Taming Delays in Dynamical Systems

Unbounded Verification of Delay Differential Equations

Abstract

Delayed coupling between state variables occurs regularly in technical dynamical systems, especially embedded control. As it consequently is omnipresent in safety-critical domains, there is an increasing interest in the safety verification of systems modelled by Delay Differential Equations (DDEs). In this paper, we leverage qualitative guarantees for the existence of an exponentially decreasing estimation on the solutions to DDEs as established in classical stability theory, and present a quantitative method for constructing such delay-dependent estimations, thereby facilitating a reduction of the verification problem over an unbounded temporal horizon to a bounded one. Our technique builds on the linearization technique of nonlinear dynamics and spectral analysis of the linearized counterparts. We show experimentally on a set of representative benchmarks from the literature that our technique indeed extends the scope of bounded verification techniques to unbounded verification tasks. Moreover, our technique is easy to implement and can be combined with any automatic tool dedicated to bounded verification of DDEs.

Publication
In CAV 2019
Mingshuai Chen
Mingshuai Chen
ZJU100 Young Professor

My research interests include formal verification, programming theory, and logical aspects of computer science.