Lower Bounds for Possibly Divergent Probabilistic Programs

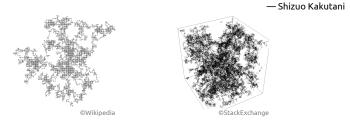
Shenghua Feng, **Mingshuai Chen**, Han Su, Benjamin L. Kaminski, Joost-Pieter Katoen, Naijun Zhan

OOPSLA · Cascais · October 2023

"A drunk man will find his way home, but a drunk bird may get lost forever." — Shizuo Kakutani

A Fun Fact

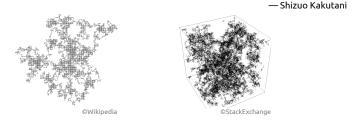
"A drunk man will find his way home, but a drunk bird may get lost forever."



A 2-D symmetric random walk on a lattice returns to the origin *almost-surely*, yet *not* its 3-D counterpart [Pólya, Math. Ann. '21].

A Fun Fact

"A drunk man will find his way home, but a drunk bird may get lost forever."



A 2-D symmetric random walk on a lattice returns to the origin *almost-surely*, yet *not* its 3-D counterpart [Pólya, Math. Ann. '21].

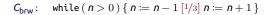
Question : How to compute sound approx. of the returning probability of the bird?

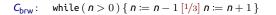
Problem Statement
000
Probabilistic Programming

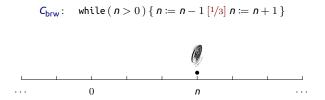
New Proof Rule for Lower Bounds

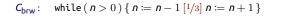
Probabilistic Programs

$$\textit{C}_{\sf brw}: \quad {\sf while} \, (\textit{n} > 0 \,) \, \{ \textit{n} \coloneqq \textit{n} - 1 \, [1/3] \, \textit{n} \coloneqq \textit{n} + 1 \, \}$$

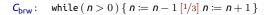


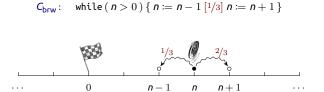








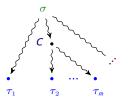




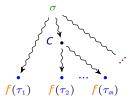
"The crux of probabilistic programming is to treat normal-looking programs as if they were probability distributions."

- Michael Hicks, The PL Enthusiast

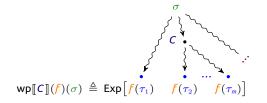
Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
000		
Ouantitative Reasoning		



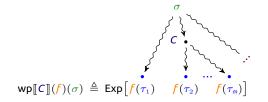
Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
000		
Quantitative Reasoning		



Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
000		
Ouantitative Reasoning		

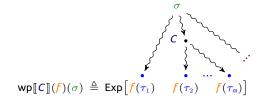


Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
000		
Quantitative Reasoning		



$$wp[[n := 5]](n) = 5$$

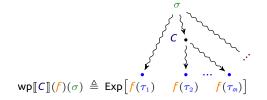
Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
000		
Quantitative Reasoning		



wp[[n := 5]](n) = 5

 $wp[[n := n - 1 [1/3] n := n + 1]](n) = 1/3 \cdot (n - 1) + 2/3 \cdot (n + 1) = n + 1/3$

Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
000		
Quantitative Reasoning		

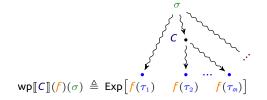


wp[[n := 5]](n) = 5

 $wp[[n := n - 1 [1/3] n := n + 1]](n) = 1/3 \cdot (n - 1) + 2/3 \cdot (n + 1) = n + 1/3$

 $wp[while(n > 0) \{ n \coloneqq n - 1 [1/3] n \coloneqq n + 1 \}]](1) = ?$

Problem Statement ○●○	New Proof Rule for Lower Bounds	Concluding Remarks O
Quantitative Reasoning		

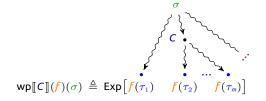


wp[[n := 5]](n) = 5

 $wp[[n := n - 1 [1/3] n := n + 1]](n) = 1/3 \cdot (n - 1) + 2/3 \cdot (n + 1) = n + 1/3$

