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Hybrid Systems

Hybrid systems exhibit combinations of discrete jumps and continuous evolution,
many of which are safety-critical.
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Hybrid Behaviours

continuous continuous
discrete

continuous

discretediscrete

Figure – Macro : switching modes

physical
plant

control
program

sensing states

actuating commands

Figure – Micro : closed-loop feedback
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Hybrid Systems
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Crucial question :
How do formal methods guarantee critical properties, e.g., safety, termination,
liveness etc. ?

Main answers :
Theorem proving (automated/interactive deductive-reasoning).
Model checking (exhaustive state-exploration).
Synthesis (correct-by-construction).
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Outline

1 Decidability of Reachability for a Family of Differential Dynamics

2 Safety of Dynamical Systems under Time Delays

3 Interpolation and Termination in the Context of Program Analysis

4 A Framework for Modelling, Verification and Synthesis of Hybrid Systems

5 Concluding Remarks
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Reachability of Differential Dynamics

The most expressive family whose reachability is decidable

—Joint work with T. Gan, Y. Li, L. Dai, B. Xia and N. Zhan—
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Summary
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Problem Formulation

Safety Verification Using Reachable Sets

©[M. Althoff, 2010]

System is safe, if no trajectory enters the unsafe set.
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Problem Formulation

LDSs with Inputs

Linear dymamical systems (LDSs) with inputs are differential equations of the
form

ξ̇ = Aξ + u,

where ξ(t) ∈ Rn, A ∈ Rn×n, and u : R → Rn is a continuous function vector
which is called the input.

The forward reachable set :

Post(X) := {y ∈ Rn | ∃x∃t : x ∈ X ∧ t ≥ 0 ∧ Φ(x, t) = y}

Reachability problem :

F(X,Y) := Y ∩ Post(X) = ∅ ?
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Extension of the Decidable Fragment

Decidability Results of the Reachability of LDSs

In [G. Lafferriere et al., J. Symb. Comput., 2001], Lafferriere, Pappas and Yovine proved the
decidability of the reachability problems of the following three families of LDSs :

1 A is nilpotent, i.e. An = 0, and each component of u is a polynomial ;

2 A is diagonalizable with rational eigenvalues, and each component of u is of the
form

∑m
i=1 cie

λit, where λis are rationals and cis are subject to semi-algebraic
constraints ;

3 A is diagonalizable with purely imaginary eigenvalues, and each component of u
of the form

∑m
i=1 ci sin(λit) + di cos(λit), where λis are rationals and cis and dis

are subject to semi-algebraic constraints.
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Extension of the Decidable Fragment

Our Contributions

We generalize the previous case 2 and case 3 by proving the decidability of the
reachability problems where

2 A is diagonalizable with rational real eigenvalues, and each component of u is of
the form

∑m
i=1 cie

λit, where λis are rationals reals and cis are subject to
semi-algebraic constraints ;

; T. Gan, M. Chen, L. Dai, B. Xia, N. Zhan : Decidabil. of the reachabil. for a family of linear vector fields. ATVA ’15.

3 A is diagonalizable with purely imaginary eigenvalues, and each component of u
of the form

∑m
i=1 ci sin(λit) + di cos(λit), where λis are rationals reals and cis and

dis are subject to semi-algebraic constraints.

; T. Gan, M. Chen, Y. Li, B. Xia, N. Zhan : Computing reachable sets of linear vector fields revisited. ECC ’16.
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Extension of the Decidable Fragment

Solvable Systems

A nonlinear differential dynamic

ξ̇ = F(ξ,u)

is called solvable system (SS) if the variable vector ξ = (ξ1, . . . , ξn) can be classified
intom groups (m ≤ n) :

ζ1 = (ξ11, . . . , ξ1n1 ), . . . , ζm = (ξm1, . . . , ξmnm ),

and the dynamical system can be represented as the form :

ξ̇ =


ζ̇1
ζ̇2
...
˙ζm

 =


A1ζ1 + u1(t)

A2ζ2 + u2(t, ζ1)
...

