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Abstract
Verification by simulation, based on covering the set of time-bounded trajectories of a dynamical system evolv-

ing from the initial state set by means of a finite sample of initial states plus a sensitivity argument, has recently
attracted interest due to the availability of powerful simulators for rich classes of dynamical systems. System mod-
els addressed by such techniques involve ordinary differential equations (ODEs) and can readily be extended to
delay differential equations (DDEs). In doing so, the lack of validated solvers for DDEs, however, enforces the use
of numeric approximations such that the resulting verification procedures would have to resort to (rather strong)
assumptions on numerical accuracy of the underlying simulators, which lack formal validation or proof. In this
work, we pursue a closer integration of the numeric solving and the sensitivity-related state bloating algorithms
underlying verification by simulation, together yielding a safe enclosure algorithm for DDEs suitable for use in au-
tomated formal verification. The key ingredient is an on-the-fly computation of piecewise linear, local error bounds
by nonlinear optimization, with the error bounds uniformly covering sensitivity information concerning initial states
as well as integration error.

Motivation
The presence of feedback delays in most dynamical systems reduces controllability due to the impos-
sibility of immediate reaction and enhances likelihood of transient overshoot or even oscillation in
the feedback system, e.g.{

ẋ(t) = −x(t)
x(0) = 1
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ẋ(t) = −x(t−1)
x([−1, 0]) ≡ 1
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Figure 1: One single time delay renders an originally stable system oscillating.

Problem Formulation
•Delayed dynamical systems:{

ẋ (t) = f (x (t) ,x (t− r1) , . . . ,x (t− rk)) , t ∈ [0,∞)
x (t) ≡ x0 ∈ Θ, t ∈ [−rk, 0]

The unique solution (trajectory): ξx0(t) : [−rk,∞) 7→ Rn.

• Safety verification: given a time bound T ∈ R, an initial set X0 ⊆ Θ, and an unsafe set U ⊆ Rn,
weather

∀x0 ∈ X0 :
(⋃

t≤T
ξx0(t)

)
∩ U = ∅ ?

Figure 2: System is safe, if no trajectory enters the unsafe set.

Simulation-Based Verification (cf. [1–4])
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Bδ(S) =
⋃

x∈S
Bδ(x) and Bδ(ξx) =

⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive notion
of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S) is the
smallest radius ε such that the union of all ε radius closed
balls with their center in S covers X .

αX (S) = min
ε>0

{ε | X ⊂ Bε(S)} (2)

ε

We now define the process of refining a sampling, which simply consists in finding
a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)
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Clearly, a first property of the expansion functions is that it approaches 0 as ε
tends toward 0:

∀t > 0, lim
ε→0

Ex,ε(t) = 0 (4)

This results directly from the continuity of ξx(t) w.r.t. x.

The expansion function value Ex0,ε(t)
gives the radius of the ball which over-
approximate tightly the reachable set from
the ball Bε(x0) at time t. Obviously, if we
take several such balls so that the initial
set X0 is covered, we obtain a correspond-
ing cover of Reach=t(X0). This is stated in
the following

x0

ξx0(t)

ε

Reach=t

[
Bε(x0)

]

Ex0,ε(t)

Proposition 1. Let S = {x1, . . . ,xk}be a sampling of X0 such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0 for some {ε1, . . . , εk}. Let t > 0 and for each 1 ≤ i ≤ k, let
δi = Exi,εi(t). Then

⋃k
i=1 Bδi(ξxi(t)) is a ball cover of Reach=t(X0).

Proof. By definition, the ball cover of X0 contains X0, and each Bδi(ξxi(t))
contains Reach=t(Bεi(xi)), and the rest follows from the commutativity of the
dynamics with set union and containment. 	


In particular, if S is a sampling of X0 with dispersion ε then we are in the case
where εi = ε for all 1 < i < k and since the result is true for all t ∈ [0, T ], we
have the following

Corollary 1. Let S = {x1,x2, . . . ,xk} be a sampling of X0 with dispersion
αX0(S) = ε. Let δ > 0 be an upper bound for Exi,ε(t) for all 1 < i < k and
t ∈ [0, T ], then the following inclusions hold

Reach[0,T ](X0) ⊆
⋃

x∈S
BEx,ε(ξx) ⊆

⋃

x∈S
Bδ(ξx) ⊆ Bδ

(
Reach[0,T ](X0)

)
(5)

Proof. The first inclusion is a direct application of the proposition. The second
results from the fact that δ is an upper-bound and the third inclusion is due to
the fact that ∀(xi, t) ∈ S × [0, T ], ξxi(t) ∈ Reach[0,T ](X0). 	


