Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks

Verification of Delayed Differential Dynamics Based on Validated Simulation

Mingshuai Chen¹, Martin Fränzle², Yangjia Li¹, Peter N. Mosaad², Naijun Zhan¹

 1 State Key Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences 2 Dpt. of Computing Science, C. v. Ossietzky Universität Oldenburg

Limassol, November 2016

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
00	00	0000	000	

Motivation : Why Delays?

$$\begin{cases} \dot{\mathbf{x}}(t) = -\mathbf{x}(t) \\ \mathbf{x}(0) = 1 \end{cases}$$

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results 000	Concluding Remarks O
Motivation :	Why Delays?			

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results 000	Concluding Remarks O
Motivation : \	Why Delays?			

Delayed logistic equation [G. Hutchinson, 1948] :

$$\dot{N}(t) = N(t)[1 - N(t - r)]$$

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks

Motivation : Why Delays?

Delayed logistic equation [G. Hutchinson, 1948] :

$$\dot{N}(t) = N(t)[1 - N(t - r)]$$

Mingshuai Chen Institute of Software, CAS

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results 000	Concluding Remarks O
Outline				

1 Problem Formulation

- 2 Simulation-Based Verification
- 3 Validated Simulation of Delayed Differential Dynamics
- 4 Experimental Results
- 5 Concluding Remarks

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results 000	Concluding Remarks O
Outline				

1 Problem Formulation

- Delayed Dynamical Systems
- Safety Verification Problem
- 2 Simulation-Based Verification
 - Basic Idea
 - Verification Algorithm
- 3 Validated Simulation of Delayed Differential Dynamics
 - Local Error Bounds
 - Simulation Algorithm
 - Solving Optimization
 - Correctness and Completeness
- 4 Experimental Results
 - Delayed Logistic Equation
 - Delayed Microbial Growth

5 Concluding Remarks

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
••				
Delayed Dynamical Systems				

Delayed Dynamical Systems

Delayed Dynamical Systems

$$\begin{cases} \dot{\mathbf{x}}(t) &= \boldsymbol{f}(\mathbf{x}(t), \mathbf{x}(t-r_1), \dots, \mathbf{x}(t-r_k)), \quad t \in [0, \infty) \\ \mathbf{x}(t) &\equiv \mathbf{x}_0 \in \Theta, \quad t \in [-r_{\max}, 0] \end{cases}$$

The unique *solution* (*trajectory*): $\xi_{\mathbf{x}_0}(t) : [-r_{\max}, \infty) \mapsto \mathbb{R}^n$.

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
00				
Safety Verification Problem				
Safety Verific	ation Probler	n ¹		

Given $T \in \mathbb{R}$, $\mathcal{X}_0 \subseteq \Theta$, $\mathcal{U} \subseteq \mathbb{R}^n$, whether

$$\forall \mathbf{x}_0 \in \mathcal{X}_0: \quad \left(\bigcup_{t \leq T} \xi_{\mathbf{x}_0}(t) \right) \cap \mathcal{U} = \emptyset \quad ?$$

^{1.} The figure is taken from [M. Althoff, 2010].

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
00				
Safety Verification Problem				
Safety Verifica	tion Probler	n ¹		

Given $T \in \mathbb{R}$, $\mathcal{X}_0 \subseteq \Theta$, $\mathcal{U} \subseteq \mathbb{R}^n$, whether

$$\forall \mathbf{x}_0 \in \mathcal{X}_0: \quad \left(\bigcup_{t \leq T} \xi_{\mathbf{x}_0}(t)\right) \cap \mathcal{U} = \emptyset \quad ?$$

System is safe, if no trajectory enters the unsafe set.