Amζm + um(t, ζ1, . . . , ζm−1)

 ,
where 0 < n1 < . . . < nm = n are integers,m ∈ N, A1, . . . ,Am are real matrices with
corresponding dimensions, u1, . . . ,um are polynomial-exponential-trigonometric
functions.
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Example (Solvable System)

ẋẏ
ż

 =

 x+ e−t

2y+ x2 − e−
√

2t
√
3z+ xy+ 2e−t
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Extension of the Decidable Fragment

Our Contributions (Cont’d)

We generalize the decidability of reachability from LDSs to SSs where

1 A1, . . . , Am are nilpotent, i.e. Ak1
1 = 0, . . . , Akm

m = 0, for some k1, . . . , km ∈ N, and
each component of ui is a polynomial ;

2 Each Ai is diagonalizable with real eigenvalues, and each component of ui is of the form
mi∑
j=1

cije
λij t, where λijs are reals and cijs are subject to semi-algebraic constraints ;

3 Each Ai is diagonalizable with purely imaginary eigenvalues, whose imaginary parts are

reals, and each component of ui of the form
mi∑
j=1

cij sin(λijt) + dij cos(λijt), where λijs

are reals and cijs and dijs are subject to semi-algebraic constraints.

We further present a tight abstraction of general solvable dynamical systems,
where the systemmatrix Amay have complex eigenvalues.

; T. Gan, M. Chen, Y. Li, B. Xia, N. Zhan : Reachability analysis for solvable dynamical systems. IEEE Trans.

Automat. Contr. 2017.
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Why Time Delays

Advice by a Wise Man

©izQuotes

Only relevant to ordinary people’s life?

Or to scientists, in particular comp. sci. and control folks, too?

Remember that Canning briefly controlled Great Britain !
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Why Time Delays

Hybrid Systems
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Crucial question :

How do the controller and the plant interact?

Traditional answer :

Coupling assumed to be (or at least modelled as) delay-free.
; Mode dynamics is covered by the conjunction of the individual ODEs.
; Switching btw. modes is an immediate reaction to environmental conditions.
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Why Time Delays

Instantaneous Coupling
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©ETCS-3

Following the tradition, above (rather typical) Simulink model assumes

delay-free coupling between all components,

instantaneous feed-through within all functional blocks.

Central questions :

1 Is this realistic?

2 If not, does it have observable effect on control performance?

3 May that effect be detrimental or even harmful?
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Why Time Delays

Q1 : Is Instantaneous Coupling Realistic?

Digital control needs A/D and D/A conversion, which
induces latency in signal forwarding.

Digital signal processing, especially in complex sen-
sors like CV, needs processing time, adding signal de-
lays.

Networked control introduces communication la-
tency into the feedback control loop.

Harvesting, fusing, and forwarding data through sen-
sor networks enlarge the latter by orders of magni-
tude.
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Why Time Delays

Q1 : Is Instantaneous Coupling Realistic? – No.

Digital control needs A/D and D/A conversion, which
induces latency in signal forwarding.

Digital signal processing, especially in complex sen-
sors like CV, needs processing time, adding signal de-
lays.

Networked control introduces communication la-
tency into the feedback control loop.

Harvesting, fusing, and forwarding data through sen-
sor networks enlarge the latter by orders of magni-
tude.
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Why Time Delays

Q2 : Do Delays Have Observable Effect?
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Why Time Delays

Q2 : Do Delays Have Observable Effect? – Yes, they have.

{
ẋ(t) = −x(t)
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Why Time Delays

Q3 : May the Effects be Harmful?

Delayed logistic equation [G. Hutchinson, 1948] :

Ṅ(t) = N(t)[1− N(t− r)]
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Why Time Delays

Q3 : May the Effects be Harmful? – Yes, delays may well annihilate
control performance.

Delayed logistic equation [G. Hutchinson, 1948] :

Ṅ(t) = N(t)[1− N(t− r)]
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Why Time Delays

Consequences

Delays in feedback control loops are ubiquitous.

They may well invalidate the safety/stability/…certificates obtained by verifying
delay-free abstractions of the feedback control systems.

Automatic verification/synthesis methods addressing feedback delays in hybrid
systems should therefore abound!

