Latticed *k*-Induction

with an Application to Probabilistic Programs

Mingshuai Chen

—Joint work with K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer—

My Ph.D. at ISCAS

first day onboard

My Ph.D. at ISCAS

first day onboard

last day finishing the thesis

My Ph.D. at ISCAS

first day onboard

my Ph.D. life in between

_

last day finishing the thesis

Cyber-Physical Systems (CPS)

An open, interconnected form of embedded systems that integrates capabilities of *computing, communication,* and *control,* among which many are safety-critical.

Cyber-Physical Systems (CPS)

An open, interconnected form of embedded systems that integrates capabilities of *computing*, *communication*, and *control*, among which many are safety-critical.

Cyber-Physical Systems (CPS)

An open, interconnected form of embedded systems that integrates capabilities of *computing*, *communication*, and *control*, among which many are safety-critical.

"How can we provide people with CPS they can bet their lives on?"

- Jeannette M. Wing, former AD for CISE at NSF

Mingshuai Chen · i2, RWTH Aachen Univ.

Latticed k-Induction

"[...] the challenge of designing embedded systems offers a unique opportunity for reinvigorating computer science. The challenge, and thus the opportunity, spans the spectrum from theoretical foundations to engineering practice. To begin with, we need a mathematical basis for systems modeling and analysis which integrates both computation and physical constraints in a consistent, operative manner [...]"

Joseph Sifakis 2007 Turing Awardee

- Embed. Syst. Design Challenge, invited talk at FM '06

Tom Henzinger President, IST Austria

"[...] the challenge of designing embedded systems offers a unique opportunity for reinvigorating computer science. The challenge, and thus the opportunity, spans the spectrum from theoretical foundations to engineering practice. To begin with, we need a mathematical basis for systems modeling and analysis which integrates both computation and physical constraints in a consistent, operative manner [...]"

Joseph Sifakis 2007 Turing Awardee

— Embed. Syst. Design Challenge, invited talk at FM '06

Tom Henzinger President, IST Austria

Aim : *Develop mathematically rigorous techniques* for designing safety-critical CPS while *pushing the limits of automation* as far as possible.

"[...] the challenge of designing embedded systems offers a unique opportunity for reinvigorating computer science. The challenge, and thus the opportunity, spans the spectrum from theoretical foundations to engineering practice. To begin with, we need a mathematical basis for systems modeling and analysis which integrates both computation and physical constraints in a consistent, operative manner [...]"

Joseph Sifakis 2007 Turing Awardee

— Embed. Syst. Design Challenge, invited talk at FM '06

Tom Henzinger President, IST Austria

Safety, liveness, termination, cost, efficiency, ... vs. intricacy, delays, randomness, uncertainty, ...

Aim : *Develop mathematically rigorous techniques* for designing safety-critical CPS while *pushing the limits of automation* as far as possible.

"[...] the challenge of designing embedded systems offers a unique opportunity for reinvigorating computer science. The challenge, and thus the opportunity, spans the spectrum from theoretical foundations to engineering practice. To begin with, we need a mathematical basis for systems modeling and analysis which integrates both computation and physical constraints in a consistent, operative manner [...]"

Joseph Sifakis 2007 Turing Awardee

— Embed. Syst. Design Challenge, invited talk at FM '06

Tom Henzinger President, IST Austria

Safety, liveness, termination, cost, efficiency, ... vs. intricacy, delays, randomness) uncertainty, ...

Aim : *Develop mathematically rigorous techniques* for designing safety-critical CPS while *pushing the limits of automation* as far as possible.

$$\textit{C}_{\textit{brw}}: \quad \textit{while} \left(\textit{n} > 0 \right) \left\{ \textit{n} \coloneqq \textit{n} - 1 \left[\frac{1}{3} \right] \textit{n} \coloneqq \textit{n} + 1 \right\}$$

$$C_{\mathsf{brw}}: \quad \mathsf{while} \left(n > 0 \right) \left\{ n \coloneqq n - 1 \left[\frac{1}{3} \right] n \coloneqq n + 1 \right\}$$

$$C_{\mathsf{brw}}: \quad \mathsf{while} \left(n > 0 \right) \left\{ n \coloneqq n - 1 \left[\frac{1}{3} \right] n \coloneqq n + 1 \right\}$$

~

Cbrw: while
$$(n > 0)$$
 { $n \coloneqq n - 1$ [1/3] $n \coloneqq n + 1$ }

F 1 / 1

. . . .

a > c

... /

$$C_{\mathsf{brw}}: \quad \mathsf{while} \left(n > 0 \right) \left\{ n \coloneqq n - 1 \left[\frac{1}{3} \right] n \coloneqq n + 1 \right\}$$

$$C_{\text{brw}}: \quad \text{while } (n > 0) \{ n \coloneqq n - 1 \lfloor \frac{1}{3} \rfloor n \coloneqq n + 1 \}$$

F 1 / 1

. . .

a > c

"The crux of probabilistic programming is to treat normal-looking programs as if they were probability distributions."

- Michael Hicks, The PL Enthusiast

SAT-based technique for verifying invariant properties of finite transition systems.

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.
- Applications : hardware- and software model checking.

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.
- Applications : hardware- and software model checking.

"The simplicity of applying k-induction made it the go-to technique for SMTbased infinite-state model checking."

[Krishnan et al., CAV '19]

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.
- Applications : hardware- and software model checking.

"The simplicity of applying k-induction made it the go-to technique for SMTbased infinite-state model checking."

[Krishnan et al., CAV '19]

Is *k*-induction applicable to verifying infinite-state probabilistic programs?

