP
process.

The intended meaning of the individual constructs is explained as follows:

• skip terminates immediately having no effect on variables; and x := e assigns the
value of expression e to x and then terminates.

• ch?x receives a value along channel ch and assigns it to x , and ch!e sends the value
of e along ch. A communication takes place as soon as both the sending and the
receiving parties are ready, and may cause one side to wait.

• The sequential composition P; Q behaves as P first, and if it terminates, as Q
afterwards.

• The conditional B → P behaves as P if B is true, and otherwise it terminates
immediately.

• The internal choice P � Q behaves as either P or Q, and the choice is made
randomly by the system.

• The repetition P∗ executes P for some finite number of times.
• 〈F (ṡ, s) = 0&B〉 is the continuous evolution statement. It forces the vector s of
real variables to evolve continuously according to the differential equations F
as long as the Boolean expression B, which defines the domain of s, holds, and
terminateswhen B turns false. For hybrid automata, non-determinism occurswhen
both the domain of the continuous evolution and the jump condition are satisfied,
i.e. it can choose to stay in the continuous evolution, or leave it bymaking a discrete
transition. In HCSP, there is no such non-determinism.

• 〈F (ṡ, s) = 0&B〉 � �i∈I (ioi → Qi ) behaves like the continuous 〈F (ṡ, s) =
0&B〉, except that it is preempted as soon as one of the communications ioi takes
place. That is followed by the respective Qi . Notice that, if the continuous termi-
nates before a communication among {ioi }i∈I occurs, then the process terminates
immediately without waiting for communication.Whenmultiple communications
from {ioi }i∈I get ready simultaneously before the others, an internal choice among
these ready communications occur.

• S1‖S2 behaves as if S1 and S2 run independently except that all communications
along the common channels connecting S1 and S2 are to be synchronized.

Sim2HCSP TranslatorGiven a Simulink/Stateflowmodel, Sim2HCSP translates its
Simulink and Stateflow parts separately. With the approach in [40], the Simulink
part is translated into a set of HCSP processes, while using the approach in [42], the
Stateflow part is translated into another set of HCSP processes. Then, these HCSP
processes are composed in parallel to form the whole model of the system. The
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Simulink and Stateflow diagrams in parallel transmit data or events via communi-
cations. Please refer to [40, 42] for details. Sim2HCSP takes Simulink/Stateflow
models (in xml format, which is generated by a Matlab script) as input, and outputs
several files as the definitions for the corresponding HCSP processes, which contain
three files for defining variables, processes, and assertions for the Simulink part, and
the same three files for each Stateflow diagram within the Stateflow part.

We demonstrate the translation approach by a scenario originating from the
descent guidance control program of a lunar lander, which actually provides a spe-
cific sampled-data control system composed of the physical plant and the embedded
control program.

Example 1 (running example) The guidance control program is built as a Simulink
diagram in Fig. 2, which includes three parts: updating mass m, calculating acceler-
ation aIC, and calculating thrust Fc. The sample time of all blocks is fixed as 0.128s,
i.e. the period of the guidance program. In Fig. 2, block m_in reads mass m from the
continuous plant (modelled as the Simulink diagram in Fig. 3) periodically, block Fc
is used to calculate thrust Fc, and the rest are used to calculate acceleration aIC. In
particular, there are two inputs for block Fc: the first is the acceleration aIC, which
is defined as

−0.01(Fc/m − gM) − 0.6(v − vslw) + gM

Fig. 2 Simulink diagram of the guidance program for the slow descent phase

Fig. 3 The Simulink diagram of the dynamics for the slow descent phase
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as shown in the diagram; the second is the mass m, and Fc is then defined as the
product of aIC and m. The details of the guidance program can be found in [36].

The lander’s dynamics is mathematically represented by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ṙ = v
v̇ = Fc

m − gM
ṁ = − Fc

Isp

Ḟc = 0

(1)

where

• r, v andm denote the altitude (relative to lunar surface), vertical velocity and mass
of the lunar lander, respectively;

• Fc is the thrust imposed on the lander, which is a constant in each sampling period
of length 0.128 s;

• gM = 1.622 m/s2 is the magnitude of the gravitational acceleration on the moon;
• Isp denotes the specific impulse2 of the lander’s thrust engine. It has two possible
values depending on the values of Fc. When Fc is less or equal than 3000 N,
Isp = 2548 N s/kg, and otherwise, Isp = 2842 N s/kg. For simplicity, we use Isp1
and Isp2 to represent the two values of the impulse, and meanwhile, use ODE1

and ODE2 to represent the two differential equations corresponding to Isp1 and
Isp2 as defined by (1) respectively.

