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Motivation : Why Delays ?

Delayed logistic equation [G. Hutchinson, 1948] :

Ṅ(t) = N(t)[1− N(t− r)]
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Delayed Dynamical Systems

Delayed Dynamical Systems

{
ẋ (t) = f (x (t) ,x (t− r1) , . . . ,x (t− rk)) , t ∈ [0,∞)
x (t) ≡ x0 ∈ Θ, t ∈ [−rmax, 0]

The unique solution (trajectory) : ξx0 (t) : [−rmax,∞) 7→ Rn.
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Safety Verification Problem

Safety Verification Problem 

Given T ∈ R, X0 ⊆ Θ, U ⊆ Rn, whether

∀x0 ∈ X0 :

(∪
t≤T

ξx0 (t)
)

∩ U = ∅ ?

System is safe, if no trajectory enters the unsafe set.

1. The figure is taken from [M. Althoff, 2010].
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Basic Idea

Basic Idea 

176 A. Donzé and O. Maler

Bδ(S) =
⋃

x∈S
Bδ(x) and Bδ(ξx) =

⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive notion
of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S) is the
smallest radius ε such that the union of all ε radius closed
balls with their center in S covers X .

αX (S) = min
ε>0

{ε | X ⊂ Bε(S)} (2)

ε

We now define the process of refining a sampling, which simply consists in finding
a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)

Figure : A finite ϵ-cover of the initial set of states.

Systematic Simulation Using Sensitivity Analysis 177

Clearly, a first property of the expansion functions is that it approaches 0 as ε
tends toward 0:

∀t > 0, lim
ε→0

Ex,ε(t) = 0 (4)

This results directly from the continuity of ξx(t) w.r.t. x.

The expansion function value Ex0,ε(t)
gives the radius of the ball which over-
approximate tightly the reachable set from
the ball Bε(x0) at time t. Obviously, if we
take several such balls so that the initial
set X0 is covered, we obtain a correspond-
ing cover of Reach=t(X0). This is stated in
the following

x0

ξx0(t)

ε

Reach=t

[
Bε(x0)

]

Ex0,ε(t)

Proposition 1. Let S = {x1, . . . ,xk}be a sampling of X0 such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0 for some {ε1, . . . , εk}. Let t > 0 and for each 1 ≤ i ≤ k, let
δi = Exi,εi(t). Then

⋃k
i=1 Bδi(ξxi(t)) is a ball cover of Reach=t(X0).

Proof. By definition, the ball cover of X0 contains X0, and each Bδi(ξxi(t))
contains Reach=t(Bεi(xi)), and the rest follows from the commutativity of the
dynamics with set union and containment. 	


In particular, if S is a sampling of X0 with dispersion ε then we are in the case
where εi = ε for all 1 < i < k and since the result is true for all t ∈ [0, T ], we
have the following

Corollary 1. Let S = {x1,x2, . . . ,xk} be a sampling of X0 with dispersion
αX0(S) = ε. Let δ > 0 be an upper bound for Exi,ε(t) for all 1 < i < k and
t ∈ [0, T ], then the following inclusions hold

Reach[0,T ](X0) ⊆
⋃

x∈S
BEx,ε(ξx) ⊆

⋃

x∈S
Bδ(ξx) ⊆ Bδ

(
Reach[0,T ](X0)

)
(5)

Proof. The first inclusion is a direct application of the proposition. The second
results from the fact that δ is an upper-bound and the third inclusion is due to
the fact that ∀(xi, t) ∈ S × [0, T ], ξxi(t) ∈ Reach[0,T ](X0). 	


In other terms, if we bloat the sampling trajectories starting from S with a radius
δ, which is an upper bound for expansion functions of these trajectories, then
we get an over-approximation of the reachable set which is between the exact
reachable set and the reachable set bloated with δ. Because of (4), it is clear
that δ, and then the over-approximation error, decreases when ε gets smaller.

The second corollary of proposition 1 underlies our verification strategy.

Corollary 2. Let S = {x1, . . . ,xk} be a sampling of X such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0. For t ∈ [0, T ] and 1 ≤ i ≤ k, let δi(t) = Exi,εi(t). If for all
t ∈ [0, T ],

Bδi(t)(ξxi(t)) ∩ F = ∅,

Figure : AnOver-approximation of the reachable set by
bloating the simulation.