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.
- Applications : hardware- and software model checking.

"The simplicity of applying k-induction made it the go-to technique for SMTbased infinite-state model checking."

[Krishnan et al., CAV '19]

Is *k*-induction applicable to verifying infinite-state probabilistic programs?

Latticed k-Induction

Yes. It enables fully automatic verification of non-trivial properties.

For a probabilistic loop C_{geo} :

while $(c = 1) \{ c := 0 [1/2] x := x + 1 \}$,

For a probabilistic loop C_{geo} :

while $(c = 1) \{ c := 0 [1/2] x := x + 1 \}$,

the property

 \forall initial state σ : wp[[C_{geo}]] (\mathbf{x}) (σ) $\leq \sigma(\mathbf{x}) + 1$

For a probabilistic loop *C*_{geo} :

while $(c = 1) \{ c := 0 [1/2] x := x + 1 \}$,

the property

$$\forall \text{ initial state } \sigma \colon \operatorname{wp}[\![C_{geo}]\!](\mathbf{x})(\sigma) \leq \sigma(\mathbf{x}) + 1$$

is not inductive but 2-inductive.

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS.

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal: Prove that *P* covers all *reachable states* of TS.

Let $k \ge 1$. If the following two formulae are valid

$$\underbrace{I(s_1) \land T(s_1, s_2) \land \ldots \land T(s_{k-1}, s_k)}_{\text{ell attractions}} \implies \underbrace{P(s_1) \land \ldots \land P(s_k)}_{\text{are Postates}} \qquad [base case]$$

all states reachable within k-1 steps

are P-scaces

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS .

Let $k \ge 1$. If the following two formulae are valid

$$\underbrace{I(s_1) \land T(s_1, s_2) \land \ldots \land T(s_{k-1}, s_k)}_{\text{all states reachable within } k-1 \text{ steps}} \implies \underbrace{P(s_1) \land \ldots \land P(s_k)}_{\text{are } P \text{-states}} \qquad \text{[base case]}$$

$$\underbrace{P(s_1) \land T(s_1, s_2) \land \ldots \land P(s_k)}_{\text{assume staying in } P \text{ for } k-1 \text{ steps}} \land \underbrace{T(s_k, s_{k+1})}_{\text{after step } k} \implies \underbrace{P(s_{k+1})}_{\text{end up in } P \text{ again}} \qquad \text{[ind. step]}$$

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS .

Let $k \ge 1$. If the following two formulae are valid

then *P* is a *k*-inductive invariant covering all reachable states of TS.

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS .

Let $k \ge 1$. If the following two formulae are valid

then *P* is a *k*-inductive invariant covering all reachable states of TS.

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS .

Let $k \ge 1$. If the following two formulae are valid

then *P* is a *k*-inductive invariant covering all reachable states of TS.

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS .

Let $k \ge 1$. If the following two formulae are valid

then *P* is a *k*-inductive invariant covering all reachable states of TS.

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS .

Let $k \ge 1$. If the following two formulae are valid

then *P* is a *k*-inductive invariant covering all reachable states of TS.

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS .

Let $k \ge 1$. If the following two formulae are valid

then *P* is a *k*-inductive invariant covering all reachable states of TS.

For verifying probabilistic programs, we have to

leave the Boolean domain and reason about quantities;
k-Induction for Transition Systems

Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS .

Let $k \ge 1$. If the following two formulae are valid

 $\underbrace{I(s_1) \land T(s_1, s_2) \land \ldots \land T(s_{k-1}, s_k)}_{\text{all states reachable within } k-1 \text{ steps}} \implies \underbrace{P(s_1) \land \ldots \land P(s_k)}_{\text{are } P \text{ states}} \qquad \text{[base case]}$ $\underbrace{P(s_1) \land T(s_1, s_2) \land \ldots \land P(s_k)}_{\text{assume staying in } P \text{ for } k-1 \text{ steps}} \land \underbrace{T(s_k, s_{k+1})}_{\text{after step } k} \implies \underbrace{P(s_{k+1})}_{\text{end up in } P \text{ again}} \qquad \text{[ind. step]}$

then *P* is a *k*-inductive invariant covering all reachable states of TS.

For verifying probabilistic programs, we have to

- leave the Boolean domain and reason about quantities;
- reason about sets of paths rather than individual paths.

Idea Sketch

k-induction for TS in terms of a **SAT problem**

Mingshuai Chen · i2, RWTH Aachen Univ.

Mingshuai Chen · i2, RWTH Aachen Univ.

Idea Sketch

Whenever your problem boils down to verifying an upper bound on a lfp , latticed *k*-induction provides you with inductive proof rules!

Idea Sketch

Whenever your problem boils down to verifying an upper bound on a lfp , latticed *k*-induction provides you with inductive proof rules!

Idea Sketch

Whenever your problem boils down to verifying an upper bound on a lfp , latticed *k*-induction provides you with inductive proof rules!

Mingshuai Chen · i2, RWTH Aachen Univ.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments 00000	Concluding Remarks
Idea Sketch			

Whenever your problem boils down to verifying an upper bound on a lfp , latticed *k*-induction provides you with inductive proof rules!

Latticed <i>k</i> -Induction ○●○○	Instantiation to Probabilistic Programs	Implementation & Experiments 00000	Concluding Remarks
Latticed k-Inc	luction		

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi \colon E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction) :

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction) :

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction) :

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction) :

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction) :

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction) :

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

Even though lfp $\Phi \sqsubseteq f$ we might have $\Phi(f) \not\sqsubseteq f$!