 $\mathsf{wp}[\![\mathsf{while}\,(\,\textit{n}>0\,)\,\{\,\textit{n}\coloneqq\textit{n}-1\,[1\!/3]\,\textit{n}\coloneqq\textit{n}+1\,\}]\!]\,(1)\ =\ [\textit{n}<0]+[\textit{n}\geq0]\cdot(1\!/2)^{\textit{n}}$

Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
000		
Quantitative Reasoning		



wp[[n := 5]](n) = 5

$$wp[[n := n - 1 [1/3] n := n + 1]](n) = 1/3 \cdot (n - 1) + 2/3 \cdot (n + 1) = n + 1/3$$

 $\mathsf{wp}[\![\mathsf{while}\,(\, \textit{n} > 0\,)\,\{\,\textit{n} \coloneqq \textit{n} - 1\,[1\!/\!3]\,\textit{n} \coloneqq \textit{n} + 1\,\}]\!]\,(1) \ = \ [\textit{n} < 0] + [\textit{n} \ge 0]\cdot(1\!/\!2)^{\textit{n}}$

$$wp[while(\varphi) \{ C \}](f) = lfp \Phi_f = ?$$

Problem	Statement
000	

Bounding the Least Fixed Point

 $l \leq \text{lfp} \Phi_{f} \leq u$

Bounding the Least Fixed Point

 $l \leq \text{lfp} \Phi_{f} \leq u$

Upper bounds (Park induction) :

 $\Phi_{\mathbf{f}}(u) \preceq u$ implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

Bounding the Least Fixed Point

 $l \leq \text{lfp} \Phi_{f} \leq u$

U •

Upper bounds (Park induction) :

$$\Phi_{\mathbf{f}}(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

Bounding the Least Fixed Point

 $\textit{l} \ \preceq \ \textsf{lfp} \ \Phi_{\textit{f}} \ \preceq \ \textit{u}$

Upper bounds (Park induction) :

$$\Phi_{\mathbf{f}}(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

Bounding the Least Fixed Point

 $\textit{l} \ \preceq \ \textsf{lfp} \ \Phi_{\textit{f}} \ \preceq \ \textit{u}$

Upper bounds (Park induction) :

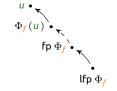
$$\Phi_f(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_f \preceq u$.

Bounding the Least Fixed Point

 $\textit{l} \ \preceq \ \textsf{lfp} \ \Phi_{\textit{f}} \ \preceq \ \textit{u}$

Upper bounds (Park induction) :

$$\Phi_f(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_f \preceq u$.



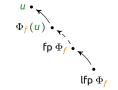
Bounding the Least Fixed Point

 $\textit{l} \ \preceq \ \textsf{lfp} \ \Phi_{\textit{f}} \ \preceq \ \textit{u}$

$$\Phi_{\mathbf{f}}(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

Lower bounds :

$$l \leq \Phi_f(l)$$
 implies $l \leq lfp \Phi_f$.



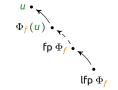
Bounding the Least Fixed Point

 $\textit{l} \ \preceq \ \textsf{lfp} \ \Phi_{\textit{f}} \ \preceq \ \textit{u}$

$$\Phi_{\mathbf{f}}(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

Lower bounds :

$$l \leq \Phi_f(l)$$
 im im inglies $l \leq l f p \Phi_f$.



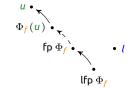
Bounding the Least Fixed Point

 $\textit{l} \ \preceq \ \textsf{lfp} \ \Phi_{\textit{f}} \ \preceq \ \textit{u}$

$$\Phi_{\mathbf{f}}(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

Lower bounds :

$$l \leq \Phi_f(l)$$
 im view $l \leq \mathrm{lfp} \Phi_f$.



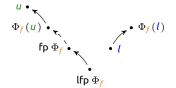
Bounding the Least Fixed Point

 $\textit{l} \ \preceq \ \textsf{lfp} \ \Phi_{\textit{f}} \ \preceq \ \textit{u}$

$$\Phi_{\mathbf{f}}(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

Lower bounds :

$$l \leq \Phi_f(l)$$
 im view $l \leq \mathrm{lfp} \Phi_f$.



