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A Fun Fact
“A drunk man will find his way home, but a drunk bird may get lost

forever.” — Kakutani’ interpretation of [Pólya, Math. Ann. ’21]
Yet, can we show how likely at least can a drunk bird return home?

In a Nutshell

Problem: How can we establish lower bounds on expected values
of probabilistic programs that may exhibit divergence?

Example: Determine a non-trivial lower bound on the termination probabil-
ity of the 1-D biased random walk which diverges with non-zero probability:

Cbrw : while ( 0 < n ) {n := n− 1 [1/3] n := n + 1 }

· · · 0 · · ·nn− 1 n + 1

1/3 2/3

Challenge: Existing lower bound induction rules are confined to ei-
ther (i) bounded random variables with a priori knowledge on the ter-
mination probability [McIver & Morgan 2005]; or (ii) (universally)
almost-surely terminating (AST) programs [Hark et al., POPL ’20].

Our solution: The guard-strengthening technique. Strengthening
the loop guard (and thereby the reachable state space) to forge an
AST program, which can then be tackled by existing proof rules.

CM
brw : while ( 0 < n < M ) {n := n− 1 [1/3] n := n + 1 }

· · · · · ·0 Mn
7

Our guard-strengthening technique makes a connection between the lower
bound for Cbrw and the lower bound for CM

brw. Moreover, the strengthened
program CM

brw features a stronger termination property (i.e., becoming
AST), and thus is amenable to existing induction rules.

Formalization in the wp-Calculus
The expected value of function f after program C terminates is precisely
captured by weakest preexpectations [Kozen; McIver, Morgan; Kaminski]:

σ

C
…

f (τ1) f (τ2)
…
f (τm)wpJC K(f )(σ) ≜ Exp

[ ]
Intuitively, wpJCK (f) (σ) represents the expected value of f evaluated in
the final states reached after termination of C on input σ.

The crux of (probabilistic) program verification is to reason about
while-loops: It amounts to determining the quantitative least fixed point
(of some monotonic operator Φf capturing the loop semantics w.r.t. f)
which is often difficult or even impossible to compute [Kaminski et al.,
Acta Inform. ’19]:

wpJwhile (φ ) {C }K (f ) = lfp Φf = ?

Limitations of Existing Lower Bound Rule
As computing the exact least fixed point lfp Φf is often intractable, re-
searchers seek to bound it from above and/or from below:

• Upper bounds (Park induction [Park, Mach. Intel. ’69]) :

Φf (u ) ⪯ u implies lfp Φf ⪯ u

• Lower bounds [Hark et al., POPL ’20]:

l ⪯ Φf (l ) ∧ l is uniformly integrable implies l ⪯ lfp Φf

almost-sure termination
bounded expectations

…
The above lower bound rule does not apply to divergent programs, and
even for AST ones, it requires extra proof efforts in, e.g., looking for su-
permartingales witnessing AST and reasoning about the looping time or
establishing bounds on expectations to achieve uni. int. of l.

Our Approach: Guard-Strengthening

Guard-Strengthening Rule

Cloop : while (φ ) {C } ⇝ C ′
loop : while (φ′ ) {C }

φ′ =⇒ φ l ⪯ wpJC ′
loopK ([¬φ] · f )

l ⪯ wpJCloopK (f )

Example: lM = [n < 0] + [0 ≤ n ≤ M ] ·
(
(1/2)

n − (1/2)
M
)

∀M ∈ N : lM
Hark
⪯ wpJCM

brwK ([n ≤ 0] · 1)
Stren.
⪯ wpJCbrwK (1)

• Complete: where there’s l, there’s φ′ (albeit not “good” enough).

• General: applicable to possibly divergent Cloop and unbounded f, l.

• Tight: the underapproximation error approaches 0 as φ′ → φ.

• Automatable: reducible to probabilistic model checking for finite-
state C ′

loop (which presents a solution to the drunk bird problem).

A “Real”Application: Zeroconf Protocol
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Self-configuring IP network
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Figure 10.4: Markov chain of the IPv4 zeroconf protocol (for n=4 probes).

to send n probes, each followed by a listening period of r time units. Therefore, the host
can start using the selected IP address only after n probes have been sent and no reply
has been received during n·r time units. Note that after running the protocol a host may
still end up using an IP address already in use by another host, e.g., because all probes
were lost. This situation, called address collision, is highly undesirable since it may force
a host to kill active TCP/IP connections.

The protocol behavior of a single host is modeled by a Markov chain consisting of n+5
states (see Figure 10.4 for n = 4) where n is the maximal number of probes needed (as
above). The initial state is s0 (labeled start). In state sn+4 (labeled ok) the host finally
ends up with an unused IP address; in state sn+2 (labeled error) it ends up with an address
that is already in use, i.e., an address collision. State si (0 < i � n) is reached after issuing
the ith probe. In state s0 the host randomly chooses an IP address. With probability
q = m/65024, where m is the number of hosts in the network when connecting the host
to the network, this address is already in use. With probability 1−q the host chooses an
unused address and ends up in state sn+3. Then it issues n−1 probes and waits n·r time
units before using this address. (The sending of these probes and the waiting time are
abstracted from in the MC.) If the chosen IP address is already in use, state s1 is reached.
Now two situations are possible. With probability p, no reply is received during r time
units (as either the probe or its reply has been lost), and a next probe is sent, resulting
in state s2. If, however, a reply has arrived in time, the host returns to the initial state
and restarts the protocol. The behavior in state si (2 � i < n) is similar. If in state sn,
however, no reply has received within r time units after sending the nth probe, an address
collision occurs.

We adopt the notions of direct successor and direct predecessor from transition systems.
Let Paths(M) denote the set of paths in M, and Pathsfin(M) denote the set of finite
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Markov-chain snippet (N = 4)

Czc : start = 1 # established = 0 # probe = 0 #
while ( start ≤ 1 ∧ established ≤ 0 ∧ probe < N ∧N ≥ 4 ) {

if ( start = 1 ) {
{ start := 0 } [0.5] { start := 0 # established := 1 } }

else { { probe := probe + 1 } [0.001] { start := 1 # probe := 0 } } }

By strengthening the guard of Czc with N ≤ 10, we are able to establish
Pr (“starting within the loop guard,

Czc terminates with established = 1”) ≥ 0.99999999999