Surprisingly, they don’t :

1 S. Prajna, A. Jadbabaie :Meth. f. safety verification of time-delay syst. (CDC’05)

2 L. Zou, M. Fränzle, N. Zhan, P.N. Mosaad : Autom. verific. of stabil. and safety (CAV ’15)

3 H. Trinh, P.T. Nam, P.N. Pathirana, H.P. Le : On bwd.s and fwd.s reachable sets bounding for perturbed
time-delay systems (Appl. Math. & Comput. 269, ’15)

4 Z. Huang, C. Fan, S. Mitra : Bounded invariant verification for time-delayed nonlinear networked dynamical
systems (NAHS ’16)

5 P.N. Mosaad, M. Fränzle, B. Xue : Temporal logic verification for DDEs (ICTAC ’16)

6 M. Chen, M. Fränzle, Y. Li, P.N. Mosaad, N. Zhan : Validat. simul.-based verific. (FM ’16)

7 B. Xue, P.N. Mosaad, M. Fränzle, M. Chen, Y. Li, N. Zhan : Safe approx. of reachable sets for DDEs
(FORMATS ’17)

8 E. Goubault, S. Putot, L. Sahlman : Approximating flowpipes for DDEs (CAV ’18)

(plus a handful of related versions)
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Continuous Dynamics

Solving Delay Differential Equations (DDEs)

A formal model of delayed feedback control

—Joint work with M. Fränzle, Y. Li, P. N. Mosaad, B. Xue and N. Zhan—

Mingshuai Chen · Institute of Software, CAS Modelling · Verification · Synthesis RWTH Aachen Univ. · 2018 23 / 56



Decidability of Reachability Delayed Dynamical Systems Program Analysis All in a Nutshell Concluding Remarks

Continuous Dynamics

Delayed Differential Dynamics (a.k.a., DDEs)

Historical motivation :

”Despite [...] very satisfactory state of affairs as far as [ordinary] differential equations
are concerned, we are nevertheless forced to turn to the study of more complex equations.
Detailed studies of the real world impel us, albeit reluctantly, to take account of the fact
that the rate of change of physical systems depends not only on their present state, but
also on their past history.”

[Richard Bellman and Kenneth L. Cooke, 1963]

Delay Differential Equations (DDEs)

{
ẋ (t) = f (x (t) ,x (t− r1) , . . . ,x (t− rk)) , t ∈ [0,∞)
x (t) = x0 ∈ Θ, t ∈ [−rmax, 0]

The unique solution (trajectory) : ξx0 (t) : [−rmax,∞) 7→ Rn.
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Continuous Dynamics

Why DDEs are Hard(er)

x = f0

ẋ = −f0

d3

dt x = −f0

d2

dt x = f0

d10

dt x = f0

ẋ(t) = −x(t− 1)

DDEs constitute a model of system
dynamics beyond ”state snapshots” :

They feature ”functional state”
instead of state in the Rn.

Thus providing rather infallible,
infinite-dimensional memory of the
past.

N.B. :More complex transformations may be applied to
the initial segment f0 according to the DDE’s right-hand
side. f0 will nevertheless hardly ever vanish from the
state space.

Try only if

to you!
infinite state no longer is scary enough

Mingshuai Chen · Institute of Software, CAS Modelling · Verification · Synthesis RWTH Aachen Univ. · 2018 25 / 56



Decidability of Reachability Delayed Dynamical Systems Program Analysis All in a Nutshell Concluding Remarks

Continuous Dynamics

Why DDEs are Hard(er)

x = f0
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Continuous Dynamics

Method I : Simulation-Based Verification

176 A. Donzé and O. Maler

Bδ(S) =
⋃

x∈S
Bδ(x) and Bδ(ξx) =

⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive notion
of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S) is the
smallest radius ε such that the union of all ε radius closed
balls with their center in S covers X .

αX (S) = min
ε>0

{ε | X ⊂ Bε(S)} (2)

ε

We now define the process of refining a sampling, which simply consists in finding
a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)

Figure – A finite ϵ-cover of the initial set of states.

Systematic Simulation Using Sensitivity Analysis 177

Clearly, a first property of the expansion functions is that it approaches 0 as ε
tends toward 0:

∀t > 0, lim
ε→0

Ex,ε(t) = 0 (4)

This results directly from the continuity of ξx(t) w.r.t. x.

The expansion function value Ex0,ε(t)
gives the radius of the ball which over-
approximate tightly the reachable set from
the ball Bε(x0) at time t. Obviously, if we
take several such balls so that the initial
set X0 is covered, we obtain a correspond-
ing cover of Reach=t(X0). This is stated in
the following

x0

ξx0(t)

ε

Reach=t

[
Bε(x0)

]

Ex0,ε(t)

Proposition 1. Let S = {x1, . . . ,xk}be a sampling of X0 such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0 for some {ε1, . . . , εk}. Let t > 0 and for each 1 ≤ i ≤ k, let
δi = Exi,εi(t). Then

⋃k
i=1 Bδi(ξxi(t)) is a ball cover of Reach=t(X0).

