
Learning One-Clock Timed Automata

Jie An1, Mingshuai Chen2, Bohua Zhan3, Naijun Zhan3, Miaomiao Zhang1

1. School of Software Engineering, Tongji University, Shanghai, China

2. Lehrstuhl für Informatik 2, RWTH Aachen University, Aachen, Germany

3. SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China

bzhan@ios.ac.cn

TACAS ·March 30, 2021

Table of contents

1 Introduction and motivation
Short introduction to model/automaton learning
L∗ : Classic automaton learning of DFA
Motivation

2 Learning one-clock timed automata

Basic idea
Learning from a smart teacher
Learning from a normal teacher

3 Conclusion and future work

© Jie An et al. TACAS2020 @ Luxembourg 2 / 25

Outline

1 Introduction and motivation
Short introduction to model/automaton learning
L∗ : Classic automaton learning of DFA
Motivation

2 Learning one-clock timed automata

3 Conclusion and future work

© Jie An et al. TACAS2020 @ Luxembourg 3 / 25

Model/Automaton learning

• Machine learning

a sample set

M = {(x, y)|x ∈ X, y ∈ Y}
learn

Model

f : X → Y
f(x) = y, ∀x ∈ X

predict or identify f(x)

for all x ∈ X

• Model/Automaton learning

Σ is an alphabet

X = Σ∗ set of words

Y = {+,−} or other set of labels

learn

Model

f is a language
L ⊆ Σ∗

The model is a kind of
Automaton

© Jie An et al. TACAS2020 @ Luxembourg 4 / 25

Model/Automaton learning

• Machine learning

a sample set

M = {(x, y)|x ∈ X, y ∈ Y}
learn

Model

f : X → Y
f(x) = y, ∀x ∈ X

predict or identify f(x)

for all x ∈ X

• Model/Automaton learning

Σ is an alphabet

X = Σ∗ set of words

Y = {+,−} or other set of labels

learn

Model

f is a language
L ⊆ Σ∗

The model is a kind of
Automaton

© Jie An et al. TACAS2020 @ Luxembourg 4 / 25

Model/Automaton learning

• Machine learning

a sample set

M = {(x, y)|x ∈ X, y ∈ Y}
learn

Model

f : X → Y
f(x) = y, ∀x ∈ X

predict or identify f(x)

for all x ∈ X

• Model/Automaton learning

Σ is an alphabet

X = Σ∗ set of words

Y = {+,−} or other set of labels

learn

Model

f is a language
L ⊆ Σ∗

The model is a kind of
Automaton

© Jie An et al. TACAS2020 @ Luxembourg 4 / 25

Model/Automaton learning

• Machine learning

a sample set

M = {(x, y)|x ∈ X, y ∈ Y}
learn

Model

f : X → Y
f(x) = y, ∀x ∈ X

predict or identify f(x)

for all x ∈ X

• Model/Automaton learning

Σ is an alphabet

X = Σ∗ set of words

Y = {+,−} or other set of labels

learn

Model

f is a language
L ⊆ Σ∗

The model is a kind of
Automaton

© Jie An et al. TACAS2020 @ Luxembourg 4 / 25

Model/Automaton learning
Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

ModelBlack Box
Learning

System
Identification

Language
Identification

Inductive Inference

1 / 31

© The figure comes from Irini-Eleftheria Mens.

© Jie An et al. TACAS2020 @ Luxembourg 5 / 25

L∗ : Classic automaton learning of DFA

• Dana Angluin proposed an online, active, and exact learning framework L∗

for Deterministic Finite Automata (DFA) in 1987 [2].

• Two kinds of queries : membership query and equivalence query.

Learner Teacher
u ∈ L?

yes(+) or no(−)

observation
table

Membership

oracle

hypothesis A

L(A) = L?

no with u′ ∈ L(A)⊕ L

yes

Output A

Equivalence

oracle

© Jie An et al. TACAS2020 @ Luxembourg 6 / 25

L∗ : Classic automaton learning of DFA

• Dana Angluin proposed an online, active, and exact learning framework L∗

for Deterministic Finite Automata (DFA) in 1987 [2].

• Two kinds of queries : membership query and equivalence query.

Learner Teacher

u ∈ L?

yes(+) or no(−)

observation
table

Membership

oracle

hypothesis A

L(A) = L?

no with u′ ∈ L(A)⊕ L

yes

Output A

Equivalence

oracle

© Jie An et al. TACAS2020 @ Luxembourg 6 / 25

L∗ : Classic automaton learning of DFA

• Dana Angluin proposed an online, active, and exact learning framework L∗

for Deterministic Finite Automata (DFA) in 1987 [2].