1. The figure is taken from [M. Althoff, 2010].

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks

Outline

Problem Formulation

- Delayed Dynamical Systems
- Safety Verification Problem
- 2 Simulation-Based Verification
 - Basic Idea
 - Verification Algorithm
- 3 Validated Simulation of Delayed Differential Dynamics
 - Local Error Bounds
 - Simulation Algorithm
 - Solving Optimization
 - Correctness and Completeness
- 4 Experimental Results
 - Delayed Logistic Equation
 - Delayed Microbial Growth

5 Concluding Remarks

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
Basic Idea		0000	000	0
Basic Idea ²				

Figure : A finite ϵ -cover of the initial set of states.

Figure : An Over-approximation of the reachable set by bloating the simulation.

^{2.} Figures are taken from [A. DonzDonzé & O. Maler, 2007].

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
	00			
Verification Algorithm				

Verification Algorithm

Algorithm 1: Simulation-based Verification for Delayed Dynamical Systems

input : The dynamics $f(\mathbf{x}, \mathbf{u})$, delay term r, initial set \mathcal{X}_0 , unsafe set \mathcal{U} , time bound T, precision ϵ . /* initialization */ 1 $\mathcal{R} \leftarrow \emptyset$; $\delta \leftarrow dia(\mathcal{X}_0)/2$; $\tau \leftarrow \tau_0$; 2 $\mathcal{X} \leftarrow \delta$ -Partition (\mathcal{X}_0) : while $\mathcal{X} \neq \emptyset$ do 3 if $\delta < \epsilon$ then 4 return (UNKNOWN, R); 5 for $\mathcal{B}_{\delta}(\mathbf{x}_0) \in \mathcal{X}$ do 6 $\langle \mathbf{t}, \mathbf{y}, \mathbf{d} \rangle \leftarrow \text{Simulation}(\mathcal{B}_{\delta}(\mathbf{x}_0), \boldsymbol{f}(\mathbf{x}, \mathbf{u}), r, \tau, T);$ 7 $\mathcal{T} \leftarrow \bigcup_{n=0}^{N-1} \operatorname{conv}(\mathcal{B}_{\mathbf{d}_n}(\mathbf{y}_n) \cup \mathcal{B}_{\mathbf{d}_{n+1}}(\mathbf{y}_{n+1}));$ 8 if $\mathcal{T} \cap \mathcal{U} = \emptyset$ then 9 $\mathcal{X} \leftarrow \mathcal{X} \setminus \mathcal{B}_{\delta}(\mathbf{x}_0)$: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{T}$: 10 else if $\exists i. \mathcal{B}_{\mathbf{d}_i}(\mathbf{y}_i) \subseteq \mathcal{U}$ then 11 return (UNSAFE, T); 12 else 13 $\mathcal{X} \leftarrow \mathcal{X} \setminus \mathcal{B}_{\delta}(\mathbf{x}_0); \ \mathcal{X} \leftarrow \mathcal{X} \cup \frac{\delta}{2}$ -Partition $(\mathcal{B}_{\delta}(\mathbf{x}_0));$ 14 $\delta \leftarrow \delta/2$: 15 16 return (SAFE, R):

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks

Outline

Problem Formulation

- Delayed Dynamical Systems
- Safety Verification Problem
- 2 Simulation-Based Verification
 - Basic Idea
 - Verification Algorithm

3 Validated Simulation of Delayed Differential Dynamics

- Local Error Bounds
- Simulation Algorithm
- Solving Optimization
- Correctness and Completeness

4 Experimental Results

- Delayed Logistic Equation
- Delayed Microbial Growth

5 Concluding Remarks

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results 000	Concluding Remarks O
Local Error Bounds				
Local Error B	ounds			

$$\mathbf{E}(t) = \begin{cases} d_0, & \text{if } t = 0, \\ E(t_i) + (t - t_i)\mathbf{e}_{i+1}, & \text{if } t \in [t_i, t_{i+1}]. \end{cases}$$

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
		0000		
Local Error Bounds				
	a u a da			
I OCAL ELLOL R	ounds			

$$\mathbf{E}(t) = \begin{cases} d_0, & \text{if } t = 0, \\ E(t_i) + (t - t_i)e_{i+1}, & \text{if } t \in [t_i, t_{i+1}]. \end{cases}$$