The physical dynamics in (1) is modelled by the diagram shown in Fig. 3, where
the threshold of block ISP_choose is 3000, meaning that it outputs 2842 as the value
of Isp when Fc is greater than 3000 and 2548 otherwise. The initial values of m, v,
and r (m = 1250 kg, r = 30 m, v = −2 m/s) are specified as initial values of the
integrator blocks m, v, and r respectively. Specifically, an integrator block outputs
its initial value at the beginning and the integration of the input signal afterwards.

The safety property we want to prove for the lunar lander system is Safety |v −
vslw| ≤ ε, where ε = 0.05 m/s is the tolerance of fluctuation of v around the target
vslw = −2 m/s.

The simulation result w.r.t the velocity v is illustrated in Fig. 4. It is shown that
the velocity of the lander is kept between −2 and −1.9999 m/s, which corresponds
to the safety property we proposed above.

Then themanually constructed Simulinkmodel is translated into annotated HCSP
using the tool Sim2HCSP, which employs the HCSP pattern

definition P :: proc where
"P == PC_Init; PD_Init; t:=0; (PC_Diff;t:=0; PD_Rep )*"

In process P, PC_Init and PD_Init are initialization procedures for the continuous
dynamics and the guidance program respectively; PC_Diff models the continuous

2Specific impulse is a physical quantity describing the efficiency of rocket engines. It equals the
thrust produced per unit mass of propellant burned per second.
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Fig. 4 The original
simulation result
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dynamics given by (1) within a period of 0.128 s; PD_Rep calculates thrust Fc

according to

F ′
c := −0.01(Fc − m · gM) − 0.6(v − vslw)m + m · gM (2)

for the next sampling cycle; variable t denotes the elapsed time in each sampling
cycle. Hence, process P is initialized at the beginning by PC_Init and PD_Init, and
behaves as a repetition of dynamics PC_Diff and computation PD_Rep afterwards.

Consistency Checking by Co-simulation To justify the correctness of the translation
above, we provide a method to check the consistency between the original Simulink
model and the generated HCSP formal model. This is done with the help of a tool
called HCSP2Sim [7], an inverse decoding from HCSP back into Simulink. The
translator HCSP2Sim takes as input an HCSP process transformed directly from the
HCSP model generated by Sim2HCSP, and generates a Simulink graphical model in
the mdl format automatically as output. Figure5 illustrates the co-simulation result,
where the evolution of the lander’s velocity v in the original Simulinkmodel is shown
as the red dash line3 and the one for the inversely translated Simulink model as the
blue line. The co-simulation result shows that the translation loop keeps the behaviour
of the system consistently. However, as also shown by the result, there exists a gap
between the red andblue lines. This is the inevitable consequence of introducing some

3Identical to the line in Fig. 4.
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necessary delay blocks in the translation fromHCSP to Simulink, to prevent the zeno4

phenomena while keeping the well-composed translation architecture. Nevertheless,
absolute magnitude of the gap can be reduced by means of narrowing the simulation
time step to an acceptable slot. In such way, a more precise co-simulation can be
conducted. As an additional byproduct, the inverse translation also provides people
with the ability to simulate an abstract formal model and see how the system behaves
immediately and intuitively.

3 HHL Prover

This section presents the HHL prover for reasoning about HCSP models, and before
that, gives a brief introduction of the Hybrid Hoare Logic (HHL) based on which the
prover is implemented.

Hybrid Hoare Logic For verifying the behavior of HCSP processes, a deductive
calculus called Hybrid Hoare Logic (HHL) is proposed in [21]. Given a process P ,
the specification {Pre}P{Post; HF} is defined,wherePre andPost are first-order logic
(FOL) formulas for specifying the pre-/post-conditions holding at the beginning and
termination of P , andHF is a duration calculus (DC) [37, 38] formula for specifying
the history throughout the whole execution of P . Here DC is an interval logic for
describing real-time systems. In particular, as used below in the paper, � is a temporal
variable denoting the length of the considered interval, and �S for someFOL formula
S means that S holds everywhere in the considered interval.

