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A Fun Fact

”A drunk man will find his way home, but a drunk bird may get lost forever.”

— Shizuo Kakutani

©Wikipedia ©StackExchange

A 2-D symmetric random walk on a lattice returns to the origin almost-surely, yet not
its 3-D counterpart [Pólya, Math. Ann. ’21].

Question : How to compute sound approx. of the returning probability of the bird?
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Problem Statement New Proof Rule for Lower Bounds Concluding Remarks

Probabilistic Programming

Probabilistic Programs

Cbrw : while ( n > 0 ) { n := n− 1 [1/3] n := n + 1 }

· · · 0 · · ·nn− 1 n + 1

1/3 2/3

”The crux of probabilistic programming is to treat normal-looking programs
as if they were probability distributions.”

—Michael Hicks, The PL Enthusiast
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Problem Statement New Proof Rule for Lower Bounds Concluding Remarks

Quantitative Reasoning

Quantitative Reasoning about Probabilistic Loops [Kozen; McIver, Morgan; Kaminski]

σ

C

…

f (

τ1

) f (

τ2

)

…

f (

τm

)wpJC K(f )(σ) ≜ Exp
[ ]

wpJn := 5K (n ) = 5

wpJn := n− 1 [1/3] n := n + 1K (n ) = 1/3 · (n− 1) + 2/3 · (n + 1) = n + 1/3

wpJwhile ( n > 0 ) { n := n− 1 [1/3] n := n + 1 }K (1) =

wpJwhile (φ ) {C }K (f ) = lfp Φf = ?
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Problem Statement New Proof Rule for Lower Bounds Concluding Remarks

Bounds on lfp

Bounding the Least Fixed Point

l ⪯ lfp Φf ⪯ u

Upper bounds (Park induction) :

Φf (u ) ⪯ u implies lfp Φf ⪯ u .

Lower bounds :

l ⪯ Φf (l ) l ⪯ lfp Φf .

u

Φf (u )

fpΦf

lfpΦf

l

Φf (l )

fpΦf

7

almost-sure termination (AST)
bounded expectations

…
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Problem Statement New Proof Rule for Lower Bounds Concluding Remarks

Guard-Strengthening Rule

A New Proof Rule for Lower Bounds

Theorem (Guard-Strengthening Rule)

Cloop : while (φ ) {C } ⇝ C′
loop : while

(
φ′ ) {C }

φ′ =⇒ φ l ⪯ wpJC′
loopK ([¬φ] · f )

l ⪯ wpJCloopK (f ) (Guard-Strengthening)

Cbrw : while (0 < n) {
n := n− 1 [1/3] n := n + 1 }

⇝ CMbrw : while (0 < n < M) {
n := n− 1 [1/3] n := n + 1 }

wpJCMbrwK ([n ≤ 0] · 1) ⪯ wpJCbrwK (1)

· · · · · ·0 n M

7

C′
loop features a stronger termination property (e.g., becoming AST).

Easier to verify the uni. int. of l and the boundedness of expectations.
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1/3 2/3

M
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C′
loop features a stronger termination property (e.g., becoming AST).

Easier to verify the uni. int. of l and the boundedness of expectations.
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Guard-Strengthening Rule

Behind the Proof Rule

Theorem (wp-Difference)

wpJCloopK (f )− wpJC′
loopK (f ) =

wpJwhile (φ ∧ φ′ ) {C }K ([¬φ ∧ φ′] · f ) + λσ.
∫
A
f Cloop d (σP)−

wpJwhile (φ ∧ φ′ ) {C }K ([φ ∧ ¬φ′] · f )− λσ.
∫
B
f C′

loop
d (σP)
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Figure – Infinite prog. traces.
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Figure – Illustration of wp-Difference.

Potentially applicable to sensitivity analysis andmodel repair.

Mingshuai Chen · Zhejiang University Lower Bounds for Possibly Divergent Probabilistic Programs OOPSLA 2023 · Lisbon, PRT 7 / 10



Problem Statement New Proof Rule for Lower Bounds Concluding Remarks

Rule Properties

Properties of the Proof Rule

φ′ =⇒ φ l ⪯ wpJC′
loopK ([¬φ] · f )

l ⪯ wpJCloopK (f ) (Guard-Strengthening)

(Trivially) complete :where there’s an l, there’s a φ′ (albeit not “good” enough).

General : applicable to possibly divergent Cloop and unbounded expectations f, l :

· · · 0 Mnn− 1 n + 1

1/3 2/3

lM = [n < 0] + [0 ≤ n ≤ M] ·
(
(1/2)n − (1/2)M

)
∀M ∈ N : lM

Hark
⪯ wpJCMbrwK ([n ≤ 0] · 1)

Stren.
⪯ wpJCbrwK (1)

Tight : the underapproximation error approaches 0 as φ′ → φ :

[n < 0] + [n ≥ 0] · (1/2)n = lim
M→∞

lMwpJCbrwK (1)
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Problem Statement New Proof Rule for Lower Bounds Concluding Remarks

Rule Properties

Properties of the Proof Rule

φ′ =⇒ φ l ⪯ wpJC′
loopK ([¬φ] · f )

l ⪯ wpJCloopK (f ) (Guard-Strengthening)

Automatable : reducible to probabilistic model checking for finite-state C′
loop :

while ( x ̸= 0 ∨ y ̸= 0 ∨ z ̸= 0 ) {
x := x− 1 ⊕ x := x + 1 ⊕ y := y− 1 ⊕ y := y + 1 ⊕ z := z− 1 ⊕ z := z + 1 }
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Problem Statement New Proof Rule for Lower Bounds Concluding Remarks

Case Study

A “Real” Application : Zeroconf Protocol [Bohnenkamp et al. 2003]

Figure – Self-configuring IP network.
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Figure 10.4: Markov chain of the IPv4 zeroconf protocol (for n=4 probes).

to send n probes, each followed by a listening period of r time units. Therefore, the host
can start using the selected IP address only after n probes have been sent and no reply
has been received during n·r time units. Note that after running the protocol a host may
still end up using an IP address already in use by another host, e.g., because all probes
were lost. This situation, called address collision, is highly undesirable since it may force
a host to kill active TCP/IP connections.