2. Figures are taken from [A. DonzDonzé & O. Maler, 2007].
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Verification Algorithm
Validated Simulation-Based Verification of Delayed Differential Dynamics 7

Algorithm 1: Simulation-based Verification for Delayed Dynamical Systems
input : The dynamics f(x,u), delay term r, initial set X0, unsafe set U , time bound T , precision ε.
/* initialization */

1 R ← ∅; δ ← dia(X0)/2; τ ← τ0;
2 X ← δ-Partition(X0);
3 while X 6= ∅ do
4 if δ < ε then
5 return (UNKNOWN,R);

6 for Bδ(x0) ∈ X do
7 〈t,y,d〉 ← Simulation(Bδ(x0), f(x,u), r, τ, T );
8 T ←

⋃N−1
n=0 conv(Bdn (yn) ∪ Bdn+1

(yn+1));
9 if T ∩ U = ∅ then

10 X ← X\Bδ(x0); R ← R∪ T ;

11 else if ∃i. Bdi
(yi) ⊆ U then

12 return (UNSAFE, T );
13 else
14 X ← X\Bδ(x0); X ← X ∪ δ

2 -Partition(Bδ(x0));

15 δ ← δ/2;

16 return (SAFE,R);

1. At the beginning, we cover the given initial set X0 by a finite set of balls of ra-
dius δ; so, δ-Partition(X0) in line 2 of Algorithm. 1 returns a finite δ-cover of the
compact set X0. We then call Simulation to each of these balls. For each ball B,
we collect all states contained in the bloating of the N -step simulation trace y as
Bd(y) =

⋃N−1
n=0 conv(Bdn(yn) ∪ Bdn+1(yn+1)), cf. line 8. This yields an over-

approximation of the states reachable from B following (5) within time up to T .
2. If the over-approximation of the reachable set thus obtained is disjoint to the unsafe

set (line 9), then (5) is safe when starting in B; otherwise, if there exists a sampling
point in the simulation which has its full bloating with the corresponding local error
bound being contained in the unsafe set (line 11), then (5) is definitely unsafe. If
none of these two conditions applies, we compute a finer partition of B (line 14),
and we repeat the above procedure until the granularity of the partition becomes
finer than the given threshold. In this case, we cannot give an answer whether or
not (5) is safe and terminate with the inconclusive result unknown.

Obviously, our approach is different from existing approaches providing simulation-
based verification for dynamical systems modeled by ordinary differential equations,
like [8,9]. In our approach, the simulation procedure provides a rigorous validation
of the above property P2, rather than relying on assumptions concerning numerical
accuracy of the underlying simulator. Second, our approach covers rigorous simulation-
based formal verification of DDE rather than just ODE. The correctness of the resulting
algorithm is captured by the following theorem:

Theorem 1 (Correctness). If Simulation satisfies above properties P1 and P2 (which
will be verified in the next section), then Algorithm 1 terminates and its outputs are
guaranteed to satisfy the following soundness properties:

– it reports (SAFE,R) only if the system is safe.
– it reports (UNSAFE, T ) only if the system is unsafe and T is a counter-example.
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Local Error Bounds

Local Error Bounds

E(t) =

{
d0, if t = 0,

E(ti) + (t− ti)ei+1, if t ∈ [ti, ti+1].

Validation Property :

ξx0 (t) ∈ BE(t)

(
(t− ti)yi + (ti+1 − t)yi+1

ti+1 − ti

)
, for each t ∈ [ti, ti+1].
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Simulation Algorithm

Simulation AlgorithmValidated Simulation-Based Verification of Delayed Differential Dynamics 9

Algorithm 2: Simulation: a validated DDE solver producing rigorous bounds
input : The initial set Bδ(x0), dynamics f(x,u), delay term r, stepsize τ , time bound T .
output: A triple 〈t,y,d〉, where the components represent lists, with the same length, respectively for the

time points, numerical approximations (possibly multi-dimensional), and the rigorous local error
bounds.

/* initializing the lists, whose indices start from -1 */
1 t← J−τ, 0K; y ← Jx0,x0K; d← J0, δK;
/* r has to be divisible by τ (in FP numbers) */

2 n← 0; m← r/τ ;
3 while tn < T do
4 tn+1 ← tn + τ ;

/* approximating yn+1 using forward Euler method */
5 yn+1 ← yn + f(yn,yn−m) ∗ τ ;

/* computing error slope by constrained optimization, where σ is a
positive slack constant */

en ← Find minimum e s.t.

‖f(x + t ∗ f ,u + t ∗ g)− f(yn,yn−m)‖ ≤ e− σ, for
∀t ∈ [0, τ ]
∀x ∈ Bdn (yn)
∀u ∈ Bdn−m (yn−m)

∀f ∈ Be(f(yn,yn−m))
∀g ∈ Ben−m (f(yn−m,yn−2m));

dn+1 ← dn + τen;
/* updating the lists by appending the extrapolation */

6 t← Jt, tn+1K; y ← Jy, yn+1K; d← Jd, dn+1K;
7 n← n+ 1;

8 return 〈t,y,d〉;

from −1 and assume that all the evaluations of y and d with a negative index return the
element at −1, namely y<0 = y−1

5, and analogously for d.
At t0 = 0, the corresponding local error is initialized with the radius of the initial

set d0 = δ (line 1). An offset m is computed in line 2 such that yn−m locates the
delayed approximation at tn−r. In each iteration of the simulation loop, the state is ex-
trapolated in line 5 using the well-known forward Euler method, which computes yn+1

explicitly from previous points yn and yn−m. Higher-order Runge-Kutta methods [1]
could be employed here to obtain more precise approximations. Line 5 derives a local
error bound dn+1 based on the local error slope en satisfying the enclosure property
(P2’). The computation of en is reduced to a constrained optimization problem (line 5).