In HHL, for each HCSP construct, a set of inference rules are given for deducing
its specifications. Belowwe explain the rule for the continuous evolution 〈F (ṡ, s) =
0&B〉. Instead of explicit solutions, the concept of differential invariant [22, 29] is
used to characterize the behavior of the corresponding differential equations. As
shown by the following rule, a differential invariant Inv needs to be annotated in the
specification:

I ni t → Inv (Inv,F) → Inv p ∧ close(Inv) ∧ close(¬B) → q
l = 0 ∨ �close(Inv) ∧ p ∧ close(B) → G

{I ni t ∧ p} 〈F (ṡ, s) = 0&Inv&B〉 {q;G}
where Init specifies the initial state for s, p for other variables rather than s (thus
will not change during the evolution), and function close(·) extends the domain by
the corresponding formula to include the boundary; (Inv,F) represents the formula
describing the post-states of F executing from a state satisfying Inv. Consider the
hypothesis, the FOL formula in the first line indicates that Inv is indeed a sufficiently
strong invariant, i.e. it is satisfied by the initial state, preserved by the continuous

4A sequence of infinitely many computations that take finite time.
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evolution, and strong enough to guarantee the postcondition; the DC formula in the
second line indicates that the evolution terminates immediately (specified by l = 0),
or otherwise, if the evolution takes more than zero time, then the closure of invariant
Inv, the precondition p (related to discrete variables) and the closure of domain B
hold everywhere throughout the whole execution. We have proved the soundness
of the rule, and thus the proof of the specification of the continuous evolution will
be reduced to an equivalent differential invariant generation problem: if Inv exists
such that it satisfies the conditions in the hypothesis, then the original specification
is proved.

TheHHLProverThe interactive theorem proverHHLprover, as illustrated by Fig. 1,
is implemented in Isabelle/HOL to mechanize the HHL framework and has been
applied for verifying practical hybrid systems [36, 41]. The prover encodes the HHL
framework in a deep style: the HCSP processes and the two assertion languages
(i.e. FOL and DC) are defined by respective new datatypes, and in consequence,
the inference system of HCSP (i.e. HHL), the deductive systems of FOL and DC
are defined as new axioms, of Isabelle/HOL respectively. In the HHL prover, a set
of verification conditions for HHL specifications are generated first by applying
HHL inference rules, and then these conditions are proved by applying the FOL
and DC deductive rules. Most of the proofs are done interactively. To improve this,
we define a conversion function from our FOL formulas to HOL formulas and thus
the existing proof tactics of Isabelle/HOL are applicable. For example, the powerful
sledgehammer that integrates third-party SMT solvers such as Z3 [11] can be applied
to prove FOL formulas in the HHL prover.

When the specification to be proved contains unknown differential invariants,
some verification conditions related to the invariants remain unproved inHHLprover.
For such cases, the prover needs to call external provers, e.g. the invariant generator
in MARS, for solving the invariants. This will be explained in detail in the next
section.

Example 2 (running example) In Sect. 2, by applying Sim2HCSP, we get the HCSP
process P for the lunar lander example. In order to meet the design requirement of
the control program, we need to prove the following specification for it:

{True} P {|v-vlsw | <=0.05; (l=0)| high(|v-vlsw | <=0.05)}

where high corresponds to the �  operator in DC. The specification indicates that
the slow descent phase satisfies the safety property, i.e., the difference between the
velocity v and the target velocity vlsw is always at most 0.05. By applying HHL
prover, the specification is finally reduced to the following five unsolved constraints
for the differential invariants of P:

lemma cons1: "(t <=0.128) & (t>=0) & Inv |- |v-vlsw | <=0.05"
lemma cons2: "(v=-2) & (m=1250) & (Fc =2027.5)

& (t=0) |- Inv"
lemma cons3: "(t= 0.128) & Inv

|- substF ([(t,0)], substF ([(Fc ,
-0.01*(Fc -1.622*m) - 0.6*(v+2)*m + 1.622*m)],Inv))"
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lemma cons4: "exeFlow(’’v, m, r, t’’,
’’(Fc/m) - 1.622, -(Fc/2548) , v, 1’’,t < 0.128,Inv) |- Inv"

lemma cons5: "exeFlow(’’v, m, r, t’’,
’’(Fc/m) - 1.622, -(Fc/2842) , v, 1’’,t < 0.128,Inv) |- Inv"

The intuitive explanation of the constraints is: during each period of length 0.128 s,
the invariant Inv is sufficiently strong to deduce the safety property (cons1), the initial
state satisfies Inv (cons2), the computation, and the continuous evolution governed
by the two differential equations of P , preserve Inv respectively (cons3, cons4 and
cons5). In the above constraints, function exeFlow(ode, f ) for given equation ode
and precondition f returns the postcondition after executing the continuous flow
represented by ode from a state satisfying f . In the next section, we will show how
to apply an external invariant generator to handle these constraints.