2-induction:

$$\Phi\left(\Phi\left(\mathbf{f}\right) \sqcap \mathbf{f}\right) \sqsubseteq \mathbf{f} \quad \text{implies} \quad \text{lfp} \ \Phi \sqsubseteq \mathbf{f}.$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction) :

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

```
Even though lfp \Phi \sqsubseteq f we might have \Phi(f) \not\sqsubseteq f!
```

2-induction:

$$\Phi(\Phi(f) \sqcap f) \sqsubseteq f$$
 implies $\mathsf{lfp} \Phi \sqsubseteq f$.

3-induction:

 $\Phi\left(\Phi\left(\Phi\left(f\right)\sqcap f\right)\sqcap f\right)\sqsubseteq f \quad \text{implies} \quad \text{lfp} \ \Phi\sqsubseteq f.$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Define *k*-induction operator $\Psi_f: E \to E$ by

 $\Psi_{\mathbf{f}}(\mathbf{g}) \ \widehat{=} \ \Phi(\mathbf{g}) \sqcap \mathbf{f}.$

0000	000	00000	000
			Concluding Kemarks
Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Romarks

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Define *k*-induction operator $\Psi_f: E \to E$ by

$$\Psi_{\mathbf{f}}(\mathbf{g}) \ \widehat{=} \ \Phi(\mathbf{g}) \sqcap \mathbf{f}.$$

Theorem (Latticed k-induction)

For every k > 1,

$$\Phi\left(\Psi_{\boldsymbol{f}}^{\boldsymbol{k}-1}\left(\boldsymbol{f}\right)\right) \sqsubseteq \boldsymbol{f} \quad \text{implies} \quad \text{lfp} \ \Phi \sqsubseteq \boldsymbol{f}.$$

We call such *f k*-inductive invariant.

0000	000	00000	000

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Define *k*-induction operator $\Psi_f: E \to E$ by

$$\Psi_{\mathbf{f}}(\mathbf{g}) \ \widehat{=} \ \Phi(\mathbf{g}) \sqcap \mathbf{f}.$$

Theorem (Latticed k-induction)

For every k > 1,

$$\Phi\left(\Psi_{\boldsymbol{f}}^{\boldsymbol{k}-1}\left(\boldsymbol{f}\right)\right) \sqsubseteq \boldsymbol{f} \quad \text{implies} \quad \text{lfp} \ \Phi \sqsubseteq \boldsymbol{f}.$$

We call such *f k*-inductive invariant.

k-induction generalizes Park induction $\hat{=}$ 1-induction.

0000	000	00000	000

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Define *k*-induction operator $\Psi_f: E \to E$ by

$$\Psi_{\mathbf{f}}(\mathbf{g}) \ \widehat{=} \ \Phi(\mathbf{g}) \sqcap \mathbf{f}.$$

Theorem (Latticed k-induction)

For every $k \geq 1$,

$$\Phi\left(\Psi_{\boldsymbol{f}}^{\boldsymbol{k}-1}\left(\boldsymbol{f}\right)\right) \sqsubseteq \boldsymbol{f} \quad \text{implies} \quad \text{lfp} \ \Phi \sqsubseteq \boldsymbol{f}.$$

We call such *f k*-inductive invariant.

k-induction generalizes Park induction $\hat{=}$ 1-induction.

Can be further generalized to *transfinite* κ *-induction* (not in this talk).

Key Insights of Soundness

Lemma (Descending chain)

$$f \supseteq \Psi_f^1(f) \supseteq \Psi_f^2(f) \supseteq \Psi_f^3(f) \supseteq \dots$$

Key Insights of Soundness

Lemma (Descending chain)

$$f \supseteq \Psi^1_{f}(f) \supseteq \Psi^2_{f}(f) \supseteq \Psi^3_{f}(f) \supseteq \dots$$

Key Insights of Soundness

Lemma (Descending chain)

$$f \sqsupseteq \Psi_f^1(f) \sqsupseteq \Psi_f^2(f) \sqsupseteq \Psi_f^3(f) \sqsupseteq \dots$$

Key Insights of Soundness

Lemma (Descending chain)

$$f \sqsupseteq \Psi_{f}^{1}(f) \sqsupseteq \Psi_{f}^{2}(f) \sqsupseteq \Psi_{f}^{3}(f) \sqsupseteq \dots$$

Key Insights of Soundness

Lemma (Descending chain)

$$\boldsymbol{f} \sqsupseteq \Psi^1_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^2_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^3_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \dots$$

Key Insights of Soundness

Lemma (Descending chain)

$$f \supseteq \Psi^1_f(f) \supseteq \Psi^2_f(f) \supseteq \Psi^3_f(f) \supseteq \dots$$

Key Insights of Soundness

Lemma (Descending chain)

$$\boldsymbol{f} \sqsupseteq \Psi^1_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^2_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^3_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \dots$$

Key Insights of Soundness

Lemma (Descending chain)

$$\boldsymbol{f} \sqsupseteq \Psi^1_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^2_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^3_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \dots$$

Key Insights of Soundness

Lemma (Descending chain)

$$f \supseteq \Psi_f^1(f) \supseteq \Psi_f^2(f) \supseteq \Psi_f^3(f) \supseteq \dots$$

Key Insights of Soundness

Lemma (Descending chain)

Iterating $\Psi_{\mathbf{f}}$ on \mathbf{f} yields a descending chain, i.e.,

$$f \supseteq \Psi_f^1(f) \supseteq \Psi_f^2(f) \supseteq \Psi_f^3(f) \supseteq \dots$$