Correctness of Simulation. Note that the constrained optimization problem (5) need not
have a finite solution, in which case our algorithm fails to provide a useful enclosure.
Straightforward continuity arguments do, however, show that for small enough stepsize
τ , it will always have a solution, which motivated us to implement stepsize control,
as discussed below. When being able to compute useful, i.e., finite error slopes, the
simulation delivers a safe enclosure satisfying (P2):

Theorem 2 (Correctness). Suppose the maximum index of the lists generated by Algo-
rithm 2 is N , then ∀t ∈ [0, T ] and ∀x ∈ Bδ(x0),

ξx(t) ⊆
⋃N−1

n=0
conv(Bdn(yn) ∪ Bdn+1

(yn+1)).

5 For a general initial condition g(t), y is initialized as y← Jg(−r), g(−r + τ), . . . , g(0)K.
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Solving Optimization

Solving the Optimization by HySAT-II

find min{e ≥ 0 | ∀x : ϕ(x, e) =⇒ ψ(x, e)}

⇓

find max{e ≥ 0 | ∃x : ϕ(x, e) ∧ ¬ψ(x, e)}
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Correctness and Completeness

Simulation Algorithm

Theorem (Correctness)

Suppose the maximum index of the lists is N, then ∀t ∈ [0, T] and ∀x ∈ Bδ(x0),

ξx(t) ⊆
∪N−1

n=0
conv(Bdn (yn) ∪ Bdn+1

(yn+1)).

Theorem (Completeness)

Suppose the function f is continuously differentiable in both arguments and the
dynamical system is solvable for time interval [0, T], then for any ε > 0, there exists δ, τ
and σ such that the optimization problem has a solution en for all n ≤ T

τ
, and moreover

dn ≤ ε.

Further extension to simulations with variable stepsize.
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Delayed Logistic Equation

Delayed Logistic Equation

Ṅ(t) = N(t)[1− N(t− r)]
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numerical solution N(t)

over−approximation by bloating factor d(t)

Figure : X0 = B0.01(1.49), r = 1.3, τ0 = 0.01,
T = 10s.
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numerical solution N(t)

over−approximation by bloating factor d(t)

lower bound of the unsafe set

Figure : Over-approximation rigorously proving unsafe,
with r = 1.7, X0 = B0.025(0.425), τ0 =
0.1, T = 5s,U = {N|N > 1.6}.
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Fig. 1: Over-approximation of the solutions of Eq. (12) origi-
nating from region B0.01(1.49) under delay r = 1.3. Initial
stepsize τ0 = 0.01, time bound T = 10s.
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Fig. 2: Over-approximation rigorously proving Eq. (12) un-
safe, with r = 1.7, X0 = B0.025(0.425), τ0 = 0.1,
T = 5s and U = {N |N > 1.6}.
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(a) An initial over-approximaion of trajectories start-
ing from B0.225(1.25). It overlaps with the unsafe set
(s. circle). Initial set is consequently split (cf. Figs. 3b,
3c).
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(b) All trajectories starting from B0.125(1.375)
are proven safe within the time bound, as the over-
approximation does not intersect with the unsafe set.
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(c) Initial state setB0.125(1.125) is verified to be safe
as well.
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(d) B0.25(0.75) yields overlap w. unsafe; the ball is
partitioned again (Figs. 3e, 3f).
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(e) All trajectories originating from B0.125(0.875)
are provably safe.
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(f) All trajectories originating from B0.125(0.625)
are provably safe as well.

Fig. 3: The logistic system is proven safe through 6 rounds of simulation with base stepsize τ0 = 0.1. Delay r = 1.3,
initial state set X0 = {N |N ∈ [0.5, 1.5]}, time bound T = 5s, unsafe set {N |N > 1.6}.
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Delayed Microbial Growth

{
Ṡ(t) = 1− S(t)− f(S(t))x(t)
ẋ(t) = e−rf(S(t− r))x(t− r)− x(t)
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Figure : Themicrobial system is proven safeby17 roundsof simulationwithτ0 = 0.45. Here, f(S) = 2eS/(1+S),
r = 0.9,X0 = B0.3((1; 0.5)), U = {(S; x)|S + x < 0}, T = 8s.
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Concluding Remarks

A validated numerical solver for delay differential equations.

A sound and robustly complete algorithm for automated formal verification of
time-bounded reachability properties of a class of systems that feature delayed
differential dynamics governed by DDEs with multiple delays.

A prototypical implementation of the simulator, by which we have successfully
demonstrated the method on several benchmark systems involving delayed
differential dynamics.

Forthcoming research : higher-order Runge-Kutta methods ; unbounded
verification by Taylor-enclosures ; conformance testing.
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