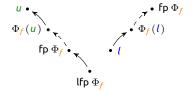
Bounding the Least Fixed Point

 $\textit{l} \ \preceq \ \textsf{lfp} \ \Phi_{\textit{f}} \ \preceq \ \textit{u}$

$$\Phi_{\mathbf{f}}(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

Lower bounds :

$$l \leq \Phi_f(l)$$
 im im inglies $l \leq l f p \Phi_f$.



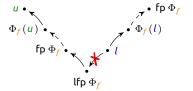
Bounding the Least Fixed Point

 $\textit{l} \ \preceq \ \textsf{lfp} \ \Phi_{\textit{f}} \ \preceq \ \textit{u}$

$$\Phi_{\mathbf{f}}(u) \preceq u$$
 implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

Lower bounds :

$$l \leq \Phi_f(l)$$
 im view $l \leq \mathrm{lfp} \Phi_f$.



Bounding the Least Fixed Point

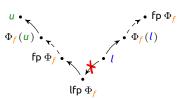
 $l \leq \text{lfp} \Phi_{f} \leq u$

Upper bounds (Park induction) :

 $\Phi_{\mathbf{f}}(u) \preceq u$ implies $\operatorname{lfp} \Phi_{\mathbf{f}} \preceq u$.

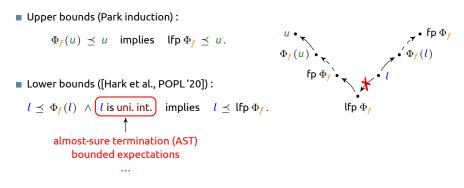
Lower bounds ([Hark et al., POPL '20]) :

 $l \leq \Phi_f(l) \wedge l$ is uni. int. implies $l \leq lfp \Phi_f$.



Bounding the Least Fixed Point

 $l \leq \operatorname{lfp} \Phi_{f} \leq u$



 $\left(\varphi' \right) \left\{ \mathsf{C} \right\}$

Guard-Strengthening Rule

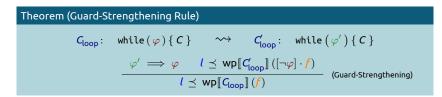
A New Proof Rule for Lower Bounds

Theorem (Guard-Strengthening Rule)

$$C_{loop}$$
: while $(\varphi) \{ C \} \longrightarrow C'_{loop}$: while $(\varphi) \{ C \}$

Guard-Strengthening Rule

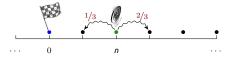
A New Proof Rule for Lower Bounds



Guard-Strengthening Rule

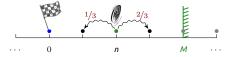
A New Proof Rule for Lower Bounds

 C_{brw} : while (0 < n) { $n := n - 1 [1/3] n := n + 1 \}$



A New Proof Rule for Lower Bounds

$$\begin{split} \mathcal{G}_{\text{loop}} \colon & \text{while}\left(\varphi\right)\left\{\mathcal{C}\right\} & & \longleftrightarrow & \mathcal{C}_{\text{loop}}' \colon \text{while}\left(\varphi'\right)\left\{\mathcal{C}\right\} \\ & \frac{\varphi' \implies \varphi \quad \ell \preceq \text{wp}[\![\mathcal{C}_{\text{loop}}]\!]\left([\neg\varphi] \cdot f\right)}{\ell \preceq \text{wp}[\![\mathcal{C}_{\text{loop}}]\!]\left(f\right)} & \text{(Guard-Strengthening} \end{split}$$

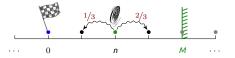


A New Proof Rule for Lower Bounds

$$\begin{split} \mathsf{C}_{\mathsf{loop}} \colon & \mathsf{while}\,(\varphi)\,\{\,\mathcal{C}\,\} & & \leadsto & \mathcal{C}_{\mathsf{loop}}'\colon \mathsf{while}\,\big(\,\varphi'\,\big)\,\{\,\mathcal{C}\,\} \\ & & \frac{\varphi' \implies \varphi \quad l\,\preceq\,\mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!]\,([\neg\varphi]\cdot f)}{l\,\preceq\,\mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!]\,(f)} & \text{(Guard-Strengthening} \end{split}$$

