Interpolation over Nonlinear Arithmetic

 Towards Program Reasoning and Verification
Mingshuai Chen

—Joint work with J．Wang，B．Zhan，N．Zhan，D．Kapur，J．An，T．Gan，L．Dai，and B．Xia－ リヒテ̄̄

FACAS • La Falda • February 2022

What Is Interpolation?

Interpolation /intə:pa'lerf(ə)n/
MATHEMATICS
"the insertion of an intermediate value or term into a series by estimating or calculating it from surrounding known values."
[OXFORD Dictionary]

What Is Interpolation?

Interpolation /intə:pa'lerf(ə)n/
MATHEMATICS
"the insertion of an intermediate value or term into a series by estimating or calculating it from surrounding known values."
[OXFORD Dictionary]

© Wikipedia

What Is Interpolation?

Interpolation /intə:pa'lerf(ə)n/
MATHEMATICS
"the insertion of an intermediate value or term into a series by estimating or calculating it from surrounding known values."
[OXFORD Dictionary]

© Wikipedia

LOGICAL REASONING

$$
P \models Q \quad P \models R \models Q
$$

What Is Interpolation?

Interpolation /intə:pa'lerf(ə)n/
MATHEMATICS
"the insertion of an intermediate value or term into a series by estimating or calculating it from surrounding known values."
[OXFORD Dictionary]

© Wikipedia

LOGICAL REASONING

$$
\begin{array}{cc}
P \models Q & P \models R \models Q \\
P \wedge Q \models \perp & P \models R \text { and } R \wedge Q \models \perp
\end{array}
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

```
while \((x \neq n)\) \{
    \(x:=x+1 ; y:=y+1 ;\)
\}
```


Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

```
assume( }x=0\wedgey=0\wedgen\geq0)
while (x\not= n){
    x:=x+1; y:=y+1;
}
assert(y=n);
```


Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; & \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; & \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \quad \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp .
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \quad \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \quad \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp .
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; & \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp .
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; & \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp .
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; & \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp .
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; & \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp .
$$

Interpolants as Loop Invariants

Example ([Lin et al., ASE'17])

$$
\begin{array}{ll}
\text { assume }(x=0 \wedge y=0 \wedge n \geq 0) ; & \\
\text { while }(x \neq n)\{ & F_{0} \widehat{=} x=0 \wedge y=0 \wedge n \geq 0 \\
\quad x:=x+1 ; y:=y+1 ; & B_{0} \widehat{=} y \neq n \wedge x=n \\
\} &
\end{array}
$$

$$
F_{0} \wedge B_{0} \models \perp . \quad I(x, y) \widehat{=} x=y \text { s.t. } \quad F_{0} \models I \text { and } I \wedge B_{0} \models \perp .
$$

Interpolant Synthesis

© Well-established methods to synthesize interpolants for various theories: decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

Interpolant Synthesis

(2) Well-established methods to synthesize interpolants for various theories: decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

■ SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
\Rightarrow McMillan : Interpolation and SAT-based model checking. CAV'03.

Interpolant Synthesis

(2) Well-established methods to synthesize interpolants for various theories: decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

- SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
\Rightarrow McMillan : Interpolation and SAT-based model checking. CAV '03.
- Constraint solving-based : reduce interpolation for LA to linear programming.
\Rightarrow Rybalchenko, Sofronie-Stokkermans: Constraint solving for interpolation. J. Symb. Comput. '10.

Interpolant Synthesis

(2) Well-established methods to synthesize interpolants for various theories: decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

- SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
\Rightarrow McMillan: Interpolation and SAT-based model checking. CAV '03.
- Constraint solving-based : reduce interpolation for LA to linear programming.
\Rightarrow Rybalchenko, Sofronie-Stokkermans: Constraint solving for interpolation. J. Symb. Comput. '10.Little work on synthesizing nonlinear ones: [Kupferschmid \& Becker, FORMATS '11], [Dai et al., CAV '13], [Gao \& Zufferey, TACAS'16], [Okudono et al., APLAS'17], [Jovanović \& Dutertre, CAV '21].

