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Model/Automaton learning

• Machine learning

a sample set

M = {(x, y)|x ∈ X, y ∈ Y}
learn

Model

f : X → Y
f(x) = y, ∀x ∈ X

predict or identify f(x)

for all x ∈ X

• Model/Automaton learning

Σ is an alphabet

X = Σ∗ set of words

Y = {+,−} or other set of labels

learn

Model

f is a language
L ⊆ Σ∗

The model is a kind of
Automaton
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L∗ : Classic automaton learning of DFA

• Dana Angluin proposed an online, active, and exact learning framework L∗

for Deterministic Finite Automata (DFA) in 1987 [2].

• Two kinds of queries : membership query and equivalence query.

Learner Teacher
u ∈ L?

yes(+) or no(−)

observation
table

Membership

oracle

hypothesis A

L(A) = L?

no with u′ ∈ L(A)⊕ L

yes

Output A

Equivalence

oracle
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Motivation

• More recent work extends L∗ algorithm to different models
• Mealy machines [9], I/O automata [1], register automata [6], NFA [3], Büchi

automata [7], symbolic automata [8, 4] and MDP [10], etc..

• Motivation
• How to actively learn a timed model for a real-time system?

• Related work
• Active learning of event-recording automata [5].
• Passive identification of timed automata in the limit via fitting a labelled sample

S = (S+, S−) [12].
• Passive learning of timed automata via Genetic Programming and testing [11].
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Basic idea

• Learning (regular) timed-automata with a single clock.
• Challenges

K State now includes both location and clock value.
K Determining the guard condition on transitions.
K Determining reset information on transitions.
K (related to the previous points) Matching time observed from outside to

internal clock used on the guards.

• Solutions of learning deterministic one-clock timed automata (DOTA)., A normalization map from delay timed words (outside) to logical timed words
(inside)., Utilize a partition function to map logical-timed values to finite intervals (similar
to learning symbolic automata)., First consider the case of a smart teacher who can tell the learner reset
informations. Then drop the assumption (i.e. reduction to a normal teacher) by
guessing reset information.
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Learning from a smart teacher

• The DOTAA recognizes the target language L.
• Σ = {a, b} ; B = {⊤,⊥}where⊤ is for reset,⊥ otherwise.

• A is a complete DOTA ofA. Timed language L(A) = L(A) = L.
• Delay timed words (Σ× R≥0)

∗ : outside observations ;
e.g. ω = (b, 0)(a, 1.1)(b, 1) is an accepting timed words.

• Reset-logical timed words (Σ× R≥0 × B)∗ : inside logical actions ;
e.g. γr = (b, 0,⊤)(a, 1.1,⊥)(b, 2.1,⊤) is the reset-logical counterpart of ω.
Logical counterpart γ = (b, 0)(a, 1.1)(b, 2.1).

Example

q0start q1
a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

A

q0start q1

q2

a, (1, 3),⊥

b, [0,∞),> b, [2, 4),>

a, [0, 1],>

a, [3,∞
),>

a,
[0
,∞

),
>

b,
[0
, 2
),
>

b,
[4
,∞

),
>

a, [0,∞),> b, [0,∞),>
A
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Learning from a smart teacher

• Given a DOTA A, Lr(A) represents the recognized reset-logical timed
language of A ; L(A) represents the logical timed language.

• Guiding principle : learning the (delayed) timed language of a DOTA A can
be reduced to learning the reset-logical timed language of A.

• Smart teacher setting : membership queries are logical timed words,
teacher responds with reset information.