$$\begin{array}{ll} \mbox{while} \left(0 < {\it n} \right) \{ & ~~ & ~~ & ~~ {\it C}_{\rm brw}^{\rm M} \colon & ~~ \mbox{while} \left(0 < {\it n} < {\it M} \right) \{ \\ {\it n} := {\it n} - 1 \, [1/3] \, {\it n} := {\it n} + 1 \, \} & ~~ {\it n} := {\it n} - 1 \, [1/3] \, {\it n} := {\it n} + 1 \, \} \end{array}$$

$$\mathsf{wp}\llbracket C^{\mathsf{M}}_{\mathsf{brw}} \rrbracket ([n \le 0] \cdot 1) \preceq \mathsf{wp}\llbracket C_{\mathsf{brw}} \rrbracket (1)$$

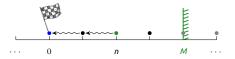


A New Proof Rule for Lower Bounds

$$\begin{split} \mathsf{C}_{\mathsf{loop}} \colon & \mathsf{while}(\varphi) \, \{ \, \mathcal{C} \, \} & & \longrightarrow & \mathsf{C}'_{\mathsf{loop}} \colon & \mathsf{while}(\varphi') \, \{ \, \mathcal{C} \, \} \\ & \\ & \frac{\varphi' \implies \varphi \quad \ell \preceq \mathsf{wp}[\![\mathcal{C}'_{\mathsf{loop}}]\!] \, ([\neg \varphi] \cdot f)}{\ell \preceq \mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!] \, (f)} \quad \text{(Guard-Strengthening)} \end{split}$$

$$\begin{array}{ll} \text{while} \left(0 < \textit{n} \right) \{ & & & \\ \textit{n} := \textit{n} - 1 \left[\frac{1}{3} \right] \textit{n} := \textit{n} + 1 \, \} & & & \\ \textbf{n} := \textit{n} - 1 \left[\frac{1}{3} \right] \textit{n} := \textit{n} + 1 \, \} & & \\ \textbf{n} := \textit{n} - 1 \left[\frac{1}{3} \right] \textit{n} := \textit{n} + 1 \, \} \end{array}$$

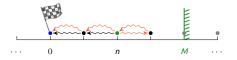
$$\mathsf{wp}\llbracket C^{\mathsf{M}}_{\mathsf{brw}} \rrbracket ([n \le 0] \cdot 1) \preceq \mathsf{wp}\llbracket C_{\mathsf{brw}} \rrbracket (1)$$



A New Proof Rule for Lower Bounds

$$\begin{split} \mathsf{C}_{\mathsf{loop}} \colon & \mathsf{while}\,(\varphi)\,\{\,\mathcal{C}\,\} & & \leadsto & \mathcal{C}_{\mathsf{loop}}'\colon \mathsf{while}\,\big(\,\varphi'\,\big)\,\{\,\mathcal{C}\,\} \\ & & \frac{\varphi' \implies \varphi \quad l\,\preceq\,\mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!]\,([\neg\varphi]\cdot f)}{l\,\preceq\,\mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!]\,(f)} & \text{(Guard-Strengthening} \end{split}$$

$$\mathsf{wp}\llbracket C^{\mathcal{M}}_{\mathsf{brw}} \rrbracket ([n \le 0] \cdot 1) \preceq \mathsf{wp}\llbracket C_{\mathsf{brw}} \rrbracket (1)$$



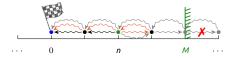
A New Proof Rule for Lower Bounds

Theorem (Guard-Strengthening Rule)

$$\begin{split} \mathbf{C}_{\mathsf{loop}} \colon & \mathsf{while}\left(\varphi\right)\left\{\mathcal{C}\right\} & \longleftrightarrow & \mathbf{C}'_{\mathsf{loop}} \colon \mathsf{while}\left(\varphi'\right)\left\{\mathcal{C}\right\} \\ & \frac{\varphi' \implies \varphi \quad \ell \preceq \mathsf{wp}[\![\mathbf{C}'_{\mathsf{loop}}]\!]\left([\neg\varphi] \cdot f\right)}{\ell \preceq \mathsf{wp}[\![\mathbf{C}_{\mathsf{loop}}]\!]\left(f\right)} & \text{(Guard-Strengthening)} \end{split}$$