Interpolant Synthesis

(2) Well-established methods to synthesize interpolants for various theories: decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

- SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
\Rightarrow McMillan: Interpolation and SAT-based model checking. CAV '03.
\square Constraint solving-based : reduce interpolation for LA to linear programming.
\Rightarrow Rybalchenko, Sofronie-Stokkermans: Constraint solving for interpolation. J. Symb. Comput. '10.Little work on synthesizing nonlinear ones: [Kupferschmid \& Becker, FORMATS '11], [Dai et al., CAV '13], [Gao \& Zufferey, TACAS'16], [Okudono et al., APLAS'17], [Jovanović \& Dutertre, CAV '21].
- Reduce interpolation for concave quadratic polynomial inequalities to semi-definite programming.
\Rightarrow Gan, Dai, Xia, Zhan, Kapur, Chen : Interpolant synthesis for quadratic polynomial inequalities and combination with EUF. IJCAR'16.

Interpolant Synthesis

(2) Well-established methods to synthesize interpolants for various theories: decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

■ SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
\Rightarrow McMillan: Interpolation and SAT-based model checking. CAV'03.
■ Constraint solving-based : reduce interpolation for LA to linear programming.
\Rightarrow Rybalchenko, Sofronie-Stokkermans: Constraint solving for interpolation. J. Symb. Comput. '10.Little work on synthesizing nonlinear ones: [Kupferschmid \& Becker, FORMATS '11], [Dai et al., CAV '13], [Gao \& Zufferey, TACAS'16], [Okudono et al., APLAS'17], [Jovanović \& Dutertre, CAV '21].

- Reduce interpolation for concave quadratic polynomial inequalities to semi-definite programming.
\Rightarrow Gan, Dai, Xia, Zhan, Kapur, Chen : Interpolant synthesis for quadratic polynomial inequalities and combination with EUF. IJCAR'16.
■ Counterexample-guided learning of polynomial interpolants for the general quantifier-free theory of NLA.
\Rightarrow Chen, Wang, An, Zhan, Kapur, Zhan : NIL : Learning nonlinear interpolants. CADE'19.

Interpolant Synthesis

(2) Well-established methods to synthesize interpolants for various theories: decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

■ SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
\Rightarrow McMillan: Interpolation and SAT-based model checking. CAV'03.
■ Constraint solving-based : reduce interpolation for LA to linear programming.
\Rightarrow Rybalchenko, Sofronie-Stokkermans: Constraint solving for interpolation. J. Symb. Comput. '10.
2 Little work on synthesizing nonlinear ones: [Kupferschmid \& Becker, FORMATS'11], [Dai et al., CAV'13], [Gao \& Zufferey, TACAS'16], [Okudono et al., APLAS'17], [Jovanović \& Dutertre, CAV '21].

- Reduce interpolation for concave quadratic polynomial inequalities to semi-definite programming.
\Rightarrow Gan, Dai, Xia, Zhan, Kapur, Chen : Interpolant synthesis for quadratic polynomial inequalities and combination with EUF. IJCAR'16.
- Counterexample-guided learning of polynomial interpolants for the general quantifier-free theory of NLA.
\Rightarrow Chen, Wang, An, Zhan, Kapur, Zhan : NIL : Learning nonlinear interpolants. CADE'19.