• Two kinds of queries : membership query and equivalence query.

Learner Teacher
u ∈ L?

yes(+) or no(−)

observation
table

Membership

oracle

hypothesis A

L(A) = L?

no with u′ ∈ L(A)⊕ L

yes

Output A

Equivalence

oracle

© Jie An et al. TACAS2020 @ Luxembourg 6 / 25

L∗ : Classic automaton learning of DFA

• Dana Angluin proposed an online, active, and exact learning framework L∗

for Deterministic Finite Automata (DFA) in 1987 [2].

• Two kinds of queries : membership query and equivalence query.

Learner Teacher
u ∈ L?

yes(+) or no(−)

observation
table

Membership

oracle

hypothesis A

L(A) = L?

no with u′ ∈ L(A)⊕ L

yes

Output A

Equivalence

oracle

© Jie An et al. TACAS2020 @ Luxembourg 6 / 25

Motivation

• More recent work extends L∗ algorithm to different models
• Mealy machines [9], I/O automata [1], register automata [6], NFA [3], Büchi

automata [7], symbolic automata [8, 4] and MDP [10], etc..

• Motivation
• How to actively learn a timed model for a real-time system?

• Related work
• Active learning of event-recording automata [5].
• Passive identification of timed automata in the limit via fitting a labelled sample

S = (S+, S−) [12].
• Passive learning of timed automata via Genetic Programming and testing [11].

© Jie An et al. TACAS2020 @ Luxembourg 7 / 25

Motivation

• More recent work extends L∗ algorithm to different models
• Mealy machines [9], I/O automata [1], register automata [6], NFA [3], Büchi

automata [7], symbolic automata [8, 4] and MDP [10], etc..

• Motivation
• How to actively learn a timed model for a real-time system?

• Related work
• Active learning of event-recording automata [5].
• Passive identification of timed automata in the limit via fitting a labelled sample

S = (S+, S−) [12].
• Passive learning of timed automata via Genetic Programming and testing [11].

© Jie An et al. TACAS2020 @ Luxembourg 7 / 25

Outline

1 Introduction and motivation

2 Learning one-clock timed automata

Basic idea
Learning from a smart teacher
Learning from a normal teacher

3 Conclusion and future work

© Jie An et al. TACAS2020 @ Luxembourg 8 / 25

Basic idea

• Learning (regular) timed-automata with a single clock.
• Challenges

K State now includes both location and clock value.
K Determining the guard condition on transitions.
K Determining reset information on transitions.
K (related to the previous points) Matching time observed from outside to

internal clock used on the guards.

• Solutions of learning deterministic one-clock timed automata (DOTA)., A normalization map from delay timed words (outside) to logical timed words
(inside)., Utilize a partition function to map logical-timed values to finite intervals (similar
to learning symbolic automata)., First consider the case of a smart teacher who can tell the learner reset
informations. Then drop the assumption (i.e. reduction to a normal teacher) by
guessing reset information.

© Jie An et al. TACAS2020 @ Luxembourg 9 / 25

Learning from a smart teacher

• The DOTAA recognizes the target language L.
• Σ = {a, b} ; B = {⊤,⊥}where⊤ is for reset,⊥ otherwise.

• A is a complete DOTA ofA. Timed language L(A) = L(A) = L.
• Delay timed words (Σ× R≥0)

∗ : outside observations ;
e.g. ω = (b, 0)(a, 1.1)(b, 1) is an accepting timed words.

• Reset-logical timed words (Σ× R≥0 × B)∗ : inside logical actions ;
e.g. γr = (b, 0,⊤)(a, 1.1,⊥)(b, 2.1,⊤) is the reset-logical counterpart of ω.
Logical counterpart γ = (b, 0)(a, 1.1)(b, 2.1).

Example

q0start q1
a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

A

q0start q1

q2

a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

a, [0, 1],>

a, [3,∞
),>

a,
[0
,∞

),
>

b,
[0
, 2
),
>

b,
[4
,∞

),
>

a, [0,∞),> b, [0,∞),>
A

© Jie An et al. TACAS2020 @ Luxembourg 10 / 25

Learning from a smart teacher

• The DOTAA recognizes the target language L.
• Σ = {a, b} ; B = {⊤,⊥}where⊤ is for reset,⊥ otherwise.
• A is a complete DOTA ofA. Timed language L(A) = L(A) = L.