Validation Property :

$$\xi_{\mathbf{x}_0}(t) \in \mathcal{B}_{\textit{\textit{E}}(t)}\left(\frac{(t-t_i)\mathbf{y}_i + (t_{i+1}-t)\mathbf{y}_{i+1}}{t_{i+1}-t_i}\right), \text{for each } t \in [t_i,t_{i+1}].$$

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
		0000		
Simulation Algorithm				

Simulation Algorithm

Algorithm 2: Simulation: a validated DDE solver producing rigorous bounds

```
input: The initial set \mathcal{B}_{\delta}(\mathbf{x}_0), dynamics f(\mathbf{x}, \mathbf{u}), delay term r, stepsize \tau, time bound T.
    output: A triple \langle t, y, d \rangle, where the components represent lists, with the same length, respectively for the
                   time points, numerical approximations (possibly multi-dimensional), and the rigorous local error
                   bounds.
     /* initializing the lists, whose indices start from -1 */
1 \mathbf{t} \leftarrow \llbracket -\tau, 0 \rrbracket; \mathbf{y} \leftarrow \llbracket \mathbf{x}_0, \mathbf{x}_0 \rrbracket; \mathbf{d} \leftarrow \llbracket 0, \delta \rrbracket;
     /* r has to be divisible by 	au (in FP numbers) */
2 n \leftarrow 0; m \leftarrow r/\tau;
3 while \mathbf{t}_{n} < T do
             t_{n+1} \leftarrow \mathbf{t}_n + \tau;
4
             /* approximating y_{n+1} using forward Euler method */
5
          y_{n+1} \leftarrow \mathbf{y}_n + f(\mathbf{y}_n, \mathbf{y}_{n-m}) * \tau;
             /* computing error slope by constrained optimization, where \sigma is a
                     positive slack constant */
              e_n \leftarrow Find minimum e s.t.
                                          \|\mathbf{f}(\mathbf{x} + t * \mathbf{f}, \mathbf{u} + t * \mathbf{g}) - \mathbf{f}(\mathbf{y}_n, \mathbf{y}_{n-m})\| \le e - \sigma, for
                                      \begin{array}{l} \underset{\mathbf{M} \in \mathcal{M}}{ \| \mathbf{J}_{\mathbf{V}_{\mathbf{C}}}(\mathbf{x}) \|} \\ \forall \mathbf{t} \in [0, \tau] \\ \forall \mathbf{x} \in \mathcal{B}_{\mathbf{d}_{n}}(\mathbf{y}) \\ \forall \mathbf{u} \in \mathcal{B}_{\mathbf{d}_{n-m}}(\mathbf{y}_{n-m}) \\ \forall \mathbf{u} \in \mathcal{B}_{\mathbf{d}_{n-m}}(\mathbf{f}(\mathbf{y}_{n}, \mathbf{y}_{n-m})) \\ \forall \mathbf{g} \in \mathcal{B}_{e_{n-m}}(\mathbf{f}(\mathbf{y}_{n-m}, \mathbf{y}_{n-2m})); \end{array} 
             d_{n+1} \leftarrow \mathbf{d}_n + \tau e_n;
             /* updating the lists by appending the extrapolation */
             \mathbf{t} \leftarrow [\![\mathbf{t}, t_{n+1}]\!]; \mathbf{y} \leftarrow [\![\mathbf{y}, y_{n+1}]\!]; \mathbf{d} \leftarrow [\![\mathbf{d}, d_{n+1}]\!];
6
              n \leftarrow n + 1:
s return \langle \mathbf{t}, \mathbf{y}, \mathbf{d} \rangle;
```