Craig Interpolation

Craig Interpolant

Given ϕ and ψ in a theory \mathcal{T} s.t. $\phi \wedge \psi \models \mathcal{T} \perp$, lis a (reverse) interpolant of ϕ and ψ if

$$
\phi \models \mathcal{T} I \quad \text { and } \quad I \wedge \psi \models \mathcal{T} \perp \quad \text { and } \quad \operatorname{var}(I) \subseteq \operatorname{var}(\phi) \cap \operatorname{var}(\psi) .
$$

Craig Interpolation

Craig Interpolant

Given ϕ and ψ in a theory \mathcal{T} s.t. $\phi \wedge \psi \models \mathcal{T} \perp$, I is a (reverse) interpolant of ϕ and ψ if

$$
\phi \models \mathcal{T} I \quad \text { and } \quad I \wedge \psi \models \mathcal{T} \perp \quad \text { and } \quad \operatorname{var}(I) \subseteq \operatorname{var}(\phi) \cap \operatorname{var}(\psi) .
$$

Example (Nonlinear \mathcal{T})

$$
\begin{gathered}
A \widehat{=}-x_{1}^{2}+4 x_{1}+x_{2}-4 \geq 0 \wedge-x_{1}-x_{2}+3-y^{2}>0 \\
B \widehat{=}-3 x_{1}^{2}-x_{2}^{2}+1 \geq 0 \wedge x_{2}-z^{2} \geq 0 \\
\qquad \quad 1 \hat{=}-3+2 x_{1}+x_{1}^{2}+\frac{1}{2} x_{2}^{2}>0
\end{gathered}
$$

Binary Classification

Binary Classifier

Given a dataset $X=X^{+} \uplus X^{-}$of sample points, $C: X \rightarrow\{\top, \perp\}$ is a classifier if

$$
\forall \vec{x} \in X^{+}: C(\vec{x})=\top \quad \text { and } \quad \forall \vec{x} \in X^{-}: C(\vec{x})=\perp
$$

Binary Classification

Binary Classifier

Given a dataset $X=X^{+} \uplus X^{-}$of sample points, $C: X \rightarrow\{\top, \perp\}$ is a classifier if

$$
\forall \vec{x} \in X^{+}: C(\vec{x})=\top \quad \text { and } \quad \forall \vec{x} \in X^{-}: C(\vec{x})=\perp
$$

$$
x^{+}
$$

Binary Classification

Binary Classifier

Given a dataset $X=X^{+} \uplus X^{-}$of sample points, $C: X \rightarrow\{\top, \perp\}$ is a classifier if

$$
\forall \vec{x} \in X^{+}: C(\vec{x})=\top \quad \text { and } \quad \forall \vec{x} \in X^{-}: C(\vec{x})=\perp
$$

Binary Classification

Binary Classifier

Given a dataset $X=X^{+} \uplus X^{-}$of sample points, $C: X \rightarrow\{\top, \perp\}$ is a classifier if

$$
\forall \vec{x} \in X^{+}: C(\vec{x})=\top \quad \text { and } \quad \forall \vec{x} \in X^{-}: C(\vec{x})=\perp
$$

Binary Classification

Binary Classifier

Given a dataset $X=X^{+} \uplus X^{-}$of sample points, $C: X \rightarrow\{\top, \perp\}$ is a classifier if

$$
\forall \vec{x} \in X^{+}: C(\vec{x})=\top \quad \text { and } \quad \forall \vec{x} \in X^{-}: C(\vec{x})=\perp
$$

There could be (infinitely) many valid classifiers.

Binary Classification

Binary Classifier

Given a dataset $X=X^{+} \uplus X^{-}$of sample points, $C: X \rightarrow\{\top, \perp\}$ is a classifier if

$$
\forall \vec{x} \in X^{+}: C(\vec{x})=\top \quad \text { and } \quad \forall \vec{x} \in X^{-}: C(\vec{x})=\perp .
$$

Support Vector Machine (SVM) finds a "middle" one - separating hyperplane that yields the largest distance (functional margin) to the nearest samples (support vectors) - via convex optimization.

