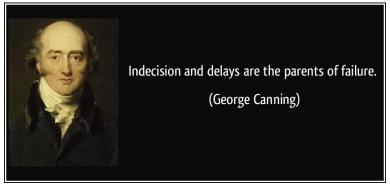
What's to Come is Still Unsure *

Synthesizing Controllers Resilient to Delayed Interaction

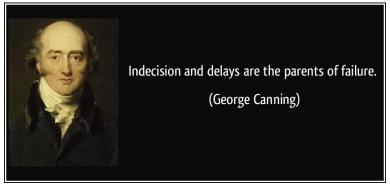
Mingshuai Chen

—Joint work with Martin Fränzle, Yangjia Li, Peter N. Mosaad, Naijun Zhan—



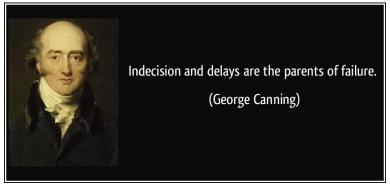
MISSION · INVAP · February 2022

* William Shakespeare, Twelfth Night/What You Will, Act 2, Scene 3.



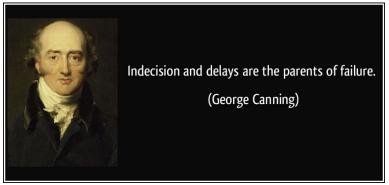
Synthesizing Delay-Resilient Control

©izQuotes



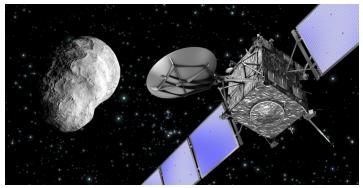
©izQuotes

Only relevant to ordinary people's life?



©izQuotes

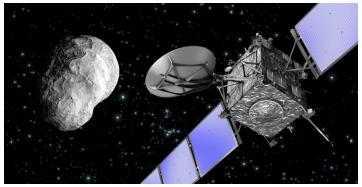
- Only relevant to ordinary people's life?
- Or to scientists, in particular comp. sci. and control folks, too?


©izQuotes

- Only relevant to ordinary people's life?
- Or to scientists, in particular comp. sci. and control folks, too?

Remember that Canning briefly controlled Great Britain!

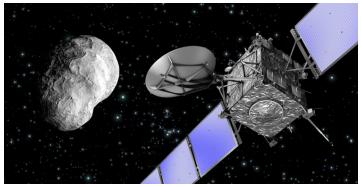
When Observation & Actuation Suffer from Serious Delays



©ESA

Mingshuai Chen · i2, RWTH Aachen Univ.

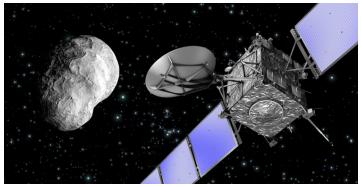
When Observation & Actuation Suffer from Serious Delays



©ESA

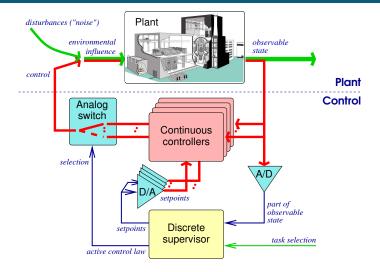
You could move slowly. (Well, can you?)

When Observation & Actuation Suffer from Serious Delays

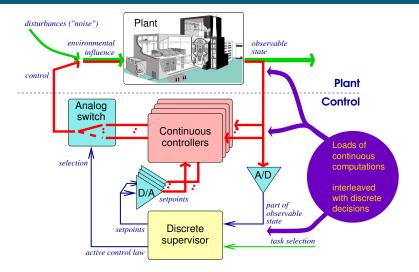


©ESA

- You could move slowly. (Well, can you?)
- You could trust autonomy.

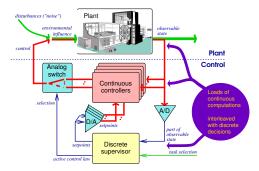

When Observation & Actuation Suffer from Serious Delays

©ESA


- You could move slowly. (Well, can you?)
- You could trust autonomy.
- Or you have to **anticipate** and **issue actions early**.

Interaction btw. a Controller and Its Environment

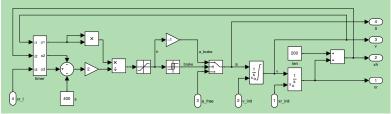
Interaction btw. a Controller and Its Environment



Mingshuai Chen · i2, RWTH Aachen Univ.

Synthesizing Delay-Resilient Control

Interaction btw. a Controller and Its Environment

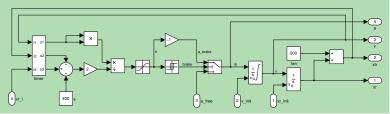


Crucial question : How do the controller and the plant interact?

Traditional answer : Coupling assumed to be (or at least modeled as) delay-free :

- mode dynamics is covered by the conjunction of individual ODEs;
- **switching btw. modes** is an immediate reaction to environmental conditions.