Proof. By definition, the ball cover of X0 contains X0, and each Bδi(ξxi(t))
contains Reach=t(Bεi(xi)), and the rest follows from the commutativity of the
dynamics with set union and containment. 	


In particular, if S is a sampling of X0 with dispersion ε then we are in the case
where εi = ε for all 1 < i < k and since the result is true for all t ∈ [0, T ], we
have the following

Corollary 1. Let S = {x1,x2, . . . ,xk} be a sampling of X0 with dispersion
αX0(S) = ε. Let δ > 0 be an upper bound for Exi,ε(t) for all 1 < i < k and
t ∈ [0, T ], then the following inclusions hold

Reach[0,T ](X0) ⊆
⋃

x∈S
BEx,ε(ξx) ⊆

⋃

x∈S
Bδ(ξx) ⊆ Bδ

(
Reach[0,T ](X0)

)
(5)

Proof. The first inclusion is a direct application of the proposition. The second
results from the fact that δ is an upper-bound and the third inclusion is due to
the fact that ∀(xi, t) ∈ S × [0, T ], ξxi(t) ∈ Reach[0,T ](X0). 	


In other terms, if we bloat the sampling trajectories starting from S with a radius
δ, which is an upper bound for expansion functions of these trajectories, then
we get an over-approximation of the reachable set which is between the exact
reachable set and the reachable set bloated with δ. Because of (4), it is clear
that δ, and then the over-approximation error, decreases when ε gets smaller.

The second corollary of proposition 1 underlies our verification strategy.

Corollary 2. Let S = {x1, . . . ,xk} be a sampling of X such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0. For t ∈ [0, T ] and 1 ≤ i ≤ k, let δi(t) = Exi,εi(t). If for all
t ∈ [0, T ],

Bδi(t)(ξxi(t)) ∩ F = ∅,

Figure – An Over-approximation of the reachable set
by bloating the simulation.

©A. Donzé & O. Maler, 2007
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Continuous Dynamics

Method I : Simulation-Based Verification

1 Do numerical simulation on a (sufficiently dense) sample of initial states.

2 Add (pessimistic) error analysis and sensitivity analysis.

3 ”Bloat” the resulting trajectories accordingly.

x

y

t

; M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : Validat. simul.-based verific.. FM ’16.
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Continuous Dynamics

Method II : Boundary-Based Approximation

1 Impose a homeomorphism by bounding the time-lag through sensitivity analysis.

2 Compute an enclosure of the reachable set’s boundary.

3 Over- (under-)approximate the reachable set by incl. (excl.) the enclosure.

; B. Xue, P. Mosaad, M. Fränzle, M. Chen, Y. Li, N. Zhan : Safe approx. of reachable sets for DDEs. FORMATS ’17.
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Discrete Dynamics

Discrete Safety Games

Staying safe and reaching an objective
when observation & actuation are confined by delays

—Joint work with M. Fränzle, Y. Li, P. N. Mosaad and N. Zhan—
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Discrete Dynamics

Staying Safe
When Observation & Actuation Suffer from Serious Delays

©ESA

You could move slowly. (Well, can you?)
You could trust autonomy.
Or you have to anticipate and issue actions early.
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A Robot-Escaping Game

j

j
x

y
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3

Figure – A robot escape game in a 4×4 room, with
Σr = {RU, UR, LU, UL, RD, DR, LD, DL, ϵ},
Σk = {R, L, U, D}.

No delay :
Robot always wins by circling around
the obstacle at (1,2).

1 step delay :
Robot wins by 1-step pre-decision.

2 steps delay :
Robot still wins, yet extra memory is
needed.

3 steps delay :
Robot is unwinnable (uncontrollable)
anymore.
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Playing Safety Game Subject to Discrete Delay

Playing Subject to Discrete Delay

Shift registers
Game state AdversaryEgo player

Observation: It doesn’t make an observable difference for the joint dynamics
whether delay occurs in perception, actuation, or both.

Consequence: There is an1 obvious reduction to a safety game of perfect
information.

1

In fact, two different ones: To mimic opacity of the shift registers, delay has to be
moved to actuation/sensing for ego/adversary, resp. The two thus play different games!