RNWHAACHEN

Interpolation vs. Classification

Linear interpolants can be viewed as hyperplane classifiers [Sharma et al., CAV '12]: sampling from $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.
Interpolation vs. Classification

Linear interpolants can be viewed as hyperplane classifiers [Sharma et al., CAV '12]: sampling from $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.(2) X^{+}and X^{-}are often not linearly separable for nonlinear ϕ and ψ :

$$
\begin{aligned}
A \quad & (x<2.5 \Rightarrow y \geq 2 \sin (x)) \\
& \wedge\left(x \geq 2.5 \wedge x<5 \Rightarrow y \geq 0.125 x^{2}+0.41\right) \\
& \wedge(x \geq 5 \wedge x \leq 6 \Rightarrow y \geq 6.04-0.5 x) \\
B \quad \widehat{=} & \left(x<3 \Rightarrow y \leq x \cos \left(0.1 \mathrm{e}^{x}\right)-0.083\right) \\
& \wedge\left(x \geq 3 \wedge x \leq 6 \Rightarrow y \leq-x^{2}+10 x-22.35\right)
\end{aligned}
$$

OKupferschmid \& Becker, FORMATS '11

Interpolation vs. Classification

Linear interpolants can be viewed as hyperplane classifiers [Sharma et al., CAV '12]: sampling from $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.(2) X^{+}and X^{-}are often not linearly separable for nonlinear ϕ and ψ :

$$
\begin{aligned}
A \quad \widehat{=} & (x<2.5 \Rightarrow y \geq 2 \sin (x)) \\
& \wedge\left(x \geq 2.5 \wedge x<5 \Rightarrow y \geq 0.125 x^{2}+0.41\right) \\
& \wedge(x \geq 5 \wedge x \leq 6 \Rightarrow y \geq 6.04-0.5 x) \\
B \quad \widehat{=} & \left(x<3 \Rightarrow y \leq x \cos \left(0.1 \mathrm{e}^{x}\right)-0.083\right) \\
& \wedge\left(x \geq 3 \wedge x \leq 6 \Rightarrow y \leq-x^{2}+10 x-22.35\right)
\end{aligned}
$$

OKupferschmid \& Becker, FORMATS '11
() Encoding interpolants as logical combinations of linear constraints.

Interpolation vs. Classification

Linear interpolants can be viewed as hyperplane classifiers [Sharma et al., CAV '12]: sampling from $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.(2) X^{+}and X^{-}are often not linearly separable for nonlinear ϕ and ψ :

$$
\begin{aligned}
A \quad \widehat{=} & (x<2.5 \Rightarrow y \geq 2 \sin (x)) \\
& \wedge\left(x \geq 2.5 \wedge x<5 \Rightarrow y \geq 0.125 x^{2}+0.41\right) \\
& \wedge(x \geq 5 \wedge x \leq 6 \Rightarrow y \geq 6.04-0.5 x) \\
B \quad \widehat{=} & \left(x<3 \Rightarrow y \leq x \cos \left(0.1 \mathrm{e}^{x}\right)-0.083\right) \\
& \wedge\left(x \geq 3 \wedge x \leq 6 \Rightarrow y \leq-x^{2}+10 x-22.35\right)
\end{aligned}
$$

©Kupferschmid \& Becker, FORMATS'11Encoding interpolants as logical combinations of linear constraints.
(2) Yielding rather complex interpolants (even of an infinite length in the worst case).

Interpolation vs. Classification

Linear interpolants can be viewed as hyperplane classifiers [Sharma et al., CAV '12]: sampling from $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.(2) X^{+}and X^{-}are often not linearly separable for nonlinear ϕ and ψ :

$$
\begin{aligned}
A \quad \widehat{=} & (x<2.5 \Rightarrow y \geq 2 \sin (x)) \\
& \wedge\left(x \geq 2.5 \wedge x<5 \Rightarrow y \geq 0.125 x^{2}+0.41\right) \\
& \wedge(x \geq 5 \wedge x \leq 6 \Rightarrow y \geq 6.04-0.5 x) \\
B \quad \widehat{=} & \left(x<3 \Rightarrow y \leq x \cos \left(0.1 \mathrm{e}^{x}\right)-0.083\right) \\
& \wedge\left(x \geq 3 \wedge x \leq 6 \Rightarrow y \leq-x^{2}+10 x-22.35\right)
\end{aligned}
$$

©Chen et al., CADE'19Encoding interpolants as logical combinations of linear constraints.
© Yielding rather complex interpolants (even of an infinite length in the worst case).NIL : learning nonlinear interpolants.