Theorem (Park induction from k-induction)

$$\underbrace{\Phi\left(\Psi_{f}^{k-1}(f)\right)\sqsubseteq f}_{f \text{ is k-inductive invariant}} \quad \text{iff} \quad \underbrace{\Phi\left(\Psi_{f}^{k-1}(f)\right)\sqsubseteq \Psi_{f}^{k-1}(f)}_{\Psi_{f}^{k-1}(f) \text{ is inductive invariant}}$$

Key Insights of Soundness

Lemma (Descending chain)

Iterating Ψ_{f} on f yields a descending chain, i.e.,

$$f \supseteq \Psi_f^1(f) \supseteq \Psi_f^2(f) \supseteq \Psi_f^3(f) \supseteq \dots$$

Theorem (Park induction from k-induction)

$$\underbrace{\Phi\left(\Psi_{f}^{k-1}(f)\right)\sqsubseteq f}_{f \text{ is k-inductive invariant}} \quad \text{iff} \quad \underbrace{\Phi\left(\Psi_{f}^{k-1}(f)\right)\sqsubseteq \Psi_{f}^{k-1}(f)}_{\Psi_{f}^{k-1}(f) \text{ is inductive invariant}}$$

f is a k-inductive invariant $\iff \Psi_f^{k-1}(f)$ is an inductive invariant stronger than f.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs ●○○	Implementation & Experiments 00000	Concluding Remarks
Idea Sketch			

Latticed	k-Induction

Instantiation to Probabilistic Programs

Implementation & Experiments

Concluding Remarks

Weakest Preexpectation Transformer

Consider the complete lattice (\mathbb{E},\leq) of expectations :

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Rem
	000		

Weakest Preexpectation Transformer

Consider the complete lattice (\mathbb{E},\leq) of expectations :

$$\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\}$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Weakest Preexpectation Transformer

Consider the complete lattice (\mathbb{E},\leq) of expectations :

$$\mathbb{E} = \left\{ f \mid f \colon \Sigma \to \mathbb{R}_{\geq 0}^{\infty} \right\} \quad \text{with} \quad f \leq g \quad \text{iff} \quad \forall \sigma \in \Sigma \colon f(\sigma) \leq g(\sigma)$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Weakest Preexpectation Transformer

Consider the complete lattice (\mathbb{E},\leq) of expectations :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $wp[\![C]\!] \colon \mathbb{E} \to \mathbb{E}$,

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E},\leq) of expectations :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} \,, \qquad \mathsf{wp}\llbracket C \rrbracket \left(g \right) \left(\sigma \right) \, \widehat{=} \, \begin{array}{l} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma \,. \end{array}$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E},\leq) of expectations :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \stackrel{\scriptscriptstyle \frown}{=} \stackrel{\mathsf{expected value of } g \text{ evaluated in final states}}{\mathsf{reached after executing } C \text{ on } \sigma}.$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E},\leq) of expectations :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \stackrel{\scriptscriptstyle \frown}{=} \stackrel{\mathsf{expected value of } g \text{ evaluated in final states}}{\mathsf{reached after executing } C \text{ on } \sigma}.$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \stackrel{\scriptscriptstyle \frown}{=} \stackrel{\mathsf{expected value of } g \text{ evaluated in final states}}{\mathsf{reached after executing } C \text{ on } \sigma}.$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E},\leq) of expectations :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket {\mathcal C} \rrbracket \colon \mathbb{E} \to \mathbb{E} \,, \qquad \mathsf{wp}\llbracket {\mathcal C} \rrbracket \left({{\mathcal g}} \right) \left(\sigma \right) \, \widehat{=} \, \begin{array}{l} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } \mathcal C \text{ on } \sigma \,. \end{array}$

$$\mathsf{wp}[\![\mathbf{x} \coloneqq 5]\!](\mathbf{x}) = 5$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

$$\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \quad \text{with} \quad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma)$$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \ \widehat{=} \ \begin{array}{c} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma . \end{array}$

$$wp[[x := 5]](x) = 5$$
$$wp[[{ skip } [1/2] { x := x+2 }](x) = \frac{1}{2} \cdot x + \frac{1}{2} \cdot (x+2) = x+1$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

$$\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \quad \text{with} \quad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma)$$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \ \widehat{=} \ \begin{array}{c} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma . \end{array}$

$$\begin{split} & \mathsf{wp}[\![x:=5]\!](x) = 5 \\ & \mathsf{wp}[\![\{\mathsf{skip}\}\,[1/2]\,\{x:=x+2\,\}]\!](x) = \frac{1}{2} \cdot x + \frac{1}{2} \cdot (x+2) = x+1 \\ & \mathsf{wp}[\![\{\mathsf{skip}\}\,[1/2]\,\{x:=x+2\,\}]\!]([x=4]) = \frac{1}{2} \cdot [x=4] + \frac{1}{2} \cdot [x=2] \end{split}$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

$$\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \quad \text{with} \quad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma)$$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \ \widehat{=} \ \begin{array}{c} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma . \end{array}$

$$\begin{split} & \mathsf{wp}[\![x \coloneqq 5]\!] (x) \ = \ 5 \\ & \mathsf{wp}[\![\{\mathsf{skip}\}\ [1/2]\ \{x \coloneqq x+2\]]\!] (x) \ = \ \frac{1}{2} \cdot x + \frac{1}{2} \cdot (x+2) \ = \ x+1 \\ & \mathsf{wp}[\![\{\mathsf{skip}\}\ [1/2]\ \{x \coloneqq x+2\]]\!] ([x=4]) \ = \ \frac{1}{2} \cdot [x=4] + \frac{1}{2} \cdot [x=2] \\ & \mathsf{wp}[\![\mathsf{while}\ (c=1)\ \{\ c \coloneqq 0\]\ [1/2]\ \{x \coloneqq x+1\ \}\]] (x) \ = \ [c=1] \cdot (x+1) + [c\neq 1] \cdot x \end{split}$$