Instantaneous Coupling


©ETCS-3

Following the tradition, the above (rather typical) Simulink model assumes

- delay-free coupling between all components;
- instantaneous feed-through within all functional blocks.

Instantaneous Coupling

©ETCS-3

Following the tradition, the above (rather typical) Simulink model assumes

- delay-free coupling between all components;
- instantaneous feed-through within all functional blocks.

Central questions :

- Is this realistic?
- If not, does it have observable effects on control performance?
- May those effects be detrimental or even harmful?

Q1: Is Instantaneous Coupling Realistic?

Q1 : Is Instantaneous Coupling Realistic?

We are no better :

As soon as computer scientists enter the scene, serious delays are ahead ...

Mingshuai Chen · i2, RWTH Aachen Univ.

Synthesizing Delay-Resilient Control

Q1 : Is Instantaneous Coupling Realistic?

Digital control needs **A/D and D/A conversion**, which induces latency in signal forwarding.

Digital **signal processing**, especially in complex sensors like CV, needs **processing time**, adding signal delays.

Networked control introduces communication latency into the feedback control loop.

Harvesting, fusing, and forwarding data through **sensor networks** enlarge the communication latency by orders of magnitude.

Q1 : Is Instantaneous Coupling Realistic? – No.

Harvesting, fusing, and forwarding data through **sensor networks** enlarge the communication latency by orders of magnitude.

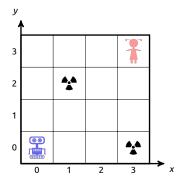


Figure – A robot escape game in a 4×4 room.

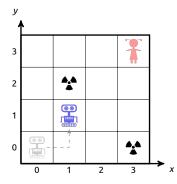


Figure – A robot escape game in a 4×4 room.

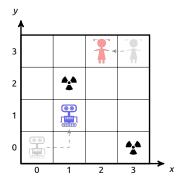


Figure – A robot escape game in a 4×4 room.

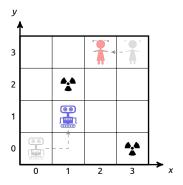


Figure – A robot escape game in a 4×4 room.

No delay :

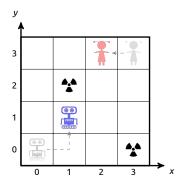


Figure – A robot escape game in a 4×4 room.

No delay :

Robot always wins by circling around the obstacle * at (1,2).

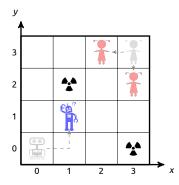


Figure – A robot escape game in a 4×4 room.

No delay :

Robot always wins by circling around the obstacle ***** at (1,2).

1 step delay :

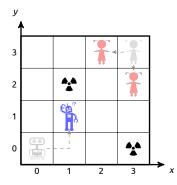


Figure – A robot escape game in a 4×4 room.

No delay :

Robot always wins by circling around the obstacle ***** at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

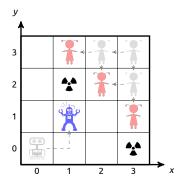


Figure – A robot escape game in a 4×4 room.

No delay :

Robot always wins by circling around the obstacle ***** at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

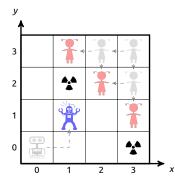


Figure – A robot escape game in a 4×4 room.

No delay :

Robot always wins by circling around the obstacle ***** at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Robot still wins, yet extra memory is needed.

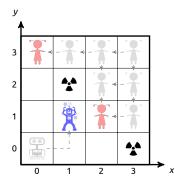


Figure – A robot escape game in a 4×4 room.

No delay :

Robot always wins by circling around the obstacle ***** at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Robot still wins, yet extra memory is needed.

3 steps delay :

Figure – A robot escape game in a 4×4 room.

No delay :

Robot always wins by circling around the obstacle * at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Robot still wins, yet extra memory is needed.

3 steps delay :

Robot is unwinnable (uncontrollable) anymore.

Q2 : Do Delays Have Observable Effects? - Yes, they have.

Figure – A robot escape game in a 4×4 room.

No delay :

Robot always wins by circling around the obstacle ***** at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Robot still wins, yet extra memory is needed.

3 steps delay :

Robot is unwinnable (uncontrollable) anymore.

Q3 : May the Effects be Harmful? – Yes, delays may well annihilate the control performance.

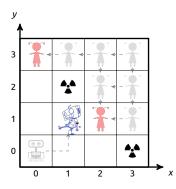


Figure – A robot escape game in a 4×4 room.

No delay :

Robot always wins by circling around the obstacle ***** at (1,2).

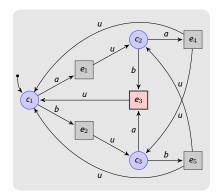
1 step delay :

Robot wins by 1-step pre-decision.

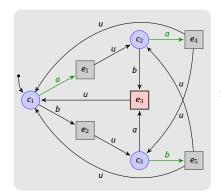
2 steps delay :

Robot still wins, yet extra memory is needed.