Theorem

Given two DOTAs A andH, if Lr(A) = Lr(H), then L(A) = L(H).
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Learning from a smart teacher

Definition (Reset-logical-timed observation table)

A reset-logical-timed observation table for a DOTA A is a 7-tuple T = (Σ,Σ,Σr, S,R,E, f)
where Σ is the finite alphabet ;Σ = Σ× R≥0 is the infinite set of logical-timed actions ;
Σr = Σ×R≥0 ×B is the infinite set of reset-logical-timed actions ; S,R ⊂ Σ∗

r and E ⊂ Σ∗

are finite sets of words, where S is called the set of prefixes, R the boundary, and E the set
of suffixes. Specifically,

• S and R are disjoint, i.e., S ∪ R = S ] R ;

• The empty word is by default both a prefix and a suffix, i.e., ϵ ∈ E and ϵ ∈ S ;

• f : (S ∪ R) · E 7→ {−,+} is a classification function such that for a reset-logical-timed
word γr, γr · e ∈ (S ∪ R) · E, f(γr · e) = − ifΠ{1,2}γr · e is invalid 1, otherwise if
Π{1,2}γr · e /∈ L(A), f(γr · e) = −, and f(γr · e) = + ifΠ{1,2}γr · e ∈ L(A) ;

1. The projection of an n-tuple x onto its first two components is denoted byΠ{1,2}x, which extends to a sequence

of tuples asΠ{1,2}(x1, . . . , xk) =
(
Π{1,2}x1, . . . ,Π{1,2}xk

)
.

© Jie An et al. TACAS2020 @ Luxembourg 12 / 25



Learning from a smart teacher

• Reduced
• ∀s, s′ ∈ S : s 6= s′ implies row(s) 6= row(s′) ;

• Closed
• ∀r ∈ R, ∃s ∈ S : row(s) = row(r) ;

• Consistent
• ∀γr, γr′ ∈ S ∪ R, row(γr) = row(γr′) implies row(γr · σr) = row(γr′ · σr

′), for all
σr,σr

′ ∈ Σr satisfying γr · σr, γr′ · σr
′ ∈ S ∪ R andΠ{1,2}σr = Π{1,2}σr

′ ;

• Evidence-closed
• ∀s ∈ S and ∀e ∈ E, the reset-logical-timed word π(Π{1,2}s · e) belongs to S ∪ R 2.

2. For the sake of simplicity, we define a function π that maps a logical-timed word to its unique reset-logical-timed
counterpart in membership queries.

© Jie An et al. TACAS2020 @ Luxembourg 13 / 25



Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25



Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25



Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25



Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25



Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25



Learning from a smart teacher

T

ϵ

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)(a, 0,⊤)

(a, 1.1,⊥)(b, 0,⊤)

ϵ · · ·

−

+

−

−

−

−

S
The prefixes set S indicates the locations

R

The boundary R indicates the transitions

E

The suffixes set E distinguishes the locations

Body

Body records whether automaton
accepts logical timed words

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton
accepts logical timed words

accepts (a, 1.1) · ϵ and
gives the reset information⊥

does not accept (a, 0) · ϵ and
gives the reset information⊤

(a, 1.1,⊥)

(a, 0,⊤)

© Jie An et al. TACAS2020 @ Luxembourg 14 / 25



Learning from a smart teacher

• Given a target timed language Lwhich is recognized by a DOTA A, let
n = |Q| be the number of locations of A,m = |Σ| the size of the alphabet,
and κ the maximal constant appearing in the clock constraints of A.

Theorem

The learning process with a smart teacher terminates and returns a DOTA which recognizes
the target timed language L.

Theorem

The complexity of the algorithm isO(mn5κ4) for number of membership queries, and
O(mn2κ3) for number of equivalence queries.
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Learning from a normal teacher

• In the normal teacher setting, the teacher responds to delay timed words,
and no longer returns reset information in answers to membership and
equivalence queries.

• The learner guesses the resets in order to convert between delay and
logical timed words.