• Delay timed words (Σ× R≥0)
∗ : outside observations ;

e.g. ω = (b, 0)(a, 1.1)(b, 1) is an accepting timed words.
• Reset-logical timed words (Σ× R≥0 × B)∗ : inside logical actions ;
e.g. γr = (b, 0,⊤)(a, 1.1,⊥)(b, 2.1,⊤) is the reset-logical counterpart of ω.
Logical counterpart γ = (b, 0)(a, 1.1)(b, 2.1).

Example

q0start q1
a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

A

q0start q1

q2

a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

a, [0, 1],>

a, [3,∞
),>

a,
[0
,∞

),
>

b,
[0
, 2
),
>

b,
[4
,∞

),
>

a, [0,∞),> b, [0,∞),>
A

© Jie An et al. TACAS2020 @ Luxembourg 10 / 25

Learning from a smart teacher

• The DOTAA recognizes the target language L.
• Σ = {a, b} ; B = {⊤,⊥}where⊤ is for reset,⊥ otherwise.
• A is a complete DOTA ofA. Timed language L(A) = L(A) = L.
• Delay timed words (Σ× R≥0)

∗ : outside observations ;
e.g. ω = (b, 0)(a, 1.1)(b, 1) is an accepting timed words.

• Reset-logical timed words (Σ× R≥0 × B)∗ : inside logical actions ;
e.g. γr = (b, 0,⊤)(a, 1.1,⊥)(b, 2.1,⊤) is the reset-logical counterpart of ω.
Logical counterpart γ = (b, 0)(a, 1.1)(b, 2.1).

Example

q0start q1
a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

A

q0start q1

q2

a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

a, [0, 1],>

a, [3,∞
),>

a,
[0
,∞

),
>

b,
[0
, 2
),
>

b,
[4
,∞

),
>

a, [0,∞),> b, [0,∞),>
A

© Jie An et al. TACAS2020 @ Luxembourg 10 / 25

Learning from a smart teacher

• The DOTAA recognizes the target language L.
• Σ = {a, b} ; B = {⊤,⊥}where⊤ is for reset,⊥ otherwise.
• A is a complete DOTA ofA. Timed language L(A) = L(A) = L.
• Delay timed words (Σ× R≥0)

∗ : outside observations ;
e.g. ω = (b, 0)(a, 1.1)(b, 1) is an accepting timed words.

• Reset-logical timed words (Σ× R≥0 × B)∗ : inside logical actions ;
e.g. γr = (b, 0,⊤)(a, 1.1,⊥)(b, 2.1,⊤) is the reset-logical counterpart of ω.
Logical counterpart γ = (b, 0)(a, 1.1)(b, 2.1).

Example

q0start q1
a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

A

q0start q1

q2

a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

a, [0, 1],>

a, [3,∞
),>

a,
[0
,∞

),
>

b,
[0
, 2
),
>

b,
[4
,∞

),
>

a, [0,∞),> b, [0,∞),>
A

© Jie An et al. TACAS2020 @ Luxembourg 10 / 25

Learning from a smart teacher

• Given a DOTA A, Lr(A) represents the recognized reset-logical timed
language of A ; L(A) represents the logical timed language.

• Guiding principle : learning the (delayed) timed language of a DOTA A can
be reduced to learning the reset-logical timed language of A.

• Smart teacher setting : membership queries are logical timed words,
teacher responds with reset information.

Theorem

Given two DOTAs A andH, if Lr(A) = Lr(H), then L(A) = L(H).

© Jie An et al. TACAS2020 @ Luxembourg 11 / 25

Learning from a smart teacher

• Given a DOTA A, Lr(A) represents the recognized reset-logical timed
language of A ; L(A) represents the logical timed language.

• Guiding principle : learning the (delayed) timed language of a DOTA A can
be reduced to learning the reset-logical timed language of A.

• Smart teacher setting : membership queries are logical timed words,
teacher responds with reset information.

Theorem

Given two DOTAs A andH, if Lr(A) = Lr(H), then L(A) = L(H).

© Jie An et al. TACAS2020 @ Luxembourg 11 / 25

Learning from a smart teacher

• Given a DOTA A, Lr(A) represents the recognized reset-logical timed
language of A ; L(A) represents the logical timed language.

• Guiding principle : learning the (delayed) timed language of a DOTA A can
be reduced to learning the reset-logical timed language of A.