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results 000	Concluding Remarks O
Solving Optimization				
Solving the C	Optimization b	v HvSAT-II		

find min{
$$e \ge 0 \mid \forall x : \phi(x, e) \implies \psi(x, e)$$
}

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks	
		0000			
Solving Optimization					
Solving the Optimization by HySAT-II					

find min{
$$e \ge 0 \mid \forall x : \phi(x, e) \implies \psi(x, e)$$
}

₩

find max{ $e \ge 0 \mid \exists x : \phi(x, e) \land \neg \psi(x, e)$ }

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
		0000		
Correctness and Completen	ess			
Simulation A	laorithm			
Jinia a cion / (gonenni			

Theorem (Correctness)

Suppose the maximum index of the lists is N, then $\forall t \in [0, T]$ and $\forall \mathbf{x} \in B_{\delta}(\mathbf{x}_0)$,

$$\xi_{\mathbf{x}}(t) \subseteq igcup_{n=0}^{N-1} \mathit{conv}(\mathcal{B}_{\mathbf{d}_n}(\mathbf{y}_n) \cup \mathcal{B}_{\mathbf{d}_{n+1}}(\mathbf{y}_{n+1})).$$

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
		0000		
Correctness and Completen	ess			
Simulation A	lgorithm			

Theorem (Correctness)

Suppose the maximum index of the lists is N, then $\forall t \in [0, T]$ and $\forall \mathbf{x} \in B_{\delta}(\mathbf{x}_0)$,

$$\xi_{\mathbf{x}}(t) \subseteq \bigcup_{n=0}^{N-1} \operatorname{conv}(\mathcal{B}_{\mathbf{d}_n}(\mathbf{y}_n) \cup \mathcal{B}_{\mathbf{d}_{n+1}}(\mathbf{y}_{n+1})).$$

Theorem (Completeness)

Suppose the function **f** is continuously differentiable in both arguments and the dynamical system is solvable for time interval [0, T], then for any $\varepsilon > 0$, there exists δ , τ and σ such that the optimization problem has a solution \mathbf{e}_n for all $\mathbf{n} \leq \frac{T}{\tau}$, and moreover $\mathbf{d}_n \leq \varepsilon$.

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
		0000		
Correctness and Completen	ess			
Simulation A	lgorithm			

Theorem (Correctness)

Suppose the maximum index of the lists is N, then $\forall t \in [0, T]$ and $\forall \mathbf{x} \in B_{\delta}(\mathbf{x}_0)$,

$$\xi_{\mathbf{x}}(t) \subseteq \bigcup_{n=0}^{N-1} \operatorname{conv}(\mathcal{B}_{\mathbf{d}_n}(\mathbf{y}_n) \cup \mathcal{B}_{\mathbf{d}_{n+1}}(\mathbf{y}_{n+1})).$$

Theorem (Completeness)

Suppose the function **f** is continuously differentiable in both arguments and the dynamical system is solvable for time interval [0, T], then for any $\varepsilon > 0$, there exists δ , τ and σ such that the optimization problem has a solution e_n for all $n \leq \frac{T}{\tau}$, and moreover $\mathbf{d}_n \leq \varepsilon$.

Further extension to simulations with variable stepsize.

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks

Outline

Problem Formulation

- Delayed Dynamical Systems
- Safety Verification Problem
- 2 Simulation-Based Verification
 - Basic Idea
 - Verification Algorithm
- 3 Validated Simulation of Delayed Differential Dynamics
 - Local Error Bounds
 - Simulation Algorithm
 - Solving Optimization
 - Correctness and Completeness

4 Experimental Results

- Delayed Logistic Equation
- Delayed Microbial Growth

5 Concluding Remarks

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results ●○○	Concluding Remarks O
Delayed Logistic Equation				
Delayed Logist	ic Equation			

$$\dot{N}(t) = N(t)[1 - N(t - r)]$$

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
			•••	
Delayed Logistic Equation				
Delaved Logis	tic Fouation			

$$\dot{N}(t) = N(t)[1 - N(t - r)]$$

Figure : $\mathcal{X}_0 = \mathcal{B}_{0.01}(1.49)$, r = 1.3, $\tau_0 = 0.01$, T = 10s.