$$\begin{array}{ll} \text{while} \left(0 < \textbf{n} \right) \{ & & \longrightarrow & \textbf{C}_{\mathsf{brw}}^{\prime\prime} \colon & \text{while} \left(0 < \textbf{n} < \textbf{M} \right) \{ \\ \textbf{n} \coloneqq \textbf{n} - 1 \left[\frac{1}{3} \right] \textbf{n} \coloneqq \textbf{n} + 1 \} & & \textbf{n} \coloneqq \textbf{n} - 1 \left[\frac{1}{3} \right] \textbf{n} \coloneqq \textbf{n} + 1 \} \end{array}$$

$$\mathsf{wp}\llbracket C^{M}_{\mathsf{brw}} \rrbracket ([n \le 0] \cdot 1) \preceq \mathsf{wp}\llbracket C_{\mathsf{brw}} \rrbracket (1)$$

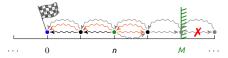


A New Proof Rule for Lower Bounds

Theorem (Guard-Strengthening Rule)

$$\begin{split} \mathsf{C}_{\mathsf{loop}} \colon & \mathsf{while}\,(\varphi)\,\{\,\mathcal{C}\,\} & \longrightarrow & \mathsf{C}'_{\mathsf{loop}}\colon \; \mathsf{while}\,\big(\,\varphi'\,\big)\,\{\,\mathcal{C}\,\} \\ & \frac{\varphi' \implies \varphi \quad l\,\preceq\,\mathsf{wp}[\![\mathcal{C}'_{\mathsf{loop}}]\!]\,([\neg\varphi]\,\cdot\,f)}{l\,\preceq\,\mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!]\,(f)} & \text{(Guard-Strengthening} \end{split}$$

$$\mathsf{wp}\llbracket C^{\mathcal{M}}_{\mathsf{brw}} \rrbracket ([n \le 0] \cdot 1) \preceq \mathsf{wp}\llbracket C_{\mathsf{brw}} \rrbracket (1)$$



- Cloop features a **stronger** termination property (e.g., becoming AST).
- **Easier** to verify the uni. int. of *l* and the boundedness of expectations.

w

Behind the Proof Rule

Theorem (wp-Difference)

$$\begin{split} & \operatorname{\mathsf{vp}}[\![\mathsf{G}_{\mathsf{loop}}]\!]\left(f\right) - \operatorname{\mathsf{wp}}[\![\mathsf{C}_{\mathsf{loop}}]\!]\left(f\right) = \\ & \operatorname{\mathsf{wp}}[\![\mathsf{while}\left(\varphi \wedge \varphi'\right) \left\{ \right. C \left\}]\!]\left(\left[\neg \varphi \wedge \varphi'\right] \cdot f\right) + \lambda \sigma \cdot \int_{\mathcal{A}} f_{\mathsf{G}_{\mathsf{loop}}} \, \mathrm{d}\left({}^{\sigma}\mathbb{P}\right) - \\ & \operatorname{\mathsf{wp}}[\![\mathsf{while}\left(\varphi \wedge \varphi'\right) \left\{ \right. C \left\}]\!]\left(\left[\varphi \wedge \neg \varphi'\right] \cdot f\right) - \lambda \sigma \cdot \int_{\mathcal{B}} f_{\mathsf{C}_{\mathsf{loop}}} \, \mathrm{d}\left({}^{\sigma}\mathbb{P}\right) - \\ \end{split}$$

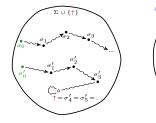


Figure – Infinite prog. traces.

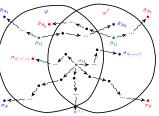


Figure – Illustration of wp-Difference.

Potentially applicable to *sensitivity analysis* and *model repair*.