The protocol behavior of a single host is modeled by a Markov chain consisting of n+5
states (see Figure 10.4 for n = 4) where n is the maximal number of probes needed (as
above). The initial state is s0 (labeled start). In state sn+4 (labeled ok) the host finally
ends up with an unused IP address; in state sn+2 (labeled error) it ends up with an address
that is already in use, i.e., an address collision. State si (0 < i � n) is reached after issuing
the ith probe. In state s0 the host randomly chooses an IP address. With probability
q = m/65024, where m is the number of hosts in the network when connecting the host
to the network, this address is already in use. With probability 1−q the host chooses an
unused address and ends up in state sn+3. Then it issues n−1 probes and waits n·r time
units before using this address. (The sending of these probes and the waiting time are
abstracted from in the MC.) If the chosen IP address is already in use, state s1 is reached.
Now two situations are possible. With probability p, no reply is received during r time
units (as either the probe or its reply has been lost), and a next probe is sent, resulting
in state s2. If, however, a reply has arrived in time, the host returns to the initial state
and restarts the protocol. The behavior in state si (2 � i < n) is similar. If in state sn,
however, no reply has received within r time units after sending the nth probe, an address
collision occurs.

We adopt the notions of direct successor and direct predecessor from transition systems.
Let Paths(M) denote the set of paths in M, and Pathsfin(M) denote the set of finite

©[Baier & Katoen 2008]

Figure – Markov-chain snippet (N = 4).

Czc : start = 1 # established = 0 # probe = 0 #
while ( start ≤ 1 ∧ established ≤ 0 ∧ probe < N ∧ N ≥ 4 ) {
if ( start = 1 ) {
{ start := 0 } [0.5] { start := 0 # established := 1 } }

else { { probe := probe + 1 } [0.001] { start := 1 # probe := 0 } } }

Pr(“starting within the loop guard,Czc terminates withestablished = 1”) ≥ 0.99999999999
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can start using the selected IP address only after n probes have been sent and no reply
has been received during n·r time units. Note that after running the protocol a host may
still end up using an IP address already in use by another host, e.g., because all probes
were lost. This situation, called address collision, is highly undesirable since it may force
a host to kill active TCP/IP connections.
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to send n probes, each followed by a listening period of r time units. Therefore, the host
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has been received during n·r time units. Note that after running the protocol a host may
still end up using an IP address already in use by another host, e.g., because all probes
were lost. This situation, called address collision, is highly undesirable since it may force
a host to kill active TCP/IP connections.
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q = m/65024, where m is the number of hosts in the network when connecting the host
to the network, this address is already in use. With probability 1−q the host chooses an
unused address and ends up in state sn+3. Then it issues n−1 probes and waits n·r time
units before using this address. (The sending of these probes and the waiting time are
abstracted from in the MC.) If the chosen IP address is already in use, state s1 is reached.
Now two situations are possible. With probability p, no reply is received during r time
units (as either the probe or its reply has been lost), and a next probe is sent, resulting
in state s2. If, however, a reply has arrived in time, the host returns to the initial state
and restarts the protocol. The behavior in state si (2 � i < n) is similar. If in state sn,
however, no reply has received within r time units after sending the nth probe, an address
collision occurs.

We adopt the notions of direct successor and direct predecessor from transition systems.
Let Paths(M) denote the set of paths in M, and Pathsfin(M) denote the set of finite

©[Baier & Katoen 2008]

Figure – Markov-chain snippet (N = 4).

Czc : start = 1 # established = 0 # probe = 0 #
while ( start ≤ 1 ∧ established ≤ 0 ∧ probe < N ∧ N ≥ 4 ∧ N ≤ 10 ) {
if ( start = 1 ) {
{ start := 0 } [0.5] { start := 0 # established := 1 } }

else { { probe := probe + 1 } [0.001] { start := 1 # probe := 0 } } }

Pr(“starting within the loop guard,Czc terminates withestablished = 1”) ≥ 0.99999999999
3
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Problem Statement New Proof Rule for Lower Bounds Concluding Remarks

Summary

Summary

φ′ =⇒ φ l ⪯ wpJC′
loopK ([¬φ] · f )

l ⪯ wpJCloopK (f ) (Guard-Strengthening)

a new lower bound rule based on wp-difference and guard-strengthening;

first lower bound rule admitting divergent loops with unbounded expectations ;

tight lower bounds for 3-D random walks on Z3 and the Zeroconf protocol.

More in the paper :

how to find a “good” strengthening φ′ =⇒ φ?

how to generate a non-trivial lower bound for C′
loop ?

corner cases where guard strengthening is insufficient ;

…
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