In other terms, if we bloat the sampling trajectories starting from S with a radius
δ, which is an upper bound for expansion functions of these trajectories, then
we get an over-approximation of the reachable set which is between the exact
reachable set and the reachable set bloated with δ. Because of (4), it is clear
that δ, and then the over-approximation error, decreases when ε gets smaller.

The second corollary of proposition 1 underlies our verification strategy.

Corollary 2. Let S = {x1, . . . ,xk} be a sampling of X such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0. For t ∈ [0, T ] and 1 ≤ i ≤ k, let δi(t) = Exi,εi(t). If for all
t ∈ [0, T ],

Bδi(t)(ξxi(t)) ∩ F = ∅,

Figure 3: Left: a finite ε-cover of the initial set of states. Right: trigger a simulation from each sample point x0, then
a bloating of the simulated trajectory with a quantitative sensitivity argument thus pessimistically over-approximates the
reachable set w.r.t. arbitrary initial states within Bε(x0).

Validated Simulation
•We propose a local error bound

E(t) =

{
d0, if t = 0,

E(ti) + (t− ti)ei+1, if t ∈ [ti, ti+1].

which yields the validation property

ξx0(t) ∈ BE(t)

(
(t− ti)yi + (ti+1 − t)yi+1

ti+1 − ti

)
,for each t ∈ [ti, ti+1].

• Computing the bound by nonlinear optimization:

en = Find minimum e s.t.

‖f (x + t ∗ f ,u + t ∗ g)− f (yn,yn−m)‖ ≤ e− σ, for
∀t ∈ [0, τ ]
∀x ∈ Bdn(yn)
∀u ∈ Bdn−m(yn−m)

∀f ∈ Be(f (yn,yn−m))
∀g ∈ Ben−m(f (yn−m,yn−2m));

where τ is the variable stepsize, and m is an offset s.t. yn−m locates the delayed approximation at
tn − r. The optimization can be further solved by HySAT-II in a dually existential form.
• The simulation algorithm is proven sound and robustly complete.

Experimental Results
1. Delayed Logistic Equation Ṅ(t) = N(t)[1−N(t− r)]:
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(a) An initial over-approximaion of trajec-
tories starting from B0.225(1.25). It overlaps
with the unsafe set (s. circle). Initial set is
consequently split (cf. Figs. 4b, 4c).
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(b) All trajectories originating from
B0.125(1.375) are proven safe within the time
bound, as the over-approximation does not
intersect with the unsafe set.
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(c) Initial state set B0.125(1.125) is verified to
be safe as well.
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(d) B0.25(0.75) yields overlap w. unsafe; the
ball is partitioned again (Figs. 4e, 4f).
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(e) All trajectories starting from B0.125(0.875)

are provably safe.
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(f) All trajectories starting from B0.125(0.625)

are provably safe as well.

Figure 4: The logistic system is proven safe through 6 rounds of simulation with base stepsize τ0 = 0.1. Delay r = 1.3,
initial state set X0 = {N |N ∈ [0.5, 1.5]}, time bound T = 5s, unsafe set {N |N > 1.6}.

2. Delayed Microbial Growth Ṡ(t) = 1−S(t)−f (S(t))x(t), ẋ(t) = e−rf (S(t−r))x(t−r)−x(t):
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Figure 5: Here different rounds
of simulation are depicted together
in the phase space of S and x.
The system is proven safe by 17
rounds of simulation with τ0 =

0.45. The simulated trajectories
start from within a cover of X0 (the
red dashed circle on the right) and
converge eventually to a basin of
attraction (marked by a small blue
rectangle). Here, α = 2e, β = 1,
r = 0.9, X0 = B0.3((1; 0.5)), U =

{(S;x)|S + x < 0}, T = 8s.

Conclusions
•An approach for automated formal verification of time-bounded reachability properties of a class

of systems that feature delayed differential dynamics governed by DDEs with multiple delays.
•A prototypical implementation of a validated solver for DDEs, by which we have successfully

demonstrated the method on several benchmark systems involving delayed differential dynamics.
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