Problem Statement 000	New Proof Rule for Lower Bounds ○○●○○	Concluding Remarks O
Rule Properties		
Properties of the Proof R	ule	
$\varphi' =$	$\Rightarrow \varphi \qquad l \preceq wp[[C'_{loop}]]([\neg \varphi] \cdot f)$ $l \preceq wp[[C_{loop}]](f)$	- (Guard-Strengthening)

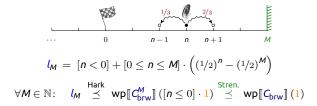
• (Trivially) **complete :** where there's an l, there's a φ' (albeit not "good" enough).

Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
	0000	
Rule Properties		

$$\frac{\varphi' \implies \varphi \quad l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket ([\neg \varphi] \cdot f)}{l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket (f)}$$
(Guard-Strengthening)

• (Trivially) **complete :** where there's an l, there's a φ' (albeit not "good" enough).

■ **General :** applicable to *possibly divergent C*loop and unbounded expectations *f*, *l* :



Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
	00000	
Rule Properties		

$$\frac{\varphi' \implies \varphi \quad l \preceq \mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!] \left([\neg\varphi] \cdot f\right)}{l \preceq \mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!] \left(f\right)} \quad \text{(Guard-Strengthening)}$$

• (Trivially) **complete :** where there's an l, there's a φ' (albeit not "good" enough).

■ General : applicable to *possibly divergent C*loop and unbounded expectations *f*, *l* :

$$\forall M \in \mathbb{N}: \quad l_{M} \stackrel{\text{Hark}}{\preceq} \text{ wp}[[C_{\text{brw}}^{M}]] ([n \le 0] \cdot 1) \stackrel{\text{Stren.}}{\preceq} \text{ wp}[[C_{\text{brw}}]] (1)$$

Tight : the underapproximation error approaches 0 as $\varphi' \rightarrow \varphi$:

$$[n < 0] + [n \ge 0] \cdot (1/2)^n = \lim_{M \to \infty} l_M \preceq \operatorname{wp} \llbracket C_{\mathsf{brw}} \rrbracket (1)$$

Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
	00000	
Rule Properties		

$$\frac{\varphi' \implies \varphi \quad l \preceq \mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!] ([\neg \varphi] \cdot f)}{l \preceq \mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!] (f)} \quad (\mathsf{Guard-Strengthening})$$

• (Trivially) **complete :** where there's an l, there's a φ' (albeit not "good" enough).

■ General : applicable to *possibly divergent C*loop and unbounded expectations *f*, *l* :

$$\forall M \in \mathbb{N}: \quad l_{M} \stackrel{\text{Hark}}{\preceq} \text{ wp}[\![C_{\text{brw}}^{M}]\!] ([n \leq 0] \cdot 1) \stackrel{\text{Stren.}}{\preceq} \text{ wp}[\![C_{\text{brw}}]\!] (1)$$

Tight : the underapproximation error approaches 0 as $\varphi' \rightarrow \varphi$:

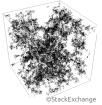
$$[n < 0] + [n \ge 0] \cdot (1/2)^n = \lim_{M \to \infty} l_M \stackrel{\text{Park}}{=} wp[[C_{brw}]] (1)$$

Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
	00000	
Rule Properties		

$$\frac{\varphi' \implies \varphi \quad l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket ([\neg \varphi] \cdot f)}{l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket (f)} \quad (\mathsf{Guard-Strengthening})$$

Automatable : reducible to probabilistic model checking for finite-state C'_loop :

while $(x \neq 0 \lor y \neq 0 \lor z \neq 0)$ { $x := x - 1 \oplus x := x + 1 \oplus y := y - 1 \oplus y := y + 1 \oplus z := z - 1 \oplus z := z + 1$ }

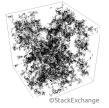


Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
	00000	
Rule Properties		

$$\frac{\varphi' \implies \varphi \quad l \preceq \mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!] \left([\neg \varphi] \cdot f\right)}{l \preceq \mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!] \left(f\right)} \quad (\mathsf{Guard-Strengthening})$$

Automatable : reducible to probabilistic model checking for finite-state C'_loop :

while $(x \neq 0 \lor y \neq 0 \lor z \neq 0)$ { $x := x - 1 \oplus x := x + 1 \oplus y := y - 1 \oplus y := y + 1 \oplus z := z - 1 \oplus z := z + 1$ }



$$\mathcal{P} = 1 - \left(\frac{3}{(2\pi)^3} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z}{3 - \cos x - \cos y - \cos z}\right)^{-1} = 0.3405373296\dots$$