3 steps delay :

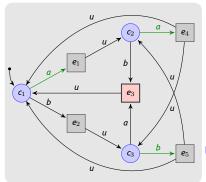

Robot is unwinnable (uncontrollable) anymore.

Outline


Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks		
0000					
Delayed Observation & Actuation					
A Trivial Sa	fety Game				

Goal: Avoid sy appropriate actions of player *c*.

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks	
••••				
Delayed Observation & Actuation				
A Trivial Sa	fety Game			


Goal: Avoid sy appropriate actions of player *c*.

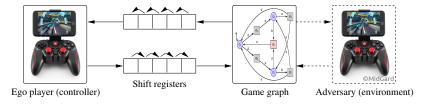
Strategy: May always play *a* except in *c*₃:

 $c_1, c_2 \mapsto a \\ c_3 \mapsto b$

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks	
0000				
Delayed Observation & Actuation				
A Trivial Sa	fety Game			

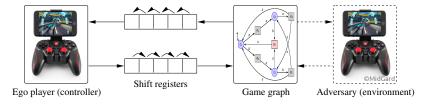
Goal : Avoid es by appropriate actions of player c.

Strategy: May always play a except in c_3 :


 $c_1, c_2 \mapsto a \\ c_3 \mapsto b$

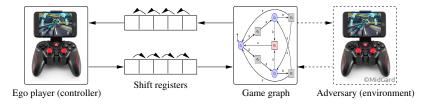
Properties : Determinacy and memoryless.

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks	
0000				
Delayed Observation & Actuation				


Playing Safety Games under Discrete Delay

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks	
0000				
Delayed Observation & Actuation				

Playing Safety Games under Discrete Delay

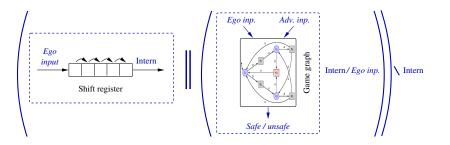


Observation : It doesn't make an observable difference for the joint dynamics whether delay occurs in *perception, actuation*, or *both*.

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks	
0000				
Delayed Observation & Actuation				

Playing Safety Games under Discrete Delay

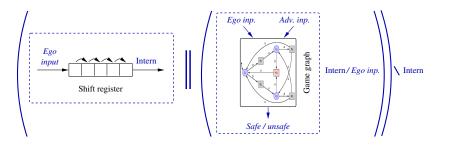
Observation : It doesn't make an observable difference for the joint dynamics whether delay occurs in *perception, actuation,* or *both.*


Consequence : An obvious *reduction* to a safety game of *perfect information*.

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
0000			
Reduction			

Reduction to Delay-Free Games

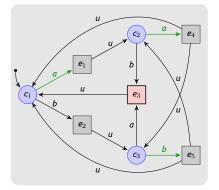
from Ego-Player Perspective



Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
0000			
Reduction			

Reduction to Delay-Free Games

from Ego-Player Perspective

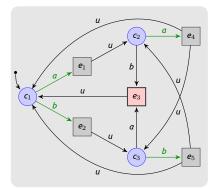

- © Safety games w. delay can be solved algorithmically.
- © Game graph incurs blow-up by factor |Alphabet(ego)|^{delay}.

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
0000			
Reduction			

The Simple Safety Game

... but with Delay

No delay :


$$c_1, c_2 \mapsto a$$

 $c_3 \mapsto b$

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
0000			
Reduction			

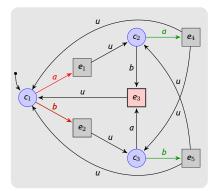
The Simple Safety Game

... but with Delay

No delay :

$$c_1, c_2 \mapsto a \\ c_3 \mapsto b$$

1 step delay :


$$e_1, e_5 \mapsto a$$

 $e_2, e_4 \mapsto b$

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
0000			
Reduction			

The Simple Safety Game

... but with Delay

No delay :

$$c_1, c_2 \mapsto a \\ c_3 \mapsto b$$

1 step delay :

2 steps delay :

$$c_1 \mapsto \begin{cases} a & \text{if } 2 \text{ steps back} \\ an \ a \text{ was issued}, \\ b & \text{if } 2 \text{ steps back} \\ a \ b \text{ was issued}. \end{cases}$$

$$c_2 \mapsto b$$

$$c_3 \mapsto a$$

Need memory!

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	000		
Incremental Synthesis			

Observation : A winning strategy for delay k' > k can always be utilized for a safe win under delay k.

Consequence : A position is winning for delay k is a necessary condition for it being winning under delay k' > k.

M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : What's to come is still unsure : Synthesizing controllers resilient to delayed interaction. ATVA '18. [Distinguished Paper Award].

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	•••		
Incremental Synthesis			

Observation : A winning strategy for delay k' > k can always be utilized for a safe win under delay k.

Consequence : A position is winning for delay k is a necessary condition for it being winning under delay k' > k.

Idea : Incrementally filter out loss states & incrementally synthesize winning strategy for the remaining :

- synthesize winning strategy for the *delay-free* counterpart;
- for each winning state, *lift strategy from delay k to k* + 1;
- remove states where this does not succeed;
- repeat from 2 until either delay-resilience suffices (winning) or initial state turns lossy (losing).