PKU MAVeLoS Workshop, Beijing, Oct. 8, 2017 · Martin Fränzle: Indecision and Delay · 14 / 39
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Discrete Dynamics

Reduction to Delay-Free Games
from Ego-Player PerspectiveThe Reduction

from Ego-Player Perspective

Ego
input Σ

Shift register

Σ / Ego inp. Adv. inp.

Safe / unsafe

G
a

m
e

 g
ra

p
h

Σ

Safety games w. delay can be solved algorithmically.

Game graph incurs blow-up by factor |Alphabet(ego)|delay.

PKU MAVeLoS Workshop, Beijing, Oct. 8, 2017 · Martin Fränzle: Indecision and Delay · 15 / 39
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Discrete Dynamics

Incremental Synthesis

Observation : A winning strategy for delay k′ > k can always be utilized for a safe
win under delay k.

Consequence : A position is winning for delay k is a necessary condition for it being
winning under delay k′ > k.

Idea : Incrementally filter out loss states &
incrementally synthesize winning strategy for the remaining :

1 Synthesize winning strategy for underlying delay-free safety
game;

2 For each winning state, lift strategy from delay k to k+ 1 ;
3 Remove states where this does not succeed;
4 Repeat from 2 until either delay-resilience suffices (winning) or
initial state turns lossy (losing).

; M. Chen, M. Fränzle, Y. Li, P.N. Mosaad, N. Zhan :What’s to come is still unsure : Synthesizing controllers

resilient to delayed interaction. ATVA ’18. [Distinguished Paper Award].
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Discrete Dynamics

How about Non-Order-Preserving Delays?

§ Observations may arrive out-of-order :

Maximum delay 5

Out of order!
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© But this may only reduce effective delay, improving controllability :
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© W.r.t. qualitative controllability, the worst-case of out-of-order delivery is equivalent to
order-preserving delay k.

© Stochastically expected controllability even better than for strict delay k.
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Outline

1 Decidability of Reachability for a Family of Differential Dynamics
Problem Formulation
Extension of the Decidable Fragment

2 Safety of Dynamical Systems under Time Delays
Why Time Delays
Verifying Delayed Differential Dynamics
Synthesizing Controllers Resilient to Delayed Interaction

3 Interpolation and Termination in the Context of Program Analysis
Synthesizing Interpolants for Nonlinear Arithmetic
Proving Termination of Polynomial Programs

4 A Framework for Modelling, Verification and Synthesis of Hybrid Systems
Overview of the Framework for Formal Design
Case Study on the Control Program of a Lunar Lander

5 Concluding Remarks
Summary
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Synthesizing Interpolants for NLA

Interpolation over Nonlinear Arithmetic

The cornerstone of ATP, SMT, BMC, etc.

—Joint work with T. Gan, L. Dai, B. Xia, N. Zhan,
D. Kapur, J. Wang and J. An—
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Synthesizing Interpolants for NLA

Craig Interpolation

Craig Interpolant

Given ϕ and ψ in a theory T s.t. ϕ ∧ ψ |=T ⊥, a formula I is a (reverse) interpolant of ϕ
and ψ if

1 ϕ |=T I ;

2 I ∧ ψ |=T ⊥ ; and

3 var(I) ⊆ var(ϕ) ∩ var(ψ).

Nelson-Oppen method in theorem proving : local and modular reasoning;

SMT : combining different decision procedures to verify programs with
complicated data structures ;

Bounded model-checking : generating invariants to verify infinite-state systems
due to McMillan ;

…

Little work on synthesizing nonlinear interpolants : [S. Kupferschmid and B. Becker,
FORMATS ’11].
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Synthesizing Interpolants for NLA

Our Contributions

1 A complete, polynomial time algorithm for generating interpolants from
mutually contradictory conjunctions of concave quadratic (CQ) polynomial
inequalities over the reals :

If NSOSC holds, an interpolant a la McMillan can be generated essentially using the
linearization of quadratic polynomials, where a generalization of Motzkin’s
transposition theorem applies ;
If NSOSC doesn’t hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively
applied.