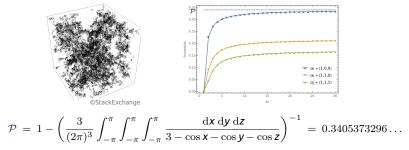
Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
	00000	
Rule Properties		

$$\frac{\varphi' \implies \varphi \quad l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket ([\neg \varphi] \cdot f)}{l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket (f)} \quad (\mathsf{Guard-Strengthening})$$

Automatable : reducible to probabilistic model checking for finite-state C'_loop :

while $(\mathbf{x} \neq 0 \lor \mathbf{y} \neq 0 \lor \mathbf{z} \neq 0)$ {

 $\mathbf{x} \coloneqq \mathbf{x} - 1 \oplus \mathbf{x} \coloneqq \mathbf{x} + 1 \oplus \mathbf{y} \coloneqq \mathbf{y} - 1 \oplus \mathbf{y} \coloneqq \mathbf{y} + 1 \oplus \mathbf{z} \coloneqq \mathbf{z} - 1 \oplus \mathbf{z} \coloneqq \mathbf{z} + 1$



A "Real" Application : Zeroconf Protocol [Bohnenkamp et al. 2003]

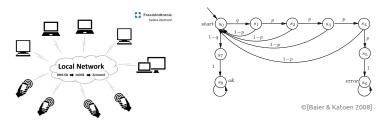


Figure – Self-configuring IP network.

Figure – Markov-chain snippet (N = 4).

$$\begin{array}{l} C_{zc}: & \textit{start} = 1 \ \texttt{\$} \ \textit{established} = 0 \ \texttt{\$} \ \textit{probe} = 0 \ \texttt{\$} \\ & \textit{while} (\ \textit{start} \leq 1 \land \textit{established} \leq 0 \land \textit{probe} < \textit{N} \land \textit{N} \geq 4) \ \texttt{\$} \\ & \textit{if} (\ \textit{start} = 1) \ \texttt{\$} \\ & \quad \texttt{\$} \ \textit{start} := 0 \ \texttt{\$} \ \texttt{[0.5]} \ \texttt{\$} \ \textit{start} := 0 \ \texttt{\$} \ \textit{established} := 1 \ \texttt{\$} \\ & \quad \texttt{else} \ \texttt{\$} \ \textit{probe} := \textit{probe} + 1 \ \texttt{\$} \ \texttt{[0.001]} \ \texttt{\$} \ \textit{start} := 1 \ \texttt{\$} \ \textit{probe} := 0 \ \texttt{\$} \ \texttt{\$} \end{array}$$

A "Real" Application : Zeroconf Protocol [Bohnenkamp et al. 2003]

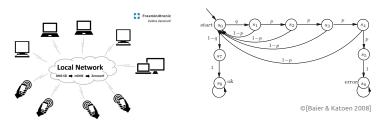


Figure – Self-configuring IP network.

Figure – Markov-chain snippet (N = 4).

$$\begin{array}{l} \textit{C}_{zc} \colon & \textit{start} = 1 \ \text{$; established} = 0 \ \text{$; probe} = 0 \ \text{$;} \\ & \textit{while} (\ \textit{start} \leq 1 \land \textit{established} \leq 0 \land \textit{probe} < \textit{N} \land \textit{N} \geq 4 \) \ \{ \\ & \textit{if} (\ \textit{start} = 1 \) \ \{ \\ & \left\{ \ \textit{start} := 0 \ \text{$; ostablished} := 1 \ \text{$;} \ \text{$} \\ & \textit{else} \ \{ \ \textit{probe} := \textit{probe} + 1 \ \} \ [0.001] \ \{ \ \textit{start} := 1 \ \text{$; probe} := 0 \ \} \ \} \ \} \end{array}$$

A "Real" Application : Zeroconf Protocol [Bohnenkamp et al. 2003]

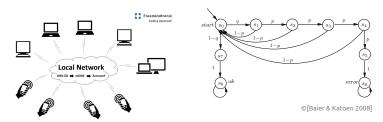


Figure – Self-configuring IP network.