M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : What's to come is still unsure : Synthesizing controllers resilient to delayed interaction. ATVA '18. [Distinguished Paper Award].

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	•••		
Incremental Synthesis			

- Observation : A winning strategy for delay k' > k can always be utilized for a safe win under delay k.
- Consequence : A position is winning for delay k is a necessary condition for it being winning under delay k' > k.
 - Idea : Incrementally filter out loss states & incrementally synthesize winning strategy for the remaining :
 - synthesize winning strategy for the *delay-free* counterpart;
 - for each winning state, lift strategy from delay k to k + 1;
 - remove states where this does not succeed;
 - repeat from 2 until either delay-resilience suffices (winning) or initial state turns lossy (losing).
- M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : What's to come is still unsure : Synthesizing controllers resilient to delayed interaction. ATVA '18. [Distinguished Paper Award].

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	•••		
Incremental Synthesis			

Observation : A winning strategy for delay k' > k can always be utilized for a safe win under delay k.

Consequence : A position is winning for delay k is a necessary condition for it being winning under delay k' > k.

- Idea : Incrementally filter out loss states & incrementally synthesize winning strategy for the remaining :
 - **1** synthesize winning strategy for the *delay-free* counterpart;
 - **2** for each winning state, *lift strategy from delay k to k* + 1;
 - remove states where this does not succeed
 - repeat from 2 until either delay-resilience suffices (winning) or initial state turns lossy (losing).

M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : What's to come is still unsure : Synthesizing controllers resilient to delayed interaction. ATVA '18. [Distinguished Paper Award].

14/22

MISSION · Bariloche, Argentina

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	•••		
Incremental Synthesis			

Observation : A winning strategy for delay k' > k can always be utilized for a safe win under delay k.

Consequence : A position is winning for delay k is a necessary condition for it being winning under delay k' > k.

- Idea : Incrementally filter out loss states & incrementally synthesize winning strategy for the remaining :
 - synthesize winning strategy for the *delay-free* counterpart;
 - **2** for each winning state, *lift strategy from delay k to k + 1;*
 - 3 remove states where this does not succeed;
 - repeat from 2 until either delay-resilience suffices (winning) or initial state turns lossy (losing).

M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : What's to come is still unsure : Synthesizing controllers resilient to delayed interaction. ATVA '18. [Distinguished Paper Award].

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	• O O		
Incremental Synthesis			

Observation : A winning strategy for delay k' > k can always be utilized for a safe win under delay k.

Consequence : A position is winning for delay k is a necessary condition for it being winning under delay k' > k.

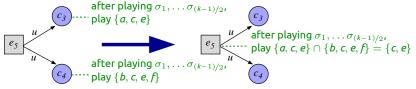
- Idea : Incrementally filter out loss states & incrementally synthesize winning strategy for the remaining :
 - synthesize winning strategy for the *delay-free* counterpart;
 - **2** for each winning state, *lift strategy from delay k to k + 1;*
 - remove states where this does not succeed;
 - repeat from 2 until either delay-resilience suffices (winning) or initial state turns lossy (losing).

⇒ M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : What's to come is still unsure : Synthesizing controllers resilient to delayed interaction. ATVA '18. [Distinguished Paper Award].

14/22

MISSION · Bariloche, Argentina

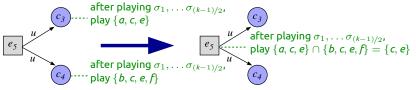
Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	000		
Incremental Synthesis			


1 Generate a *maximally permissive* strategy for delay k = 0.

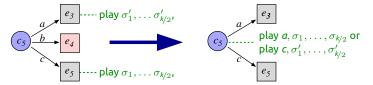
Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	000		
Incremental Synthesis			

- **1** Generate a *maximally permissive* strategy for delay k = 0.
- 2 Advance to delay k + 1:

If k odd : For each (ego-)winning adversarial state define strategy as


... and eliminate any dead ends by bwd. traversal.

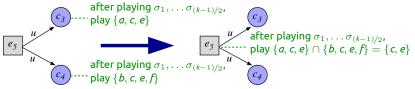
Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	000		
Incomental Synthesis			


- **1** Generate a *maximally permissive* strategy for delay k = 0.
- 2 Advance to delay k + 1:

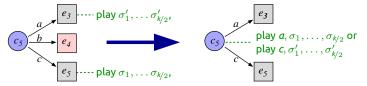
If k odd : For each (ego-)winning adversarial state define strategy as

... and eliminate any dead ends by bwd. traversal.

If k even : For each winning ego state define strategy as



Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
	000		
Incremental Synthesis			


- **1** Generate a *maximally permissive* strategy for delay k = 0.
- 2 Advance to delay k + 1:

If k odd : For each (ego-)winning adversarial state define strategy as

... and eliminate any dead ends by bwd. traversal.