• Smart teacher setting : membership queries are logical timed words,
teacher responds with reset information.

Theorem

Given two DOTAs A andH, if Lr(A) = Lr(H), then L(A) = L(H).

© Jie An et al. TACAS2020 @ Luxembourg 11 / 25

Learning from a smart teacher

Definition (Reset-logical-timed observation table)

A reset-logical-timed observation table for a DOTA A is a 7-tuple T = (Σ,Σ,Σr, S,R,E, f)
where Σ is the finite alphabet ;Σ = Σ× R≥0 is the infinite set of logical-timed actions ;
Σr = Σ×R≥0 ×B is the infinite set of reset-logical-timed actions ; S,R ⊂ Σ∗

r and E ⊂ Σ∗

are finite sets of words, where S is called the set of prefixes, R the boundary, and E the set
of suffixes. Specifically,

• S and R are disjoint, i.e., S ∪ R = S] R ;

• The empty word is by default both a prefix and a suffix, i.e., ϵ ∈ E and ϵ ∈ S ;

• f : (S ∪ R) · E 7→ {−,+} is a classification function such that for a reset-logical-timed
word γr, γr · e ∈ (S ∪ R) · E, f(γr · e) = − ifΠ{1,2}γr · e is invalid 1, otherwise if
Π{1,2}γr · e /∈ L(A), f(γr · e) = −, and f(γr · e) = + ifΠ{1,2}γr · e ∈ L(A) ;

1. The projection of an n-tuple x onto its first two components is denoted byΠ{1,2}x, which extends to a sequence

of tuples asΠ{1,2}(x1, . . . , xk) =
(
Π{1,2}x1, . . . ,Π{1,2}xk

)
.

© Jie An et al. TACAS2020 @ Luxembourg 12 / 25

Learning from a smart teacher

• Reduced
• ∀s, s′ ∈ S : s 6= s′ implies row(s) 6= row(s′) ;

• Closed
• ∀r ∈ R, ∃s ∈ S : row(s) = row(r) ;

• Consistent
• ∀γr, γr′ ∈ S ∪ R, row(γr) = row(γr′) implies row(γr · σr) = row(γr′ · σr

′), for all
σr,σr

′ ∈ Σr satisfying γr · σr, γr′ · σr
′ ∈ S ∪ R andΠ{1,2}σr = Π{1,2}σr

′ ;

• Evidence-closed
• ∀s ∈ S and ∀e ∈ E, the reset-logical-timed word π(Π{1,2}s · e) belongs to S ∪ R 2.

2. For the sake of simplicity, we define a function π that maps a logical-timed word to its unique reset-logical-timed
counterpart in membership queries.

© Jie An et al. TACAS2020 @ Luxembourg 13 / 25

Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25

Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25

Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25

Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25

Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25

Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25

Learning from a smart teacher

• Given a target timed language Lwhich is recognized by a DOTA A, let
n = |Q| be the number of locations of A,m = |Σ| the size of the alphabet,
and κ the maximal constant appearing in the clock constraints of A.

Theorem

The learning process with a smart teacher terminates and returns a DOTA which recognizes
the target timed language L.

Theorem

The complexity of the algorithm isO(mn5κ4) for number of membership queries, and
O(mn2κ3) for number of equivalence queries.

© Jie An et al. TACAS2020 @ Luxembourg 15 / 25

Learning from a normal teacher

• In the normal teacher setting, the teacher responds to delay timed words,
and no longer returns reset information in answers to membership and
equivalence queries.

• The learner guesses the resets in order to convert between delay and
logical timed words.

• Basic process
• At every round, guess all needed resets and put all resulting table candidates

into a set ToExplore.
• Take out one table instance from the set ToExplore.
• The operations on the table are same to those in the situation with a smart

teacher.

© Jie An et al. TACAS2020 @ Luxembourg 16 / 25

Learning from a normal teacher

• In the normal teacher setting, the teacher responds to delay timed words,
and no longer returns reset information in answers to membership and
equivalence queries.

• The learner guesses the resets in order to convert between delay and
logical timed words.

• Basic process
• At every round, guess all needed resets and put all resulting table candidates

into a set ToExplore.
• Take out one table instance from the set ToExplore.
• The operations on the table are same to those in the situation with a smart

teacher.