2 An algorithm, by partitioning Horn clauses, for generating interpolants for the
combination of quantifier-free theory of concave quadratic polynomial
inequalities and equality theory over uninterpreted function symbols (EUF ) ;

3 Tool NLFIntp : lcs.ios.ac.cn/~chenms/tools/NLFIntp/

; T. Gan, L. Dai, B. Xia, N. Zhan, D. Kapur, M. Chen : Interpolant synthesis for quadratic polynomial inequalities

and combination with EUF. IJCAR ’16.
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lcs.ios.ac.cn/~chenms/tools/NLFIntp/


Decidability of Reachability Delayed Dynamical Systems Program Analysis All in a Nutshell Concluding Remarks

Synthesizing Interpolants for NLA

Our Contributions

1 A complete, polynomial time algorithm for generating interpolants from
mutually contradictory conjunctions of concave quadratic (CQ) polynomial
inequalities over the reals :

If NSOSC holds, an interpolant a la McMillan can be generated essentially using the
linearization of quadratic polynomials, where a generalization of Motzkin’s
transposition theorem applies ;

If NSOSC doesn’t hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively
applied.

2 An algorithm, by partitioning Horn clauses, for generating interpolants for the
combination of quantifier-free theory of concave quadratic polynomial
inequalities and equality theory over uninterpreted function symbols (EUF ) ;

3 Tool NLFIntp : lcs.ios.ac.cn/~chenms/tools/NLFIntp/

; T. Gan, L. Dai, B. Xia, N. Zhan, D. Kapur, M. Chen : Interpolant synthesis for quadratic polynomial inequalities

and combination with EUF. IJCAR ’16.

Mingshuai Chen · Institute of Software, CAS Modelling · Verification · Synthesis RWTH Aachen Univ. · 2018 39 / 56

lcs.ios.ac.cn/~chenms/tools/NLFIntp/


Decidability of Reachability Delayed Dynamical Systems Program Analysis All in a Nutshell Concluding Remarks

Synthesizing Interpolants for NLA

Our Contributions

1 A complete, polynomial time algorithm for generating interpolants from
mutually contradictory conjunctions of concave quadratic (CQ) polynomial
inequalities over the reals :

If NSOSC holds, an interpolant a la McMillan can be generated essentially using the
linearization of quadratic polynomials, where a generalization of Motzkin’s
transposition theorem applies ;
If NSOSC doesn’t hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively
applied.

2 An algorithm, by partitioning Horn clauses, for generating interpolants for the
combination of quantifier-free theory of concave quadratic polynomial
inequalities and equality theory over uninterpreted function symbols (EUF ) ;

3 Tool NLFIntp : lcs.ios.ac.cn/~chenms/tools/NLFIntp/

; T. Gan, L. Dai, B. Xia, N. Zhan, D. Kapur, M. Chen : Interpolant synthesis for quadratic polynomial inequalities

and combination with EUF. IJCAR ’16.

Mingshuai Chen · Institute of Software, CAS Modelling · Verification · Synthesis RWTH Aachen Univ. · 2018 39 / 56

lcs.ios.ac.cn/~chenms/tools/NLFIntp/


Decidability of Reachability Delayed Dynamical Systems Program Analysis All in a Nutshell Concluding Remarks

Synthesizing Interpolants for NLA

Our Contributions

1 A complete, polynomial time algorithm for generating interpolants from
mutually contradictory conjunctions of concave quadratic (CQ) polynomial
inequalities over the reals :

If NSOSC holds, an interpolant a la McMillan can be generated essentially using the
linearization of quadratic polynomials, where a generalization of Motzkin’s
transposition theorem applies ;
If NSOSC doesn’t hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively
applied.

2 An algorithm, by partitioning Horn clauses, for generating interpolants for the
combination of quantifier-free theory of concave quadratic polynomial
inequalities and equality theory over uninterpreted function symbols (EUF ) ;

3 Tool NLFIntp : lcs.ios.ac.cn/~chenms/tools/NLFIntp/

; T. Gan, L. Dai, B. Xia, N. Zhan, D. Kapur, M. Chen : Interpolant synthesis for quadratic polynomial inequalities

and combination with EUF. IJCAR ’16.

Mingshuai Chen · Institute of Software, CAS Modelling · Verification · Synthesis RWTH Aachen Univ. · 2018 39 / 56

lcs.ios.ac.cn/~chenms/tools/NLFIntp/


Decidability of Reachability Delayed Dynamical Systems Program Analysis All in a Nutshell Concluding Remarks

Synthesizing Interpolants for NLA

Our Contributions

1 A complete, polynomial time algorithm for generating interpolants from
mutually contradictory conjunctions of concave quadratic (CQ) polynomial
inequalities over the reals :

If NSOSC holds, an interpolant a la McMillan can be generated essentially using the
linearization of quadratic polynomials, where a generalization of Motzkin’s
transposition theorem applies ;
If NSOSC doesn’t hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively
applied.