If k even : For each winning ego state define strategy as

3 Repeat from 2 until either delay-resilience suffices or initial state turns lossy.

	elays
0000 000	

Concluding Remarks

Experimental Results

Ber	chmai	'k		R	Reductio	on + Expl	icit-State	Synthesis	5	Incremental Explicit-State Synthesis						
name	S	$ \rightarrow $	$ \mathcal{U} $	δ_{\max}	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	δ_{\max}	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	%
Exmp.trv1	14	20	4	≥ 22	0.00	0.00	0.01	0.02	0.02	≥ 30	0.00	0.00	0.00	0.01	0.01	
Exmp.trv2	14	22	4	= 2	0.00	0.01	0.01	0.02	-	= 2	0.00	0.00	0.00	0.01	_	81.97
Escp.4×4	224	738	16	= 2	0.08	11.66	11.73	1059.23	-	= 2	0.08	0.13	0.22	0.25	_	99.02
Escp.4×5	360	1326	20	= 2	0.18	34.09	33.80	3084.58	-	= 2	0.18	0.27	0.46	0.63	_	99.02
Escp.5×5	598	2301	26	≥ 2	0.46	96.24	97.10	?	?	= 2	0.46	0.68	1.16	1.71	_	98.98
Escp.5×6	840	3516	30	≥ 2	1.01	217.63	216.83	?	?	= 2	1.00	1.42	2.40	4.30	_	99.00
Escp.6×6	1224	5424	36	≥ 2	2.13	516.92	511.41	?	?	= 2	2.06	2.90	5.12	10.30	_	98.97
Escp.7×7	2350	11097	50	≥ 2	7.81	2167.86	2183.01	?	?	= 2	7.71	10.67	19.04	52.47	-	98.99
Escp.7×8	3024	14820	56	≥ 0	13.07	?	?	?	?	= 2	13.44	18.25	32.69	108.60	-	99.01
Benchma	rk	R	educt	ion + Yo	sys + S	afetySynt	h (symb	olic)	Incremental Synthesis (explicit-state implementation)							on)
name	δ_{max}	$\delta = 0$	$\delta =$	$= 1 \delta =$	$2 \delta =$	$3 \delta = 4$	$\delta =$	$5 \delta = 6$	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$	%
Stub.4×4	= 2	1.03	71.	.24 1.2	24 1.3	80 -			0.04	0.07	0.12	0.18	-	-	_	98.98
Stub.4×5	= 2	1.16	51.	.49 1.4	49 2.	83 -			0.08	0.14	0.25	0.44	-	-	_	98.97
Stub.5×5	= 2	1.19	2.	.61 2.5	50 13.	67 -			0.21	0.37	0.63	1.17	-	-	-	98.97
Stub.5×6	= 2	1.18		.60 2.5					0.42	0.69	1.20	2.49	-	-	-	98.96
Stub.6×6	= 4	1.17	7 2.	.76 2.7	74 19.	96 19.69	655.2	4 –	0.93	1.47	2.60	5.79	7.54	7.60	-	99.89
Stub.7 \times 7	= 4	1.23	3 2.	.50 2.4	18 24.:	57 23.01	2224.6	2 –	3.60	5.52	10.08	22.75	31.18	32.98	-	99.88

Delayed Games	Incremental Synthesis under Fixed Delays
0000	000

Concluding Remarks

Experimental Results

Benc	hmarl	¢			Reductio	on + Expl	icit-State	e Synthesi	s	Incremental Explicit-State Synthesis							
name	S	$ \rightarrow $	$ \mathcal{U} $	$\delta_{\rm max}$	$\delta=0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	δ_{\max}	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	%	
Exmp.trv1	14	20	4	≥ 22	0.00	0.00	0.01	0.02	0.02	≥ 30	0.00	0.00	0.00	0.01	0.01		
Exmp.trv2	14	22	4	= 2	0.00	0.01	0.01	0.02	-	= 2	0.00	0.00	0.00	0.01	_	81.97	
Escp.4×4	224	738	16	= 2	0.08	11.66	11.73	1059.23	-	= 2	0.08	0.13	0.22	0.25	_	99.02	
Escp.4×5	360	1326	20	= 2	0.18	34.09	33.80	3084.58	-	= 2	0.18	0.27	0.46	0.63	_	99.02	
Escp.5×5	598	2301	26	≥ 2	0.46	96.24	97.10	?	?	= 2	0.46	0.68	1.16	1.71	_	98.98	
Escp.5×6	840	3516	30	≥ 2	1.01	217.63	216.83	?	?	= 2	1.00	1.42	2.40	4.30	_	99.00	
Escp.6×6 1	224	5424	36	≥ 2	2.13	516.92	511.41	?	?	= 2	2.06	2.90	5.12	10.30	_	98.97	
Escp.7×7 2	2350	11097	50	≥ 2	7.81	2167.86	2183.01	?	?	= 2	7.71	10.67	19.04	52.47	_	98.99	
Escp.7×8 3	3024	14820	56	≥ 0	13.07	?	?	?	?	= 2	13.44	18.25	32.69	108.60	-	99.01	
Benchmark		R	educti	ion + Y	osys + S	afetySynt	h (symb	olic)	In	crementa	l Synthe	esis (exp	olicit-sta	ate imple	mentati	on)	
name δ	max	$\delta = 0$	$\delta =$	1δ=	$= 2 \ \delta =$	$3 \delta = 4$	$\delta =$	$5 \delta = 6$	$\delta =$	$0 \delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$	%	
Stub.4×4 =	= 2	1.07	1.	24 1	.24 1.	80 -			0.04	0.07	0.12	0.18	-	_	_	98.98	
Stub.4×5 =	= 2	1.16	51.	49 1	.49 2.	83 -			0.08	0.14	0.25	0.44	-	-	_	98.97	
Stub.5×5 =	= 2	1.19) 2.	61 2	.50 13.	67 -			0.21	0.37	0.63	1.17	-	-	_	98.97	
Stub.5×6 =	= 2	1.18	3 2.	60 2	.59 23.	30 -			0.42	0.69	1.20	2.49	-	-	-	98.96	
Stub.6×6 =	= 4	1.17	2.	76 2	74 19.	96 19.69	655.2	4 –	0.93	1.47	2.60	5.79	7.54	7.60	-	99.89	
Stub.7×7 =	= 4	1.23	32.	50 2	.48 24.	57 23.01	2224.6	2 –	3.60	5.52	10.08	22.75	31.18	32.98	-	99.88	