Latticed	k-Induction

Implementation & Experiments

Concluding Remarks

k-Induction for Probabilistic Programs

Given : Loop $C = while (\varphi) \{ C' \}$, postexpectation $g \in \mathbb{E}$ and candidate $f \in \mathbb{E}$. Goal : Prove wp $\llbracket C \rrbracket (g) \leq f$.

Latticed	k-Induction

Implementation & Experiments

Concluding Remarks

k-Induction for Probabilistic Programs

Given : Loop $C = \text{while}(\varphi) \{ C' \}$, postexpectation $g \in \mathbb{E}$ and candidate $f \in \mathbb{E}$. Goal : Prove wp $\llbracket C \rrbracket(g) \leq f$.

We have

wp $\llbracket C \rrbracket(g) = \mathsf{lfp} \Phi$ with $\Phi \colon \mathbb{E} \to \mathbb{E}$ monotonic.

Latticed	k-Induction	
0000		

Implementation & Experiments

k-Induction for Probabilistic Programs

Given : Loop $C = \text{while}(\varphi) \{ C' \}$, postexpectation $g \in \mathbb{E}$ and candidate $f \in \mathbb{E}$. Goal : Prove wp $\llbracket C \rrbracket(g) \leq f$.

We have

wp
$$\llbracket C \rrbracket(g) = \mathsf{lfp} \Phi$$
 with $\Phi \colon \mathbb{E} \to \mathbb{E}$ monotonic.

Hence, latticed *k*-induction applies :

Corollary (k-induction for probabilistic programs)

For every $k \geq 1$,

$$\Phi\left(\Psi_{\textit{\textit{f}}}^{\textit{\textit{k}}-1}(\textit{\textit{f}})\right) \leq \textit{\textit{f}} \quad \text{implies} \quad \text{wp}[\![\textit{\textit{C}}]\!](\textit{\textit{g}}) \leq \textit{\textit{f}}.$$

Latticed	k-Induction	

Implementation & Experiments 00000

k-Induction for Probabilistic Programs

Given : Loop $C = \text{while}(\varphi) \{ C' \}$, postexpectation $g \in \mathbb{E}$ and candidate $f \in \mathbb{E}$. Goal : Prove wp $\llbracket C \rrbracket(g) \leq f$.

We have

$$\operatorname{wp}\llbracket C \rrbracket(g) = \operatorname{lfp} \Phi$$
 with $\Phi \colon \mathbb{E} \to \mathbb{E}$ monotonic.

Hence, latticed *k*-induction applies :

Corollary (k-induction for probabilistic programs)

For every $k \geq 1$,

$$\Phi\left(\Psi_{\boldsymbol{f}}^{\boldsymbol{k}-1}(\boldsymbol{f})\right) \leq \boldsymbol{f} \quad \text{implies} \quad \text{wp}[\![\boldsymbol{C}]\!]\left(\boldsymbol{g}\right) \leq \boldsymbol{f}.$$

Неге

$$\Psi_{\mathbf{f}}(h) = \Phi(h) \sqcap \mathbf{f} \quad \text{ where for } h, h' \in \mathbb{E}, \quad h \sqcap h' = \lambda \sigma \bullet \min\{h(\sigma), h'(\sigma)\}.$$

Tool Support

kipro2 : k-Induction for PRObabilistic PROgrams

https://github.com/moves-rwth/kipro2

Latticed	k-Induction

Tool Support

kipro2: k-Induction for PRObabilistic PROgrams

https://github.com/moves-rwth/kipro2

For linear $C = \text{while}(\varphi) \{C'\}$ and piecewise linear f, g, kipro2 semi-decides by SMT: Is there $k \ge 1$ s.t. wp $[\![C]\!](g) \le f$ is k-inductive?

Latticed	k-Induction

Tool Support

https://github.com/moves-rwth/kipro2

For linear $C = \text{while}(\varphi) \{C'\}$ and piecewise linear f, g, kipro2 semi-decides by SMT: Is there $k \ge 1$ s.t. wp $[\![C]\!](g) \le f$ is k-inductive?

If wp $[\![C]\!](g) \leq f$, kipro2 finds via *bounded model checking* some $\sigma \in \Sigma$ with wp $[\![C]\!](g)(\sigma) > f(\sigma)$.

Latticed	k-Induction

Implementation & Experiments

Concluding Remarks

Example : Geometric Distribution

For Cgeo given by

while
$$(c = 1) \{ \{ c \coloneqq 0 \} [1/2] \{ x \coloneqq x + 1 \} \}$$
,

the property

 \forall initial state σ : wp[[C_{geo}]] (x) (σ) $\leq \sigma(x) + 1$

is 2-inductive.

Example : Geometric Distribution

For Cgeo given by

while
$$(c = 1) \{ \{ c \coloneqq 0 \} [1/2] \{ x \coloneqq x + 1 \} \}$$
,

the property

$$\forall$$
 initial state σ : wp[[C_{geo}]] (\mathbf{x}) (σ) $\leq \sigma(\mathbf{x}) + 1$

is 2-inductive. Does

 $\forall \text{ initial state } \sigma \colon \operatorname{wp}[\![C_{geo}]\!](\mathbf{x})(\sigma) \leq \sigma(\mathbf{x}) + 0.99$

also hold?