4 Invariant Generator

To prove the invariant related subgoals during the verification in the HHL prover, we
need to call an external invariant generator from the HHL prover. The invariant gen-
erator of MARS provides two approaches to synthesizing invariants, i.e., quantifier
elimination (QE) based and SOS based. Before introducing the invariant generator,
we explain how to invoke an external prover in Isabelle.

4.1 Isabelle Oracle

Isabelle provides the oracle mechanism to use new decision procedures not based on
its inference kernel. Listing 1 defines the oracle to decide invariant related constraints.
Function trans_allCons translates an invariant constraint in the formof FOL formulas
into the string representation expected by the solver. The core function decide takes
a string representation of the invariant constraints and passes it to the script program
implementing the invariant generator, and then returns true if an invariant exists such
that the constraints are satisfied, or false otherwise. These two functions are then
combined into the oracle inv_oracle, which verifies an input invariant constraint
using decide, and outputs it as a theorem of Isabelle without any change if it is
certified. Finally, to be used for Isabelle proofs, the oracle inv_oracle is wrapped into
a tactic inv_oracle_tac and then a new method inv_oracle is created based on this
tactic.

1 ML{*
2 fun trans_allCons t = ...
3 fun decide p = "$InvGen/script.sh "^"\""^p^"\""
4 |> Isabelle_System .bash_output
5 |> fst
6 |> isTrue ;*}
7 oracle inv_oracle = {* fn ct =>
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8 if decide (trans_allCons (Thm.term_of ct))
9 then ct
10 else error "Proof failed."*}
11 ML{*
12 val inv_oracle_tac =
13 CSUBGOAL (fn (goal , i) =>
14 (case try inv_oracle goal of
15 NONE => no_tac
16 | SOME thm => rtac thm i))*}
17 method_setup inv_oracle = {*
18 Scan.succeed (K (Method.SIMPLE_METHOD ’ inv_oracle_tac ))*}

Listing 1 The Oracle for deciding differential invariants

Depending on the different methods for computing differential invariants, we
have implemented two oracles: inv_oracle_qe based on quantifier elimination, and
inv_oracle_sos based on the SOS method. We will explain these methods in more
detail in Sects. 4.2–4.5.

Example 3 (running example) By applying the oracle inv_oracle_sos, we have
proved the conjunction of the unsolved five constraints presented in Example 2 as a
lemma:

lemma allCons: "|- cons1 [&] cons2 [&] cons3 [&] cons4 [&] cons5"
apply (simp: add consi_def for all i)
apply inv_oracle_sos
done

At this state, by applying MARS, the verification of the safety for the lunar lander
example thus is completed. Specifically, the manual proof script consists of approx-
imately 300 lines and the verification is done within one minute on a 32-bit Linux
computer with a 1.60GHz Intel Core-i5 processor and 4GB of RAM.

Next we present the invariant generator in detail.

4.2 Differential Invariant Generation

The basic idea of differential invariant generation is by using templates and constraint
solving. For simplicity, we illustrate the idea on systems with a single ODE and no
jumps. For such systems, the unresolved constraints as in Examples 2 and 3 would
roughly be as follows:

(a) φpre −→ φinv;
(b) φinv −→ [ẋ = f ]φinv;
(c) φinv −→ φpost,
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where

• (a) means that a certain precondition φpre implies the required invariant φinv;
• (b) means that any trajectory of the ODE ẋ = f starting from φinv will always
satisfy φinv, that is, φinv is a differential invariant of ẋ = f ;

• (c) means that the differential invariant φinv implies a certain postcondition φpost.

For systems with different modes and jumps betweens these modes, as well as
reset functions related to the jumps, additional constraints will be imposed, which
are omitted here.