Space Transformation \& Kernel Trick

Figure-2-dimensional input space

Space Transformation \& Kernel Trick

Figure - 2-dimensional input space

Space Transformation \& Kernel Trick

Figure - 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Space Transformation \& Kernel Trick

Figure - 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Space Transformation \& Kernel Trick

Figure - 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier $/$:

$$
\sum_{i=1}^{n} \alpha_{i} \kappa\left(\vec{x}_{i}, \mathbf{x}\right) \quad=0
$$

Space Transformation \& Kernel Trick

Figure - 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

$$
=0
$$

Space Transformation \& Kernel Trick

Figure - 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier $/$:

RNMHAACHEN

Space Transformation \& Kernel Trick

Figure - 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

$$
\sum_{i=1}^{n} \alpha_{i} \kappa\left(\vec{x}_{i}, \mathbf{x}\right)=\Phi\left(\vec{x}_{i}\right)^{\top} \Phi(\mathbf{x})=\left(\beta \vec{x}_{i}^{\top} \mathbf{x}+\theta\right)^{m}=0
$$

Space Transformation \& Kernel Trick

Figure - 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier $/$:

RNMHAACHEN

The NIL Algorithm

1 Given mutually contradictory nonlinear ϕ and ψ over common variables x.
2 Generate sample points by, e.g., (uniformly) scattering random points.
3 Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
4 Refine the candidate by CEs till it being verified as a true interpolant.

The NIL Algorithm

1 Given mutually contradictory nonlinear ϕ and ψ over common variables x.
2 Generate sample points by, e.g., (uniformly) scattering random points.
B3 Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
4 Refine the candidate by CEs till it being verified as a true interpolant.

The NIL Algorithm

1 Given mutually contradictory nonlinear ϕ and ψ over common variables x.
$\boxed{2}$ Generate sample points by, e.g., (uniformly) scattering random points.
3 Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
a Refine the candidate by CEs till it being verified as a true interpolant.

The NIL Algorithm

1 Given mutually contradictory nonlinear ϕ and ψ over common variables x.
2 Generate sample points by, e.g., (uniformly) scattering random points.
3 Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
4 Refine the candidate by CEs till it being verified as a true interpolant.

The NIL Algorithm

1 Given mutually contradictory nonlinear ϕ and ψ over common variables x.
2 Generate sample points by, e.g., (uniformly) scattering random points.
3 Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
4 Refine the candidate by CEs till it being verified as a true interpolant.

© Sound, and complete when $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket$ are bounded sets with positive functional margin.

The NIL Algorithm

1 Given mutually contradictory nonlinear ϕ and ψ over common variables x.
2 Generate sample points by, e.g., (uniformly) scattering random points.
3 Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
4 Refine the candidate by CEs till it being verified as a true interpolant.

© Sound, and complete when $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket$ are bounded sets with positive functional margin.
© Quantifier Elimination (QE) is involved in checking interpolants and generating CEs ${ }^{1}$.

1. SMT-solving techniques over nonlinear arithmetic do not suffice.

The NIL Algorithm

1 Given mutually contradictory nonlinear ϕ and ψ over common variables x.
2 Generate sample points by, e.g., (uniformly) scattering random points.
3 Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
4 Refine the candidate by CEs till it being verified as a true interpolant.

© Sound, and complete when $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket$ are bounded sets with positive functional margin.
© Quantifier Elimination (QE) is involved in checking interpolants and generating CEs ${ }^{1}$.
(2) May not terminate in cases with zero functional margin.