2 An algorithm, by partitioning Horn clauses, for generating interpolants for the
combination of quantifier-free theory of concave quadratic polynomial
inequalities and equality theory over uninterpreted function symbols (EUF ) ;

3 Tool NLFIntp : lcs.ios.ac.cn/~chenms/tools/NLFIntp/

; T. Gan, L. Dai, B. Xia, N. Zhan, D. Kapur, M. Chen : Interpolant synthesis for quadratic polynomial inequalities

and combination with EUF. IJCAR ’16.

Mingshuai Chen · Institute of Software, CAS Modelling · Verification · Synthesis RWTH Aachen Univ. · 2018 39 / 56

lcs.ios.ac.cn/~chenms/tools/NLFIntp/


Decidability of Reachability Delayed Dynamical Systems Program Analysis All in a Nutshell Concluding Remarks

Synthesizing Interpolants for NLA

Our Contributions (Cont’d)

We drop the CQ constraint by learning nonlinear interpolants using SVM
classification (sampling-guessing-refining) :
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; M. Chen, J. Wang, J. An, D. Kapur, N. Zhan : NIL : Learning nonlinear interpolants. Under revision.
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Proving Termination of MPPs

Termination of Polynomial Programs

The largest family whose termination is decidable

—Joint work with Y. Li, N. Zhan, H. Lu and G. Wu—
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Proving Termination of MPPs

Program Termination

Termination Problem

Given a program P and an input x, to determine if P terminates with the input x.

Example (Simple Loops)

(x, y) := (x0, y0);

while (x + y = 0){

if ? then (x, y) := (y2, 2x + y);

else (x, y) := (2x2 + y− 1, x + 2y + 1); }

int mccarthy(int n);

int c← 1;

while (c ̸= 0 ∧ n ̸= 91){
if (n > 100)

then n := n− 10; c := c− 1;

else n := n + 11; c := c + 1; }
return n;
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Proving Termination of MPPs

Positive and Negative Results

§ Termination problem of programs is undecidable in general ;

§ Termination problem of general nonlinear programs is undecidable ;

§ Termination problem of general linear programs is undecidable ;

§ Even, termination problems of subclasses of linear or nonlinear programs are
still undecidable.

© Many sufficient conditions for termination and/or non-termination for linear and
nonlinear programs;

© Termination or non-termination proofs can be synthesized using predicate
abstraction for programs with complicated data structures ;

© Terminator has been successfully applied in the termination analysis of drivers in
Microsoft merchandised software product ;

© The termination problem of some subclasses of linear programs have been
proved decidable (e.g., [Tiwari, 2004]).
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Microsoft merchandised software product ;

© The termination problem of some subclasses of linear programs have been
proved decidable (e.g., [Tiwari, 2004]).
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Proving Termination of MPPs

Our Contributions

1 A class of nonlinear programs (MPPs) which is expressive enough, yet with a
decidable termination problem :

while (G(xxx) = 0)



xxx := AAA1(xxx);

∥ xxx := AAA2(xxx);

...

∥ xxx := AAAl−1(xxx);

∥ xxx := AAAl(xxx);



2 A decision procedure by computing the set of non-termination inputs (NTI) :

1 Construct the execution tree symbolically,
2 Construct the set of n-nontermination execution paths, each of which forms a

descending chain of algebraic sets,
3 Identify a uniform bound on all these chains using Hilbert’s function and Macaulay

Theorem,
4 The set of NTI corresponds exactly to the union of all these algebraic sets in these

chains at the bound point.