Example : Geometric Distribution

For Cgeo given by

while
$$(c = 1) \{ \{ c \coloneqq 0 \} [1/2] \{ x \coloneqq x + 1 \} \}$$
,

the property

$$\forall$$
 initial state σ : wp[[C_{geo}]] (\mathbf{x}) (σ) $\leq \sigma(\mathbf{x}) + 1$

is 2-inductive. Does

 $\forall \text{ initial state } \sigma : \quad wp \llbracket C_{geo} \rrbracket (\mathbf{x}) (\sigma) \leq \sigma(\mathbf{x}) + 0.99$

also hold? No; counterexample by BMC : $\sigma(c) = 1, \sigma(x) = 6$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
		00000	

```
For C_{brp} given by
while ( sent < toSend \land fail < maxFail) {
{
} [0.9] {
},
```


}

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
		00000	

```
For C<sub>brp</sub> given by
```

```
\begin{aligned} & \texttt{while} ( \textit{ sent} < \textit{toSend} \land \textit{fail} < \textit{maxFail} ) \\ & \{ \textit{fail} \coloneqq 0 \, ; \textit{sent} \coloneqq \textit{sent} + 1 \, \} \, [ 0.9 ] \\ & \} \, , \end{aligned}
```


}

For Cbrp given by

 $\begin{aligned} & \texttt{while} (\textit{ sent} < \textit{toSend} \land \textit{fail} < \textit{maxFail}) \\ & \{ \textit{fail} \coloneqq 0 ; \textit{sent} \coloneqq \textit{sent} + 1 \} [0.9] \{ \textit{fail} \coloneqq \textit{fail} + 1 ; \textit{totalFail} \coloneqq \textit{totalFail} + 1 \} \\ & \}, \end{aligned}$


```
For C_{brp} given by

while ( sent < toSend \land fail < maxFail) {

{ fail := 0; sent := sent + 1 } [0.9] { fail := fail + 1; totalFail := totalFail + 1 }

},
```

the property

```
wp[\![C_{brp}]\!](\textit{totalFail}) \leq [\textit{toSend} \leq 3] \cdot (\textit{totalFail} + 1) + [\textit{toSend} > 3] \cdot \infty
```

is 4-inductive.

For C_{brp} given by

 $\label{eq:sent_constraint} \begin{array}{l} \mbox{while (sent < toSend \land fail < maxFail) } \\ \mbox{ {fail := 0; sent := sent + 1 } [0.9] {fail := fail + 1; totalFail := totalFail + 1 } \\ \mbox{ }, \end{array}$

the property

```
wp[[C_{brp}]](totalFail) \leq [toSend \leq 3] \cdot (totalFail + 1) + [toSend > 3] \cdot \infty
```

is 4-inductive. Does

```
wp[[C_{brp}]](totalFail) \leq totalFail + 1
```

also hold?

For C_{brp} given by

 $\begin{aligned} & \texttt{while} (\textit{ sent} < \textit{toSend} \land \textit{fail} < \textit{maxFail}) \\ & \{ \textit{fail} \coloneqq 0 \text{; sent} \coloneqq \textit{sent} + 1 \} [0.9] \{ \textit{fail} \coloneqq \textit{fail} + 1 \text{; totalFail} \coloneqq \textit{totalFail} + 1 \} \\ & \}, \end{aligned}$

the property

```
wp[[C_{brp}]](totalFail) \leq [toSend \leq 3] \cdot (totalFail + 1) + [toSend > 3] \cdot \infty
```

is 4-inductive. Does

```
wp[C_{brp}](totalFail) \leq totalFail+1
```

also hold? No : toSend = 6052, maxFail = 2, sent = 6042, fail = 0, totalFail = 1.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000	000	00000	000

Example : Uniform Sampling by Fair-Coin Flips [Lumbroso, arXiv'13]

```
while(running = 0){
    v := 2*v:
    {c := 2*c+1}[0.5]{c := 2*c};
    if(not (v<n)){</pre>
        if((not (n=c)) & (not (n<c))){ #terminate</pre>
             running := 1
        H
             v := v-n:
             c := c-n:
    }{
        skip
    #on termination, determine correct index
    if ((not (running = 0)))
        c := elow + c;
    }{
        skip
```


Latticed k-Induction	Instantiation to Probabilistic

Concluding Remarks

Example : Uniform Sampling by Fair-Coin Flips [Lumbroso, arXiv'13]

```
while(running = 0){
    v := 2*v:
    {c := 2*c+1}[0.5]{c := 2*c};
    if(not (v<n)){</pre>
        if ((not (n=c)) & (not (n<c))) { #terminate
             running := 1
        H
             v := v-n:
             c := c-n:
    }{
        skip
    #on termination, determine correct index
    if ((not (running = 0)))
        c := elow + c;
    }{
        skip
```

For *arbitrary* array of fixed size $n = \{2, 3, 4, 5\}$, we verify

 $Pr("sample fixed element") \leq 1/n$.