1. SMT-solving techniques over nonlinear arithmetic do not suffice.

Comparison with Naïve QE-Based Method

	QE-based method	NIL
Logical strength	strongest: $\Im \mathrm{y} . \phi(\mathrm{x}, \mathrm{y})$	medium \Rightarrow robust
Complexity of /	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	$n \times$ doubly exponential

Comparison with Naïve QE-Based Method

	QE-based method	NIL
Logical strength	strongest: $\exists \mathrm{y} . \phi(\mathrm{x}, \mathrm{y})$ weakest: $\forall \mathrm{z} . \neg \psi(\mathrm{x}, \mathrm{z})$	medium \Rightarrow robust
Complexity of / Efficiency	direct projection \Rightarrow complex doubly exponential	single polynomial \Rightarrow simple n \times doubly exponential

Comparison with Naïve QE-Based Method

	QE-based method	NIL
Logical strength	strongest: $: \exists \mathrm{y} . \phi(\mathbf{x}, \mathbf{y})$ weakest: $\forall \mathbf{Z} \cdot \neg \psi(\mathbf{x}, \mathbf{z})$	medium \Rightarrow robust
Complexity of /	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	

Comparison with Naïve QE-Based Method

	QE-based method	NIL
Logical strength	strongest: $: \exists \mathrm{y} . \phi(\mathrm{x}, \mathbf{y})$ weakest $: \forall_{\mathbf{z}} \cdot \neg \psi(\mathrm{x}, \mathbf{z})$	medium \Rightarrow robust
Complexity of /	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	$n \times$ doubly exponential

Comparison with Naïve QE-Based Method

	QE-based method	NIL
Logical strength	strongest: $¥ \mathrm{x} \cdot \phi(\mathbf{x}, \mathbf{y})$ weakest: $\forall \mathbf{z} \cdot \neg \psi(\mathbf{x}, \mathbf{z})$	medium \Rightarrow robust
Complexity of /	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	$n \times$ doubly exponential

QE + template?

Comparison with Naïve QE-Based Method

	QE-based method	NIL
Logical strength	strongest: $¥ \mathrm{y} . \phi(\mathrm{x}, \mathbf{y})$ weakest: $\forall_{\mathbf{z}} \cdot \neg \psi(\mathrm{x}, \mathrm{z})$	medium \Rightarrow robust
Complexity of /	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	$n \times$ doubly exponential

$\mathrm{QE}+$ template $? \Rightarrow$ Too many unknown parameters.

NIL $_{\delta}$: For Cases with Zero Functional Margin

NIL $_{\delta}$: For Cases with Zero Functional Margin

NIL_{δ} : For Cases with Zero Functional Margin

NIL_{δ} : For Cases with Zero Functional Margin

NIL_{δ} : For Cases with Zero Functional Margin

NIL_{δ} : For Cases with Zero Functional Margin

© δ-sound, and δ-complete if $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket$ are bounded sets even with zero functional margin.

RWTHAACHEN

NIL_{δ} : For Cases with Zero Functional Margin

δ-sound, and δ-complete if $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket$ are bounded sets even with zero functional margin.May not converge to an actual interpolant when $\llbracket \phi \rrbracket$ or $\llbracket \psi \rrbracket$ is unbounded.
$\mid \mathbf{R}$
WTHAACHEN
UNIVERSITY

NIL ${ }_{\delta, B}^{*}$: For Unbounded Cases with Varying Tolerance

NIL ${ }_{\delta, B}^{*}$: For Unbounded Cases with Varying Tolerance

RNWHAACHEN
UNIVERSTTY

NIL ${ }_{\delta, B}^{*}$: For Unbounded Cases with Varying Tolerance

RNWHAACHEN
UNIVERSITY

NIL ${ }_{\delta, B}^{*}$: For Unbounded Cases with Varying Tolerance

RINHAAACHEN
UNIVERSITY

NIL ${ }_{\delta, B}^{*}$: For Unbounded Cases with Varying Tolerance

 $\mid \mathbf{R}$

WTHAACHEN
UNIVERSITY

NIL ${ }_{\delta, B}^{*}$: For Unbounded Cases with Varying Tolerance

 $\mid \mathbf{R}$

WTHAACHEN
UNIVERSITY

NIL ${ }_{\delta, B}^{*}$: For Unbounded Cases with Varying Tolerance

 $\mid \mathbf{R}$

NWTHAACHEN
UNIVERSITY

NIL ${ }_{\delta, B}^{*}$: For Unbounded Cases with Varying Tolerance

() The sequence of candidate interpolants converges to an actual interpolant.