Example 4 In a more readable way, the five unresolved lemmas in Examples 2 and
3 impose the following constraints:

(C1) t ≤ 0.128 ∧ t ≥ 0 ∧ Inv −→ |v − vslw| ≤ 0.05;
(C2) v = −2 ∧ m = 1250 ∧ Fc = 2027.5 ∧ t = 0 −→ Inv;
(C3) t = 0.128 ∧ Inv −→ Inv(t �→ 0; Fc �→ F ′

c), with F ′
c defined in (2);

(C4) Inv is the differential invariant of the constrained dynamical system

〈ODE1; 0 ≤ t ≤ 0.128 ∧ Fc ≤ 3000〉

(C5) Inv is also the differential invariant of the constrained dynamical system

〈ODE2; 0 ≤ t ≤ 0.128 ∧ Fc > 3000〉

whereODE1 andODE2 are the dynamics in (1) corresponding to Isp1 and Isp2
respectively.

If φpre and φpost are polynomial formulas, and f is a polynomial vector field,
then we can try to generate φinv by defining a polynomial template, i.e. a polynomial
formula with undetermined parameters as an invariant candidate and then solving
certain constraints to get the parameters. We have the following two approaches for
generating constraints from (a)–(c) and getting the parameters:

(1) QE-Based: transform (a), (b) and (c) into first-order polynomial formulas as
proposed in [22] and then apply quantifier-elimination (QE) [8] to the quantified
conjunction of the transformed formulas to see if the parameters have solutions;

(2) SOS-Based: transform (a), (b) and (c) into sum-of-squares (SOS) constraints
as proposed in [19] and then use an SDP (semi-definite programming) solver to
solve the constraints to get the values of parameters.

The QE-approach is exact and more general, and in particular, the transformation
of [22] is sound and complete, while the SOS approach is more efficient due to the
use of numerical computation. We have implemented invariant generators based on
both QE and SOS, and integrated them into the MARS tool chain. We will give more
details about the two generators in Sects. 4.4 and 4.5 respectively.

Whenφpre andφpost are non-polynomial formulas, or f is a non-polynomial vector
field, we will use the abstraction approach proposed in the next subsection.
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4.3 Abstraction of Elementary Hybrid Systems by Variable
Transformation

In practice, HSs (hybrid systems) may contain elementary functions such as exp, ln,
sin, cos, etc., called Elementary Hybrid Systems (EHSs). Due to the non-polynomial
expressions which lead to undecidable arithmetic, verification of EHSs is very hard.
Existing approaches based on partition of the state space or overapproximation of
reachable sets suffer from state space explosion or inflation of numerical errors. In
[23], we proposed a symbolic abstraction approach that reduces EHSs to polynomial
hybrid systems (PHSs), by replacing all non-polynomial termswith newly introduced
variables. Thus the verification of EHSs is reduced to the one of PHSs, enabling us
to apply all the well-established verification techniques and tools for PHSs to EHSs.
In this way, it is possible to avoid the limitations of many existing methods. We have
implemented the above abstraction procedure as a tool EHS2PHS.

For example, the dynamics of the lunar lander involves non-polynomial expres-
sion, v̇ = Fc

m − gM, which is abstracted by the tool EHS2PHS based on a rule of
variable transformation, i.e. a = Fc

m , where a happens to be the instant acceleration
produced by the thrust Fc of the lander. The equivalently transformed polynomial
system will then be delivered to the invariant generator.

4.4 QE-Based Invariant Generator

The invariant generator based on quantifier elimination is implemented in Math-
ematica as a Wolfram script. It can be accessed in Isabelle through the method
inv_oracle_qe using command apply inv_oracle_qe. The generator takes two
parameters as input: constraints φallCons to be solved from the Isabelle function
trans_allCons as shown in Listing 1, as well as a positive integer n through the user
interface. The parameter n is the order of polynomials which will be used to gen-
erate a parameterized polynomial invariant template based on variables X extracted
from φallCons. The parameters in the invariant template is denoted as U and there is
a user interface to set certain parameters in U to 0 in order to reduce the difficulty
of quantifier elimination. There is a placeholder inv in φallCons, which will then be
replaced by the generated invariant template.

Now φallCons is a conjunction of constraints like those shown in Example 4. Then
constraints like (C4) are translated into polynomial formulas using the technique
proposed in [22], and accordingly, φallCons is transformed into a conjunction of poly-
nomial formulas, denoted by φpoly. Use the default quantifier elimination function
Resolve in Mathematica to eliminate all the quantifiers in ∃U∀X : φpoly, and a result
True or False will be returned. The invariant generator will then pass this result to
Isabelle.
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4.5 SOS-Based Invariant Generator

In order to avoid the high complexity of quantifier elimination algorithms, which
takes doubly exponential time on real closed fields [10], an alternative is provided
to synthesize invariants based on sum-of-squares (SOS) relaxation approach in the
study of polynomial hybrid systems [19]. Given a bunch of unproven constraints
derived from Isabelle, the SOS-based invariant generator first transforms them into
a sequence of SOS-constraints w.r.t the user-defined invariant template, and then
invokes semidefinite programming (SDP) [27, 34] to solve the parameterized poly-
nomial invariant.