© Jie An et al. TACAS2020 @ Luxembourg 16 / 25

Learning from a normal teacher

• Termination and complexity
• At every iteration, the learner selects the table instance which requires the

least number of guesses.
• The learner keeps the correct table instance of each iteration in ToExplore since

he guesses all reset informations.
• If T = (Σ,Σ,Σr, S,R,E, f) is the final observation table for the correct

candidate in the situation with a smart teacher, the learner can find it after

checkingO(2
(|S|+|R|)×(1+

∑
ei∈E\{ϵ} (|ei|−1))

) table instances in the worst
situation with a normal teacher.

• The process also may terminate and return a DOTA which is different to the one
in the smart teacher situation.

Theorem

The learning process with a normal teacher terminates and returns a DOTA which recognizes
the target timed language L. It has exponential complexity in the number of membership and
equivalence queries.

© Jie An et al. TACAS2020 @ Luxembourg 17 / 25

Experiment 1

Table 1 – Experimental results on random examples for the smart teacher situation.

Case ID |∆|mean
#Membership #Equivalence nmean tmean

Nmin Nmean Nmax Nmin Nmean Nmax

4_4_20 16.3 118 245.0 650 20 30.1 42 4.5 24.7
7_2_10 16.9 568 920.8 1393 23 31.3 37 9.1 14.6
7_4_10 25.7 348 921.7 1296 34 50.9 64 9.3 38.0
7_6_10 26.0 351 634.5 1050 35 44.7 70 7.8 49.6
7_4_20 34.3 411 1183.4 1890 52 70.5 93 9.5 101.7

10_4_20 39.1 920 1580.9 2160 61 73.1 88 11.7 186.7
12_4_20 47.6 1090 2731.6 5733 66 97.4 125 16.0 521.8
14_4_20 58.4 1390 2238.6 4430 79 107.7 135 16.0 515.5

Case ID : n_m_κ, consisting of the number of locations, the size of the alphabet and the maximum
constant appearing in the clock constraints, respectively, of the corresponding group ofA’s.

|∆|mean : the average number of transitions in the corresponding group.

#Membership & #Equivalence : the number of conducted membership and equivalence queries, res-
pectively. Nmin : the minimal, Nmean : the mean, Nmax : the maximum.

nmean : the average number of locations of the learned automata in the corresponding group.

tmean : the average wall-clock time in seconds, including that taken by the learner and by the teacher.

© Jie An et al. TACAS2020 @ Luxembourg 18 / 25

Experiment 2

CLOSED

start

LISTEN

SYN RCVD SYN SENT

ESTAB

FINWAIT− 1 CLOSE WAIT

CLOSING

FINWAIT− 2 LAST− ACK

TIME WAIT

a
, [0
,∞

),>

f
, [
1
,∞

),
>

b, [
0, 2

],⊥
c, [0, 1],⊥

b, [0, 2],⊥

d, [
0, 5

],>

j, [0,∞
),>

e, [0, 5],>

f
,[0
,∞

),>

f, [
0,∞

),⊥
g, [0,∞),⊥

h
,[0
,3
),⊥

g, [0, 4),⊥

g, [0, 7),>

f
,[
0
,∞

),
⊥

h
,[0
,7
),>

f, [1,∞
),>

h
,[
2
,7
),
>

i,
[2
,2
],
>

q1

start

q2

q4 q3

q5

q6 q15 q7q14

q12q9 q8 q13 q10

q11

a
, [0
,∞

),>

f
, [
1
,∞

),
>

b, [
0,
2],
⊥ c, [0, 1],⊥

b, [0, 2],⊥

d, [
0, 5

],>
e, [0, 5],>

j, [0,∞
),>

f
, [
0,
∞
),
>

f,
[0,

2),
⊥

f,
[2
,∞

),
⊥ g, [0, 2),⊥

g, [2,∞
),⊥

f,
[0
,∞

),
⊥

f, [2,∞
),⊥

h
, [
0,
2)
,⊥

h
, [2
, 3
),⊥

g, [0, 2),⊥

g, [2, 4),⊥

h,
[2
, 3
),
⊥

g, [2, 4),⊥

g, [0, 7),>

g
, [2, 7),> h

, [
0,
7)
,>

h,
[2
, 7
),
>

f, [1,∞
),>

h
,[
2
,7
),
>

i,
[2
,2
],
>

Figure 1 – Left : The functional specification of the TCP protocol with timing settings. Right : The
learnt functional specification of the TCP protocol. Colors indicate the splitting of locations.

© Jie An et al. TACAS2020 @ Luxembourg 19 / 25

Experiment 3

Table 2 – Experimental results on random examples for the normal teacher situation.