Empirical Results (Partial)

postexpectation	variant	result	k	#formulae	formulae_t	sat_t	total_t
	1	ind	2	18	0.01	0.00	0.08
х	2	ref	11	103	0.04	0.01	0.09
	3	ref	46	1223	0.39	0.04	0.48
	1	ind	2	267	0.27	0.02	0.56
	2	ind	3	1402	1.45	0.10	1.81
[c = i]	3	ind	3	1402	1.48	0.11	1.86
	4	ind	5	40568	47.31	15.70	63.28
	5	ТО	-	-	-	-	-
	x [c = i]	postexpectation variant x 1 2 3 [c = i] 3 4 5	$\begin{array}{c c c c c c c } \hline \textbf{postexpectation} & \textbf{variant} & \textbf{result} \\ \hline \\ \textbf{x} & 1 & \textit{ind} \\ 2 & \textit{ref} \\ 3 & \textit{ref} \\ \hline \\ 1 & \textit{ind} \\ 2 & \textit{ind} \\ 3 & \textit{ind} \\ 4 & \textit{ind} \\ 5 & \textit{TO} \\ \end{array}$	$\begin{array}{c c c c c c c } \hline \textbf{postexpectation} & \textbf{variant} & \textbf{result} & k \\ \hline \textbf{k} & 1 & \text{ind} & 2 \\ 2 & \text{ref} & 11 \\ 3 & \text{ref} & 46 \\ \hline 1 & \text{ind} & 2 \\ 2 & \text{ind} & 3 \\ 3 & \text{ind} & 3 \\ 4 & \text{ind} & 5 \\ 5 & \text{TO} & - \\ \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

:

Concluding Remarks

Empirical Results (Partial)

	postexpectation	variant	result	k	#formulae	formulae_t	sat_t	total_t
_		1	ind	2	18	0.01	0.00	0.08
geo	х	2	ref	11	103	0.04	0.01	0.09
		3	ref	46	1223	0.39	0.04	0.48
_		1	ind	2	267	0.27	0.02	0.56
sar		2	ind	3	1402	1.45	0.10	1.81
Ψļ	[c = i]	3	ind	3	1402	1.48	0.11	1.86
ni		4	ind	5	40568	47.31	15.70	63.28
		5	то	-	-	-	-	-

:

Empirical Results (Partial)

	postexpectation	variant	result	k	#formulae	formulae_t	sat_t	total_t
_		1	ind	2	18	0.01	0.00	0.08
geo	х	2	ref	11	103	0.04	0.01	0.09
0.		3	ref	46	1223	0.39	0.04	0.48
-	1	ind	2	267	0.27	0.02	0.56	
sar		2	ind	3	1402	1.45	0.10	1.81
Ψļ	[c = i]	3	ind	3	1402	1.48	0.11	1.86
ini		4	ind	5	40568	47.31	15.70	63.28
		5	TO	-	-	-	-	-

÷

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○○
Summary			

k-Induction for transition systems in terms of fixed points;

⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer : Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○○
Summary			

- k-Induction for transition systems in terms of fixed points;
- **atticed** *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;

⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer : Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○○
Summary			

- k-Induction for transition systems in terms of fixed points;
- **atticed** *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer : Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
			000

- k-Induction for transition systems in terms of fixed points;
- **a** latticed *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

incremental SMT encoding (theory : QF_UFLIRA);

⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer: Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○○

- k-Induction for transition systems in terms of fixed points;
- **a** latticed *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

- incremental SMT encoding (theory : QF_UFLIRA);
- k-induction for expected run-times;

⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer: Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
			000

- k-Induction for transition systems in terms of fixed points;
- **a** latticed *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

- incremental SMT encoding (theory : QF_UFLIRA);
- k-induction for expected run-times;
- transfinite κ-induction;

⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer: Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
			000

- k-Induction for transition systems in terms of fixed points;
- **a** latticed *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

- incremental SMT encoding (theory : QF_UFLIRA);
- k-induction for expected run-times;
- transfinite κ-induction;
- (in)completeness of latticed k-induction;
- ⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer: Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
			000

Summary

- k-Induction for transition systems in terms of fixed points;
- **a** latticed *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

- incremental SMT encoding (theory : QF_UFLIRA);
- k-induction for expected run-times;
- transfinite κ-induction;
- (in)completeness of latticed k-induction;
- latticed bounded model checking for *refuting* lfp $\Phi \sqsubseteq f$.
- ⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer : Latticed k-Induction with an Application to Probabilistic Programs. CAV'21.

Programs with conditioning and/or continuous distributions?

- ⇒ Olmedo, Gretz, Jansen, Kaminski, Katoen, McIver : Conditioning in Prob. Prog. TOPLAS 40(1).
- ⇒ Szymczak, Katoen : Weakest Preexpectation Semantics for Bayesian Inference. SETSS'19.
- ⇒ Klinkenberg, Winkler, Chen, Katoen : Exact Prob. Inference using Generating Functions. Under rev.

Programs with conditioning and/or continuous distributions?

- ⇒ Olmedo, Gretz, Jansen, Kaminski, Katoen, McIver : Conditioning in Prob. Prog. TOPLAS 40(1).
- ⇒ Szymczak, Katoen : Weakest Preexpectation Semantics for Bayesian Inference. SETSS '19.
- ⇒ Klinkenberg, Winkler, Chen, Katoen : Exact Prob. Inference using Generating Functions. Under rev.

Efficient synthesis of k-inductive invariants?

⇒ Batz, Chen, Junges, Kaminski, Katoen, Matheja : Inductive Synth. of Inductive Invariants. Under rev.

Programs with conditioning and/or continuous distributions?

- ⇒ Olmedo, Gretz, Jansen, Kaminski, Katoen, McIver : Conditioning in Prob. Prog. TOPLAS 40(1).
- ⇒ Szymczak, Katoen : Weakest Preexpectation Semantics for Bayesian Inference. SETSS '19.
- ⇒ Klinkenberg, Winkler, Chen, Katoen : Exact Prob. Inference using Generating Functions. Under rev.