3 Generate all invariants of the program, under the template of polynomial
equalities of a fixed degree.

; Y. Li, N. Zhan, H. Lu, G. Wu : Termination analysis of polynomial programs with equality conditions. arXiv.
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All in a Nutshell

Foundations of formal design of cyber-physical systems

—Joint work further with X. Han, T. Tang, S. Wang, M. Yang,
A. P. Ravn, H. Zhao and L. Zou—
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Outline

1 Decidability of Reachability for a Family of Differential Dynamics
Problem Formulation
Extension of the Decidable Fragment

2 Safety of Dynamical Systems under Time Delays
Why Time Delays
Verifying Delayed Differential Dynamics
Synthesizing Controllers Resilient to Delayed Interaction

3 Interpolation and Termination in the Context of Program Analysis
Synthesizing Interpolants for Nonlinear Arithmetic
Proving Termination of Polynomial Programs

4 A Framework for Modelling, Verification and Synthesis of Hybrid Systems
Overview of the Framework for Formal Design
Case Study on the Control Program of a Lunar Lander

5 Concluding Remarks
Summary
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Overview of the Framework

A Framework for Formal Design

VERIFICATION & SYNTHESIS

Verification 
Techniques

Verified Formal Model

HHL ITP

ANSI-C Code

Tools

Invariant 
Generation

HHL

MODELLING

Delays, Probabilistic, 
Stochastic, Fault-

Tolerant Behaviours

Extended HCSP Model

Simulink/Stateflow + AADL
Graphical Model

Translator

HCSP Formal Model

Hierarchical modelling by Simulink/Stateflow +
HCSP;

Compositional reasoning based on Hybrid Hoare
Logic (HHL) ;
Substantial verification techniques incorporated :

Reachset computation;
Verification of delayed systems;
Interpolant synthesis ;
Invariant generation.

Refinement theory that generates code
automatically from verified formal model.

; M. Chen, A. P. Ravn, S. Wang, M. Yang, N. Zhan : A two-way path

between formal and informal design of embedded systems. UTP ’16.

; M. Chen, X. Han, T. Tang, S. Wang, M. Yang, N. Zhan, H. Zhao, L.

Zou :MARS : A toolchain for modelling, analysis and verification of

hybrid systems. ProCoS ’17.
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Case Study

Lunar Lander of Chang’e-3

Mission description :

Design objectives :

; |v + 2| ≤ 0.05m/s during the slow descent phase and before touchdown;
; |v| < 5m/s at the time of touchdown.
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Case Study

Simulink Models
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Figure – Simulink diagram of the guidance program for the slow descent phase
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Figure – The Simulink diagram of the continuous dynamics for the slow descent phase
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Case Study

From Simulink to HCSP

P =̂ PC ∥ PD

PC =̂ v := −2; m := 1250; r := 30;
( ⟨Sys1&f > 3000⟩ ⊵ CommI;
⟨Sys2&f ≤ 3000⟩ ⊵ CommI )∗

PD =̂ t := 0; g := 1.622; vslw := −2; f1 = 2027.5;
( chv?v1; chm?m1; f1 := m1 ∗ aIC; chf!f1;
temp := t; ⟨ṫ = 1&t < temp + 0.128⟩ )∗

aIC =̂ g − 0.01 ∗ (f1/m1 − g) − 0.6 ∗ (v1 − vslw)

Sys1 =̂ ṁ = −f/2548, v̇ = f/m − 1.622, ṙ = v

Sys2 =̂ ṁ = −f/2842, v̇ = f/m − 1.622, ṙ = v

CommI =̂ chf?f → skip 8 chv!v → skip 8 chm!m → skip
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Case Study

From HCSP to Simulink
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Figure – The top-level view of the translated Simulink model
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Case Study

Simulation Results
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Figure – The evolution of velocity v in physical plant PC

Mingshuai Chen · Institute of Software, CAS Modelling · Verification · Synthesis RWTH Aachen Univ. · 2018 52 / 56



Decidability of Reachability Delayed Dynamical Systems Program Analysis All in a Nutshell Concluding Remarks

Case Study

Verification in HHL Prover

lemma cons1: "(t <=0.128) & (t>=0) & Inv |- |v-vlsw | <=0.05"
lemma cons2: "(v=-2) & (m=1250) & (Fc =2027.5)

& (t=0) |- Inv"
lemma cons3: "(t= 0.128) & Inv

|- substF ([(t,0)], substF ([(Fc,
-0.01*(Fc -1.622*m) - 0.6*(v+2)*m + 1.622*m)],Inv))"

lemma cons4: "exeFlow(''v, m, r, t'',
''(Fc/m) - 1.622, -(Fc/2548) , v, 1'',t < 0.128, Inv) |- Inv"

lemma cons5: "exeFlow(''v, m, r, t'',
''(Fc/m) - 1.622, -(Fc/2842) , v, 1'',t < 0.128, Inv) |- Inv"
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Thank You—Q & A?
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