Delayed Games	Incremental Synthesis under Fixed Delays
0000	000

Concluding Remarks

Experimental Results

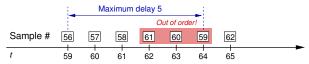
Benc	chmark	2		I	Reductio	on + Expl	licit-State	Synthesis	5	In	crement	al Expli	cit-Stat	e Synthe	sis	
name	S	$ \rightarrow $	$ \mathcal{U} $	δ_{\max}	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	4 $\delta_{\max} \ \delta = 0 \ \delta = 1 \ \delta = 2 \ \delta = 3 \ \delta = 4$						%
Exmp.trv1	14	20	4	> 22	0.00	0.00	0.01	0.02	0.02	> 30	0.00	0.00	0.00	0.01	0.01	
Exmp.trv2	14	22	4	= 2	0.00	0.01	0.01	0.02	-	= 2	0.00	0.00	0.00	0.01	-	81.97
Escp.4×4	224	738	16	= 2	0.08	11.66	11.73	1059.23	-	= 2	0.08	0.13	0.22	0.25	-	99.02
Escp.4×5	360	1326	20	= 2	0.18	34.09	33.80	3084.58	-	= 2	0.18	0.27	0.46	0.63	-	99.02
Escp.5×5	598	2301	26	≥ 2	0.46	96.24	97.10	?	?	= 2	0.46	0.68	1.16	1.71	-	98.98
Escp.5×6	840	3516	30	≥ 2	1.01	217.63	216.83	?	?	= 2	1.00	1.42	2.40	4.30	-	99.00
Escp.6×6	1224	5424	36	≥ 2	2.13	516.92	511.41	?	?	= 2	2.06	2.90	5.12	10.30	-	98.97
Escp.7x7	2350 1	11097	50	≥ 2	7.81	2167.86	2183.01	?	?	= 2	7.71	10.67	19.04	52.47	-	98.99
Escp.7×8	3024 1	14820	56	≥ 0	13.07	?	?	?	?	= 2	13.44	18.25	32.69	108.60	-	99.01
Benchmark Reduction + Yosys + SafetySynth (symbolic)									In	crementa	l Synthe	esis (exp	olicit-sta	te imple	mentati	on)
name δ	$\delta_{\rm max}$	$\delta = 0$	$\delta =$	$1 \delta =$	$2 \delta =$	$3 \delta = 4$	$\delta = \delta$	$5 \delta = 6$	$\delta = 0 \ \delta = 1 \ \delta = 2 \ \delta = 3 \ \delta = 4 \ \delta = 5 \ \delta = 6 $						%	

name	$\delta_{\rm max}$	$\delta = 0$	$\delta = 1 \delta$	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$	%
Stub.4×4	= 2	1.07	1.24	1.24	1.80	_	-	-	0.04	0.07	0.12	0.18		-		98.98
Stub.4×5	= 2	1.16	1.49	1.49	2.83	-	-	-	0.08	0.14	0.25	0.44		-		98.97
Stub.5×5						-	-	-	0.21		0.63			-		98.97
Stub.5×6	= 2	1.18	2.60	2.59	23.30	-	-	-	0.42	0.69	1.20	2.49	-	-	_	98.96
Stub.6×6	= 4	1.17	2.76	2.74	19.96	19.69	655.24	-	0.93	1.47	2.60	5.79	7.54	7.60	_	99.89
Stub.7×7	= 4	1.23	2.50	2.48	24.57	23.01	2224.62	-	3.60	5.52	10.08	22.75	31.18	32.98	-	99.88