Figure – Markov-chain snippet (N = 4).

A "Real" Application : Zeroconf Protocol [Bohnenkamp et al. 2003]

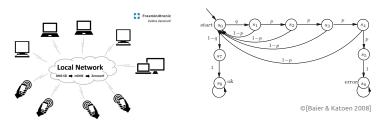


Figure – Self-configuring IP network.

Figure – Markov-chain snippet (N = 4).

$$\begin{aligned} \mathsf{C}_{\mathsf{ZC}} : & \mathsf{start} = 1 \text{ } \text{$} \text{ $} \mathsf{established} = 0 \text{ } \text{$} \text{$} \mathsf{probe} = 0 \text{ } \text{$} \\ & \mathsf{while} (\mathsf{start} \leq 1 \land \mathsf{established} \leq 0 \land \mathsf{probe} < \mathsf{N} \land \mathsf{N} \geq 4 \land \mathsf{N} \leq 10) \text{ } \\ & \mathsf{if} (\mathsf{start} = 1) \text{ } \\ & \mathsf{\{} \mathsf{start} \coloneqq 0 \text{ } \text{ } [0.5] \text{ } \text{ } \mathsf{start} \coloneqq 0 \text{ } \text{$} \mathsf{established} \coloneqq 1 \text{ } \text{ } \text{ } \\ & \mathsf{else} \text{ } \text{ } \text{ } \{ \mathsf{probe} \coloneqq \mathsf{probe} + 1 \text{ } [0.001] \text{ } \text{ } \text{start} \coloneqq 1 \text{ } \text{$} \mathsf{probe} \coloneqq 0 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \end{bmatrix} \end{aligned}$$

Problem Statement 000	New Proof Rule for Lower Bounds	Concluding Remarks
Summary		
Summary		

$$\frac{\varphi' \implies \varphi \quad l \preceq \mathsf{wp}[\![\mathcal{C}'_{\mathsf{loop}}]\!] \left([\neg \varphi] \cdot \mathbf{f}\right)}{l \preceq \mathsf{wp}[\![\mathcal{C}_{\mathsf{loop}}]\!] \left(\mathbf{f}\right)} \quad (\mathsf{Guard-Strengthening})$$

a new lower bound rule based on wp-difference and guard-strengthening;

Problem Statement 000	New Proof Rule for Lower Bounds	Concluding Remarks
Summary		
Summary		

$$\frac{\varphi' \implies \varphi \quad l \preceq wp[\![C'_{loop}]\!]([\neg \varphi] \cdot f)}{l \preceq wp[\![C_{loop}]\!](f)} \quad (Guard-Strengthening)$$

- a new lower bound rule based on wp-difference and guard-strengthening;
- first lower bound rule admitting divergent loops with unbounded expectations;

Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks

Summary

$$\frac{\varphi' \implies \varphi \quad l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket ([\neg \varphi] \cdot f)}{l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket (f)} \quad (\mathsf{Guard-Strengthening})$$

- a new lower bound rule based on wp-difference and guard-strengthening;
- first lower bound rule admitting divergent loops with unbounded expectations;
- tight lower bounds for 3-D random walks on \mathbb{Z}^3 and the Zeroconf protocol.

Problem Statement	New Proof Rule for Lower Bounds	Concluding Remarks
		•
Summary		

Summary

$$\frac{\varphi' \implies \varphi \quad l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket ([\neg \varphi] \cdot f)}{l \preceq \mathsf{wp}\llbracket \mathcal{C}_{\mathsf{loop}} \rrbracket (f)} \quad (\mathsf{Guard-Strengthening})$$

- a new lower bound rule based on wp-difference and guard-strengthening;
- first lower bound rule admitting divergent loops with unbounded expectations;
- tight lower bounds for 3-D random walks on \mathbb{Z}^3 and the Zeroconf protocol.

More in the paper :

...

- how to find a "good" strengthening $\varphi' \implies \varphi$?
- how to generate a non-trivial lower bound for C'_{loop}?
- corner cases where guard strengthening is insufficient;