Efficient synthesis of k-inductive invariants?

⇒ Batz, Chen, Junges, Kaminski, Katoen, Matheja : Inductive Synth. of Inductive Invariants. Under rev.

Latticed k-induction for lower bounds?

- ⇒ Hark, Kaminski, Giesl, Katoen : Aiming Low Is Harder. POPL '20.
- ⇒ Feng, Su, Chen, Kaminski, Katoen, Zhan : Lower Bounds for Poss. Divergent Prob. Prog. Under rev.

Programs with conditioning and/or continuous distributions?

- ⇒ Olmedo, Gretz, Jansen, Kaminski, Katoen, McIver : Conditioning in Prob. Prog. TOPLAS 40(1).
- ⇒ Szymczak, Katoen : Weakest Preexpectation Semantics for Bayesian Inference. SETSS'19.
- ⇒ Klinkenberg, Winkler, Chen, Katoen : Exact Prob. Inference using Generating Functions. Under rev.

Efficient synthesis of k-inductive invariants?

⇒ Batz, Chen, Junges, Kaminski, Katoen, Matheja : Inductive Synth. of Inductive Invariants. Under rev.

Latticed k-induction for lower bounds?

- ⇒ Hark, Kaminski, Giesl, Katoen : Aiming Low Is Harder. POPL'20.
- ⇒ Feng, Su, Chen, Kaminski, Katoen, Zhan : Lower Bounds for Poss. Divergent Prob. Prog. Under rev.

Deciding equivalence of loopy probabilistic programs?

⇒ Chen, Katoen, Klinkenberg, Winkler: Does a Program Yield the Right Distribution? CAV'22.

Programs with conditioning and/or continuous distributions?

- ⇒ Olmedo, Gretz, Jansen, Kaminski, Katoen, McIver : Conditioning in Prob. Prog. TOPLAS 40(1).
- ⇒ Szymczak, Katoen : Weakest Preexpectation Semantics for Bayesian Inference. SETSS'19.
- ⇒ Klinkenberg, Winkler, Chen, Katoen : Exact Prob. Inference using Generating Functions. Under rev.

Efficient synthesis of k-inductive invariants?

⇒ Batz, Chen, Junges, Kaminski, Katoen, Matheja : Inductive Synth. of Inductive Invariants. Under rev.

Latticed k-induction for lower bounds?

- ⇒ Hark, Kaminski, Giesl, Katoen : Aiming Low Is Harder. POPL'20.
- ⇒ Feng, Su, Chen, Kaminski, Katoen, Zhan : Lower Bounds for Poss. Divergent Prob. Prog. Under rev.

Deciding equivalence of loopy probabilistic programs?

⇒ Chen, Katoen, Klinkenberg, Winkler: Does a Program Yield the Right Distribution? CAV'22.

Latticed k-induction for quantum programs?

- ⇒ D'Hondt, Panangaden : Quantum Weakest Preconditions. Math. Struct. Comput. Sci. 16(3).
- ⇒ Liu, Zhou, Barthe, Ying : Quantum Weakest Preconditions for Expected Runtimes. LICS'22.

Programs with conditioning and/or continuous distributions?

- ⇒ Olmedo, Gretz, Jansen, Kaminski, Katoen, McIver : Conditioning in Prob. Prog. TOPLAS 40(1).
- ⇒ Szymczak, Katoen : Weakest Preexpectation Semantics for Bayesian Inference. SETSS'19.
- ⇒ Klinkenberg, Winkler, Chen, Katoen : Exact Prob. Inference using Generating Functions. Under rev.

Efficient synthesis of k-inductive invariants?

⇒ Batz, Chen, Junges, Kaminski, Katoen, Matheja : Inductive Synth. of Inductive Invariants. Under rev.

Latticed k-induction for lower bounds?

- ⇒ Hark, Kaminski, Giesl, Katoen : Aiming Low Is Harder. POPL'20.
- ⇒ Feng, Su, Chen, Kaminski, Katoen, Zhan : Lower Bounds for Poss. Divergent Prob. Prog. Under rev.

Deciding equivalence of loopy probabilistic programs?

⇒ Chen, Katoen, Klinkenberg, Winkler: Does a Program Yield the Right Distribution? CAV'22.

Latticed k-induction for quantum programs?

- ⇒ D'Hondt, Panangaden : Quantum Weakest Preconditions. Math. Struct. Comput. Sci. 16(3).
- ⇒ Liu, Zhou, Barthe, Ying : Quantum Weakest Preconditions for Expected Runtimes. LICS '22.

Latticed Craig interpolation generalizing McMillan's?

- ⇒ McMillan : Interpolation and SAT-Based Model Checking. CAV '03.
- ⇒ Chen, Wu, Batz, Schröer, Katoen : Latticed Craig Interpolation w. an App. to Prob. Prog. Under dev.

...

.atticed	k-Induction	
0000		

Open Positions

Formal Verification Group @ Zhejiang University $\mathbb{FICTI} \textcircled{} \mathbb{N}$

Postdoc · Ph.D. · Master · Intern

formal methods · logic · verification · synthesis · quantitative reasoning · programming theory · probabilistic/quantum systems · cyber-physical systems

🖂 chenms@cs.rwth-aachen.de

🕈 fiction-zju.github.io

In Combination with Latticed BMC

Figure – κ -induction and latticed BMC in case that lfp $\Phi \sqsubseteq f$.