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
			000	
Delayed Logistic Equation				

Delayed Logistic Equation

 $\dot{N}(t) = N(t)[1 - N(t - r)]$

Figure : $\mathcal{X}_0 = \mathcal{B}_{0.01}(1.49)$, r = 1.3, $\tau_0 = 0.01$, T = 10s.

Figure : Over-approximation rigorously proving unsafe, with r = 1.7, $\mathcal{X}_0 = \mathcal{B}_{0.025}(0.425)$, $\tau_0 = 0.1$, T = 5**s**, $\mathcal{U} = \{N|N > 1.6\}$.

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
			000	
Delayed Logistic Equation				

Delayed Logistic Equation

(a) An initial over-approximaion of trajectories starting from B_{0.225} (1.25). It overlaps with the unsafe set (s. circle). Initial set is consequently split (cf. Figs. 3b, 3c).

(b) All trajectories starting from $\mathcal{B}_{0.125}(1.375)$ are proven safe within the time bound, as the overapproximation does not intersect with the unsafe set.

(c) Initial state set B_{0.125}(1.125) is verified to be safe as well.

(d) B_{0.25}(0.75) yields overlap w. unsafe; the ball is partitioned again (Figs. 3e, 3f).

(e) All trajectories originating from B_{0.125}(0.875) are provably safe.

(f) All trajectories originating from $B_{0.125}(0.625)$ are provably safe as well.

Fig. 3: The logistic system is proven safe through 6 rounds of simulation with base stepsize $\tau_0 = 0.1$. Delay r = 1.3, initial state set $\mathcal{X}_0 = \{N | N \in [0.5, 1.5]\}$, time bound T = 5s, unsafe set $\{N | N > 1.6\}$.

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks O
Delayed Microbial Growth				
Delayed Microl	bial Growth			

$$\begin{aligned} \dot{S}(t) &= 1 - S(t) - f(S(t))x(t) \\ \dot{x}(t) &= \mathbf{e}^{-r}f(S(t-r))x(t-r) - x(t) \end{aligned}$$

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks
			000	
Delayed Microbial Growth				

Delayed Microbial Growth

$$\begin{aligned} \hat{\mathbf{S}}(t) &= 1 - \mathbf{S}(t) - f(\mathbf{S}(t))\mathbf{x}(t) \\ \hat{\mathbf{x}}(t) &= \mathbf{e}^{-r}f(\mathbf{S}(t-r))\mathbf{x}(t-r) - \mathbf{x}(t) \end{aligned}$$

Figure : The microbial system is proven safe by 17 rounds of simulation with $\tau_0 = 0.45$. Here, f(S) = 2eS/(1+S), r = 0.9, $\mathcal{X}_0 = \mathcal{B}_{0.3}((1; 0.5))$, $\mathcal{U} = \{(S; x) | S + x < 0\}$, T = 8s.

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results	Concluding Remarks

Outline

Problem Formulation

- Delayed Dynamical Systems
- Safety Verification Problem
- 2 Simulation-Based Verification
 - Basic Idea
 - Verification Algorithm
- 3 Validated Simulation of Delayed Differential Dynamics
 - Local Error Bounds
 - Simulation Algorithm
 - Solving Optimization
 - Correctness and Completeness
- 4 Experimental Results
 - Delayed Logistic Equation
 - Delayed Microbial Growth

5 Concluding Remarks

Problem Formulation	Verification Shell	Validated Simulation	Experimental Results 000	Concluding Remarks
Conclusions				
Concluding F	Remarks			

- A validated numerical solver for delay differential equations.
- A sound and robustly complete algorithm for automated formal verification of time-bounded reachability properties of a class of systems that feature delayed differential dynamics governed by DDEs with multiple delays.
- A prototypical implementation of the simulator, by which we have successfully demonstrated the method on several benchmark systems involving delayed differential dynamics.
- Forthcoming research : higher-order Runge-Kutta methods ; unbounded verification by Taylor-enclosures ; conformance testing.