• Basic process
• At every round, guess all needed resets and put all resulting table candidates

into a set ToExplore.
• Take out one table instance from the set ToExplore.
• The operations on the table are same to those in the situation with a smart

teacher.
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Learning from a normal teacher

• Termination and complexity
• At every iteration, the learner selects the table instance which requires the

least number of guesses.
• The learner keeps the correct table instance of each iteration in ToExplore since

he guesses all reset informations.
• If T = (Σ,Σ,Σr, S,R,E, f) is the final observation table for the correct

candidate in the situation with a smart teacher, the learner can find it after

checkingO(2
(|S|+|R|)×(1+

∑
ei∈E\{ϵ} (|ei|−1))

) table instances in the worst
situation with a normal teacher.

• The process also may terminate and return a DOTA which is different to the one
in the smart teacher situation.

Theorem

The learning process with a normal teacher terminates and returns a DOTA which recognizes
the target timed language L. It has exponential complexity in the number of membership and
equivalence queries.

© Jie An et al. TACAS2020 @ Luxembourg 17 / 25



Experiment 1

Table 1 – Experimental results on random examples for the smart teacher situation.

Case ID |∆|mean
#Membership #Equivalence nmean tmean

Nmin Nmean Nmax Nmin Nmean Nmax

4_4_20 16.3 118 245.0 650 20 30.1 42 4.5 24.7
7_2_10 16.9 568 920.8 1393 23 31.3 37 9.1 14.6
7_4_10 25.7 348 921.7 1296 34 50.9 64 9.3 38.0
7_6_10 26.0 351 634.5 1050 35 44.7 70 7.8 49.6
7_4_20 34.3 411 1183.4 1890 52 70.5 93 9.5 101.7

10_4_20 39.1 920 1580.9 2160 61 73.1 88 11.7 186.7
12_4_20 47.6 1090 2731.6 5733 66 97.4 125 16.0 521.8
14_4_20 58.4 1390 2238.6 4430 79 107.7 135 16.0 515.5

Case ID : n_m_κ, consisting of the number of locations, the size of the alphabet and the maximum
constant appearing in the clock constraints, respectively, of the corresponding group ofA’s.

|∆|mean : the average number of transitions in the corresponding group.

#Membership & #Equivalence : the number of conducted membership and equivalence queries, res-
pectively. Nmin : the minimal, Nmean : the mean, Nmax : the maximum.

nmean : the average number of locations of the learned automata in the corresponding group.

tmean : the average wall-clock time in seconds, including that taken by the learner and by the teacher.
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Experiment 2
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Figure 1 – Left : The functional specification of the TCP protocol with timing settings. Right : The
learnt functional specification of the TCP protocol. Colors indicate the splitting of locations.
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Experiment 3

Table 2 – Experimental results on random examples for the normal teacher situation.

Case ID |∆|mean
#Membership #Equivalence nmean tmean #Texplored #Learnt

Nmin Nmean Nmax Nmin Nmean Nmax

3_2_10 4.8 43 83.7 167 5 8.8 14 3.0 0.9 149.1 10/10
4_2_10 6.8 67 134.0 345 6 13.3 24 4.0 7.4 563.0 10/10
5_2_10 8.8 75 223.9 375 9 15.2 24 5.0 35.5 2811.6 10/10
6_2_10 11.9 73 348.3 708 10 16.7 30 5.6 59.8 5077.6 7/10
4_4_20 16.3 231 371.0 564 27 30.9 40 4.0 137.5 8590.0 6/10

#Membership & #Equivalence : the number of conducted membership and equivalence queries with the
cached methods, respectively. Nmin : the minimal, Nmean : the mean, Nmax : the maximum.

#Texplored : the average number of the explored table instances.

#Learnt : the number of the learnt DOTAs in the group (learnt/total).
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Outline
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Conclusion and future work

• Contributions
• Give an active learning algorithm with a smart teacher for DOTAs. It is an

efficient (polynomial) algorithm. (white-box or gray-box)
• Give an active learning algorithm with a normal teacher for DOTAs. It has an

exponential complexity increase. (black-box)

• Future work
• Extension to non-deterministic and multi-clock timed automata.
• Improvements to efficiency of the algorithms.
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Thanks.
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