Delayed Games	Incremental Synthesis under Fixed Delays
0000	000

Concluding Remarks

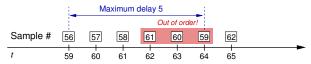
Experimental Results

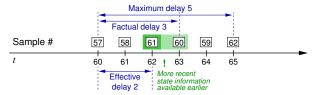

Benchma	ırk		R	eductio	n + Expli	icit-State	Synthesis	3	Iı	ncrement	al Expli	icit-Stat	te Synthe	sis	
name S	$ \rightarrow $	$ \mathcal{U} $	δ_{\max}	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta_{\rm max}$	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	%
Exmp.trv1 14	20	4	≥ 22	0.00	0.00	0.01	0.02	0.02	≥ 30	0.00	0.00	0.00	0.01	0.01	
Exmp.trv2 14	4 22	4	= 2	0.00	0.01	0.01	0.02	-	= 2	0.00	0.00	0.00	0.01	_	81.97
Escp.4×4 224	738	16	= 2	0.08	11.66	11.73	1059.23	-	= 2	0.08	0.13	0.22	0.25	_	99.02
Escp.4×5 36	1326	20	= 2	0.18	34.09	33.80	3084.58	-	= 2	0.18	0.27	0.46	0.63	-	99.02
Escp.5×5 59	3 2301	26	≥ 2	0.46	96.24	97.10	?	?	= 2	0.46	0.68	1.16	1.71	-	98.98
Escp.5×6 84	3516	30	≥ 2	1.01	217.63	216.83	?	?	= 2	1.00	1.42	2.40	4.30	-	99.00
Escp.6×6 122	5424	36	≥ 2	2.13	516.92	511.41	?	?	= 2	2.06	2.90	5.12	10.30	-	98.97
Escp.7×7 235	0 11097	50	≥ 2	7.81 2	2167.86	2183.01	?	?	= 2	7.71	10.67	19.04	52.47	-	98.99
Escp.7×8 302	4 14820	56	≥ 0	13.07	?	?	?	?	= 2	13.44	18.25	32.69	108.60	-	99.01
Benchmark	R	educti	on + Yos	sys + Sa	ifetySynt	h (symb	olic)	Inc	crement	al Synthe	sis (exp	olicit-sta	ate imple	mentati	on)
name δ_{max}	$\delta = 0$	$\delta =$	$1~\delta =$	$2 \delta =$	$3 \delta = 4$	$\delta =$	$5 \delta = 6$	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$	%
Stub. $4 \times 4 = 2$	1.0	7 1.:	24 1.2	4 1.8	- 0			0.04	0.07	0.12	0.18	-	-	_	98.98
Stub. $4 \times 5 = 2$	1.10	5 1.4	49 1.4	9 2.8	3 –			0.08	0.14	0.25	0.44	-	-	_	98.97
$Stub.5 \times 5 = 2$	1.19	2.0	51 2.5	0 13.6	7 –			0.21	0.37	0.63	1.17	-	-	_	98.97
Stub.5 \times 6 = 2	1.1	3 2.0	50 2.5	9 23.3	- 0			0.42	0.69	1.20	2.49	-	-	-	98.96
Stub.6×6 = 4	1.1'	7 2.7	76 2.7	4 19.9	6 19.69	655.2	4 –	0.93	1.47	2.60	5.79	7.54	7.60	-	99.89
Stub.7×7 = 4	1.2	3 2.5	50 2.4	8 24.5	7 23.01	2224.6	2 –	3.60	5.52	10.08	22.75	31.18	32.98	-	99.88

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
		000	
Out-of-Order Message Deliver			

Out-of-Order Message Delivery

Observations may arrive *out-of-order* :

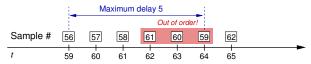


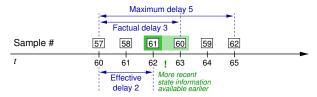

Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
		000	
Out-of-Order Message Deliver	ען		

Out-of-Order Message Delivery

Observations may arrive *out-of-order* :

© But this may only reduce effective delay, improving controllability :

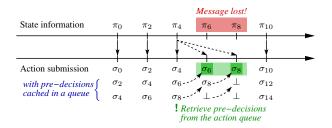



Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
		000	
Out-of-Order Message Deliver	ען		

Out-of-Order Message Delivery

Observations may arrive out-of-order :

But this may only reduce effective delay, improving controllability :

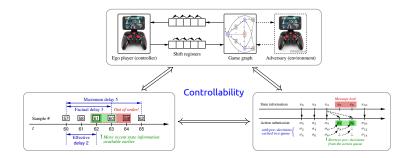


- W.r.t. qualitative controllability, the worst-case of out-of-order delivery is equivalent to order-preserving delay k.
- © Stochastically expected controllability even better than for strict delay *k*.

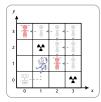
Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
		000	
Bounded Message Loss			
/			

(Bounded) Message Loss

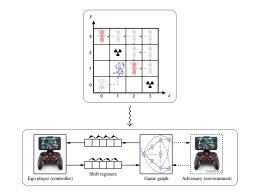
© Message carrying the state information may get *lost* :



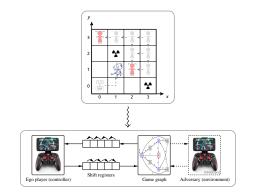
The controller can still win a safety game in the presence of bounded message loss leveraging delay-resilient strategies.


Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
		000	
Equivalent Controllability			

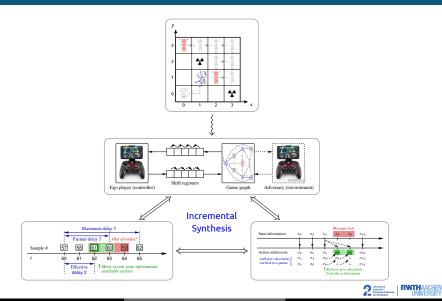
Equivalence of Qualitative Controllability


⇒ M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : Indecision and delays are the parents of failure : Taming them algorithmically by synthesizing delay-resilient control. Acta Informatica '20.

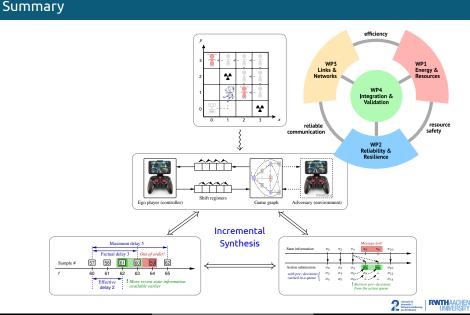
Delayed Games 0000	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks ●○○
Summary			
Summary			



Delayed Games 0000	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks ●○○
Summary			
Summary			


Delayed Games 0000	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks ●○○
Summary			
Summary			

Incremental Synthesis



Delayed Games 0000	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks ●○○
Summary			
Summary			

Mingshuai Chen · i2, RWTH Aachen Univ.

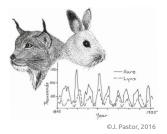
Delayed Games	Incremental Synthesis under Fixed Delays	Extended Delay Patterns	Concluding Remarks
			000
Summary			

Mingshuai Chen · i2, RWTH Aachen Univ.

Delayed	
0000	

Incremental Synthesis under Fixed Delays

Extended Delay Patterns


Concluding Remarks

Further Topics

Delays in Dynamical/Hybrid Systems

©Wikipedia

Vito Volterra

Predator-prey dynamics

"[...] the rate of change of physical systems depends not only on their present state, but also on their past history."

[Richard Bellman and Kenneth L. Cooke, 1963]

- ⇒ M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : *Validat. simul.-based verific. of DDEs.* FM '16.
- ⇒ B. Xue, P. N. Mosaad, M. Fränzle, M. Chen, Y. Li, N. Zhan : Safe approx. of reach. sets for DDEs. FORMATS '17.
- ⇒ S. Feng, M. Chen, N. Zhan, M. Fränzle, B. Xue : Taming delays in dyn. syst. : Unbounded verif. of DDEs. CAV '19.

Delayed	

	IURRAY OR DELAY!
	els Dichterscollectief
	llectif de Poètes Bruxellois els Poetry Collective
2011	27.03

© Brussels Poetry Collective

Delayed reaction : Reaction to a stimulus is not immediate.

Easy to model in timed/hybrid automata, etc. :

start
$$\rightarrow \bigcirc a, \top, \{x\} \xrightarrow{b, [3, 4), \emptyset} \longrightarrow \bigcirc$$

- Thus amenable to the pertinent analysis tools.
- ⇒ Not of interest today.

Delayed reaction : Reaction to a stimulus is not immediate.

Easy to model in timed/hybrid automata, etc. :

start
$$\rightarrow \bigcirc a, \top, \{x\} \longrightarrow b, [3, 4), \emptyset \longrightarrow \bigcirc$$

- Thus amenable to the pertinent analysis tools.
- ⇒ Not of interest today.

Network delay : Information of different age coexists and is queuing in the network when piped towards target.

- End-to-end latency may exceed sampling intervals etc. by orders of magnitude.
- Not (efficiently) expressible in standard models.
- ⇒ Our theme today : discrete-time pipelined delay.

```
[Chen et al. : ATVA '18, Acta Inf. '20];
[Zimmermann : LICS '18, GandALF '17], [Klein & Zimmermann : ICALP '15, CSL '15].
```

Theorem (Equivalence of qualitative controllability)

Given a two-player safety game, the following statements are equivalent if δ is even :

- **There exists a winning strategy under an exact delay of** δ , i.e., if at any point of time t the control strategy is computed based on a prefix of the game that has length $t \delta$.
- **2** There exists a winning strategy under time-stamped out-of-order delivery with a maximum delay of δ , i.e., if at any point of time t the control strategy is computed based on the complete prefix of the game of length $t \delta$ plus potentially available partial knowledge of the game states between $t \delta$ and t.
- **There exists a winning strategy when at any time** t = 2n, *i.e., any player-0 move, information on the game state at some time* $t' \in \{t 2k, ..., t\}$ *is available, i.e., under out-of-order delivery of messages with a maximum delay of* δ *and a maximum number of consecutively lost upstream or downstream messages of* $\delta/2$ *.*

The first two equivalences do also hold for odd δ .

M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : Indecision and delays are the parents of failure : Taming them algorithmically by synthesizing delay-resilient control. Acta Informatica '20.