Case ID |∆|mean
#Membership #Equivalence nmean tmean #Texplored #Learnt

Nmin Nmean Nmax Nmin Nmean Nmax

3_2_10 4.8 43 83.7 167 5 8.8 14 3.0 0.9 149.1 10/10
4_2_10 6.8 67 134.0 345 6 13.3 24 4.0 7.4 563.0 10/10
5_2_10 8.8 75 223.9 375 9 15.2 24 5.0 35.5 2811.6 10/10
6_2_10 11.9 73 348.3 708 10 16.7 30 5.6 59.8 5077.6 7/10
4_4_20 16.3 231 371.0 564 27 30.9 40 4.0 137.5 8590.0 6/10

#Membership & #Equivalence : the number of conducted membership and equivalence queries with the
cached methods, respectively. Nmin : the minimal, Nmean : the mean, Nmax : the maximum.

#Texplored : the average number of the explored table instances.

#Learnt : the number of the learnt DOTAs in the group (learnt/total).

© Jie An et al. TACAS2020 @ Luxembourg 20 / 25

Outline

1 Introduction and motivation

2 Learning one-clock timed automata

3 Conclusion and future work

© Jie An et al. TACAS2020 @ Luxembourg 21 / 25

Conclusion and future work

• Contributions
• Give an active learning algorithm with a smart teacher for DOTAs. It is an

efficient (polynomial) algorithm. (white-box or gray-box)
• Give an active learning algorithm with a normal teacher for DOTAs. It has an

exponential complexity increase. (black-box)

• Future work
• Extension to non-deterministic and multi-clock timed automata.
• Improvements to efficiency of the algorithms.

© Jie An et al. TACAS2020 @ Luxembourg 22 / 25

Conclusion and future work

• Contributions
• Give an active learning algorithm with a smart teacher for DOTAs. It is an

efficient (polynomial) algorithm. (white-box or gray-box)
• Give an active learning algorithm with a normal teacher for DOTAs. It has an

exponential complexity increase. (black-box)

• Future work
• Extension to non-deterministic and multi-clock timed automata.
• Improvements to efficiency of the algorithms.

© Jie An et al. TACAS2020 @ Luxembourg 22 / 25

Reference I

[1] F. Aarts and F. W. Vaandrager.
Learning I/O automata.
In CONCUR’10, pages 71–85, 2010.

[2] D. Angluin.
Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2) :87–106, 1987.

[3] B. Bollig, P. Habermehl, C. Kern, and M. Leucker.
Angluin-style learning of NFA.
In IJCAI’09, pages 1004–1009, 2009.

[4] S. Drews and L. D’Antoni.
Learning symbolic automata.
In TACAS’17, pages 173–189, 2017.

[5] O. Grinchtein, B. Jonsson, and M. Leucker.
Learning of event-recording automata.
Theor. Comput. Sci., 411(47) :4029–4054, 2010.

[6] F. Howar, B. Steffen, B. Jonsson, and S. Cassel.
Inferring canonical register automata.
In VMCAI’12, pages 251–266, 2012.

© Jie An et al. TACAS2020 @ Luxembourg 23 / 25

Reference II

[7] Y. Li, Y. Chen, L. Zhang, and D. Liu.
A novel learning algorithm for Büchi automata based on family of DFAs
and classification trees.
In TACAS’17, pages 208–226, 2017.

[8] O. Maler and I. Mens.
Learning regular languages over large alphabets.
In TACAS’14, pages 485–499, 2014.

[9] M. Shahbaz and R. Groz.
Inferring Mealy machines.
In FM’09, pages 207–222, 2009.

[10] M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen.
L∗-based learning of Markov decision processes.
In FM’19, pages 651–669, 2019.

[11] M. Tappler, B. K. Aichernig, K. G. Larsen, and F. Lorber.
Time to learn - learning timed automata from tests.
In FORMATS’19, pages 216–235, 2019.

[12] S. Verwer, M. de Weerdt, and C. Witteveen.
The efficiency of identifying timed automata and the power of clocks.
Inf. Comput., 209(3) :606–625, 2011.

© Jie An et al. TACAS2020 @ Luxembourg 24 / 25

Thanks.

	Introduction and motivation
	Short introduction to model/automaton learning
	L*: Classic automaton learning of DFA
	Motivation

	Learning one-clock timed automata
	Basic idea
	Learning from a smart teacher
	Learning from a normal teacher

	Conclusion and future work