We continue the lunar lander example to demonstrate the use of the generator.
Like the QE method, the SOS-based invariant generator can be triggered in Isabelle
by an oracle called inv_oracle_sos, in which a terminal window is initially popped-up
for the user to specify the upper bound of the polynomial degree d (we assume that
the undetermined invariant Inv is a semialgebraic set of the form PInv ≤ 0, where
PInv is a parameterized polynomial with degree d); and then a Mathematica script
ScriptGenerator is executed to generate an SOS-constraint model sosInv.m written
as a script of the Matlab-based optimization tool Yalmip [24, 25]. For instance, the
safety constraint (C1) which is equivalent to

t ≥ 0 ∧ t ≤ 0.128 ∧ (v < −2.05 ∨ v > −1.95) → PInv > 0,

is transformed to an SOS-constraint:

SOS(PInv − s1 ∗ t ∗ (0.128 − t) − s2 ∗ (v + 1.95) ∗ (v + 2.05) − eps)

where SOS( f ) indicates that the function f is a sum-of-squares polynomial, s1 and
s2 are both SOS polynomials, and eps is a given positive constant denoting a margin
introduced to avoid the errors of numerical computation in Matlab; to determine the
parameters in PInv, s1, and s2, as well as parameters in the other constraints, the
Yalmip script sosInv.m is then executed in Matlab and invokes the solver SDPT-3
[32, 33] to solve all the SOS-constraints; finally, another Mathematica script
InvChecker is called to check and return the solving result back to Isabelle, namely
True if the problem is successfully solved, or False otherwise. With d = 6, we get a
result of True associated with the invariant shown in Fig. 6 (left part), and complete
the proof of lemma allCons in Example 3 eventually.

In addition, once the SOS-based invariant generator is triggered by applying ora-
cle inv_oracle_sos in Isabelle, all the procedures described above, except for the
pop-up terminal, are transparent to users, i.e. no Matlab desktop or Mathematica
frontend can be observed. Therefore in order to give an intuitive observation of the
invariant, we provide an additional notebook file InvChecker.nb that can be executed
in a Mathematica frontend to plot a graphical region of the generated invariant as
depicted by Fig. 6 (right part). Besides, to avoid synthesizing a false invariant due
to numerical computation errors, we can also integrate symbolic posterior checking
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Fig. 6 The invariant generated by SOS relaxation with d = 6

of the generated invariants in InvChecker.nb, based on the symbolic computation
packages provided in Mathematica.

5 Conclusion and Future Work

We presented a toolchain named MARS that links the modelling, analysis and veri-
fication of hybrid systems. The workflow of using MARS consists of the following
phases: firstly, hybrid systems are modelled in the Simulink/Stateflow environment,
which also facilitates model validation through numerical simulation; secondly, to
overcome the limitations of simulation, the informal Simulink/Stateflow models are
automatically transformed through the Sim2HCSP translator into formal models in
the HCSP language; meanwhile, by an inverse translation from HCSP to Simulink
models using the tool HCSP2Sim, and performing co-simulation, the consistency
between the informal and formal models are justified; finally, the HCSP models
can be verified preserving the given properties using the interactive HHL Prover,
in which different schemes for automatic differential invariant generation are inte-
grated, possibly with the support of EHS2PHS to abstract an EHS to a PHS first. We
have discussed the details of the implementation of all components of MARS, and
demonstrated how to use it through a real-life example of the slow descent control
of a lunar lander.

As future work, we plan to improve MARS in the following aspects:the HHL
prover needs improving its HHL verification framework and also its encoding in
Isabelle/HOL so that more automation can be achieved for the proofs; the external
invariant generators need to be enhanced with more efficient symbolic or hybrid
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numeric-symbolic computation techniques; the toolchain will be applied to other
real-world case studies such as the modelling and verification of Chinese High-
Speed Train Control System (CTCS); various component tools of MARS need to be
more tightly integrated with a friendly user interface provided; and so on.
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