RNTHAACHEN

Tool Support

NIL : an open-source tool in Wolfram Mathematica ${ }^{2}$.
■ LIBSVM : SVM classifications;

- Reduce : verification of candidate interpolants;

■ FindInstance : generation of counterexamples;
■ Rational recovery : rounding off floating-point computations [Lang, Springer NY'12].

© NIL, 2019
2. 圈 https://notebookarchive.org/nil-learning-nonlinear-interpolants-2021-08-5lcsyb7/ P-

Examples

Beyond the scope of concave quadratic formulas as required in [Gan et al., IJCAR'16]:

Rwndaccupy
UNIVERSITY

Examples

Adjacent and sharper cases as in [Okudono et al., APLAS'17]:

RNMHAACHEN
UNIVERSTTY

Examples

Formulas sharing parallel or coincident boundaries:

Examples

Transcendental cases from [Gao \& Zufferey, TACAS'16] and [Kupferschmid \& Becker, FORMATS '11], yet with simpler interpolants :

Examples

Three-dimensional case from [Dai et al., CAV '13], yet with simpler interpolants :

RNWHAACHEN
UNIVERSITY

Summary

Summary

Summary

NIL

Summary

RWTHAACHEN
UNIVERSTTY

Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

```
\(x:=0 ; y:=0 ;\)
while (*)
    \(\{x:=x+1 ; y:=y+1 ;\}\)
while \((x \neq 0)\)
    \(\{x:=x-1 ; y:=y-1 ;\}\)
if \((y \neq 0)\)
    error ();
```


Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

```
\(x:=0 ; y:=0\);
while (*)
    \(\{x:=x+1 ; y:=y+1 ;\}\)
- - - - - - - - - -
while \((x \neq 0)\)
    \(\{x:=x-1 ; y:=y-1 ;\}\)
if \((y \neq 0)\)
    error ();
```


Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

```
\(x:=0 ; y:=0\);
while (*)
    \(\{x:=x+1 ; y:=y+1 ;\}\)
- - - - - - - - - -
while \((x \neq 0)\)
\(\{x:=x-1 ; y:=y-1 ;\}\)
if \((y \neq 0)\)
error ();
```

$$
\begin{aligned}
& A \widehat{\equiv} x_{1}=0 \wedge y_{1}=0 \wedge \\
& \quad \text { ite }(b, \\
& \quad x=x_{1} \wedge y=y_{1} \\
& \left.\quad x=x_{1}+1 \wedge y=y_{1}+1\right)
\end{aligned}
$$

Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

```
\(x:=0 ; y:=0\);
while (*)
\(\{x:=x+1 ; y:=y+1 ;\}\)
- - - - - - - - - -
while \((x \neq 0)\)
    \(\{x:=x-1 ; y:=y-1 ;\}\)
if \((y \neq 0)\)
    error ();
```

$$
\begin{aligned}
& A \widehat{=} x_{1}=0 \wedge y_{1}=0 \wedge \\
& \quad \text { ite }(b, \\
& \quad x=x_{1} \wedge y=y_{1}, \\
& \left.x=x_{1}+1 \wedge y=y_{1}+1\right) \\
& B \widehat{=} \text { ite }(x=0, \\
& \quad x_{2}=x \wedge y_{2}=y, \\
& \left.x_{2}=x-1 \wedge y_{2}=y-1\right) \wedge \\
& x_{2}=0 \wedge \neg\left(y_{2}=0\right)
\end{aligned}
$$

Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

```
\(x:=0 ; y:=0\);
while (*)
\(\{x:=x+1 ; y:=y+1 ;\}\)
\(----------\)
while \((x \neq 0)\)
    \(\{x:=x-1 ; y:=y-1 ;\}\)
if \((y \neq 0)\)
    error ();
```

$$
\begin{aligned}
& A \widehat{=} x_{1}=0 \wedge y_{1}=0 \wedge \\
& \quad \text { ite }(b, \\
& \quad x=x_{1} \wedge y=y_{1}, \\
& \left.x=x_{1}+1 \wedge y=y_{1}+1\right) \\
& B \widehat{=} \text { ite }(x=0, \\
& \quad x_{2}=x \wedge y_{2}=y, \\
& \left.x_{2}=x-1 \wedge y_{2}=y-1\right) \wedge \\
& x_{2}=0 \wedge \neg\left(y_{2}=0\right)
\end{aligned}
$$

$$
A \wedge B \models \perp . \quad I(x, y) \widehat{=} x=y \text { s.t. } \quad A \models I \text { and } I \wedge B \models \perp
$$

Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

```
\(x:=0 ; y:=0\);
while (*)
\(\{x:=x+1 ; y:=y+1 ;\}\)
\(----------\)
while \((x \neq 0)\)
    \(\{x:=x-1 ; y:=y-1 ;\}\)
if \((y \neq 0)\)
    error ();
```

$$
\begin{aligned}
& A \widehat{=} x_{1}=0 \wedge y_{1}=0 \wedge \\
& \text { ite }(b, \\
& x=x_{1} \wedge y=y_{1} \\
& \left.x=x_{1}+1 \wedge y=y_{1}+1\right) \\
& B \widehat{=} \text { ite }(x=0 \\
& x_{2}=x \wedge y_{2}=y \\
& \left.x_{2}=x-1 \wedge y_{2}=y-1\right) \wedge \\
& x_{2}=0 \wedge \neg\left(y_{2}=0\right)
\end{aligned}
$$

$$
A \wedge B \models \perp . \quad I(x, y) \widehat{=} x=y \text { s.t. } \quad A \models I \text { and } I \wedge B \models \perp
$$

Figure - Bounded model checking.

Figure - Computing image by interpolation.

Interpolation-based Verification

(2) The bottleneck of existing formal verification techniques lies in scalability.

Interpolation-based Verification

The bottleneck of existing formal verification techniques lies in scalability.() Interpolation helps in scaling these verification techniques due to its inherent capability of local and modular reasoning :

■ Nelson-Oppen method : equivalently decomposing a formula of a composite theory into formulas of its component theories;
■ SMT : combining different decision procedures to verify programs with complicated data structures;
■ Bounded model-checking : generating invariants to verify infinite-state systems due to McMillan;

- ...

Benchmark Examples

Interpolants of Simpler Forms

Interpolants of Simpler Forms

Perturbation-Resilient Interpolants

(a) ϵ-perturbations in the radii

(b) Interpolant resilient to ϵ-perturbations

Figure - Introducing ϵ-perturbations (say with ϵ up to 0.5) in ϕ and ψ. The synthesized interpolant is hence resilient to any ϵ-perturbation in the radii satisfying $-0.5 \leq \epsilon \leq 0.5$.

Summary

Problem: We face that

- polynomial constraints have been shown useful to express invariant properties for programs and hybrid systems,
- little work on synthesizing nonlinear interpolants, which either restricts the input formulae or yields complex results.

Summary

Problem: We face that

- polynomial constraints have been shown useful to express invariant properties for programs and hybrid systems,
- little work on synthesizing nonlinear interpolants, which either restricts the input formulae or yields complex results.

Status: We present
■ a unified, counterexample-guided method for generating polynomial interpolants over the general quantifier-free theory of nonlinear arithmetic,
\square soundness of NIL, and sufficient conditions for its completeness and convergence,
■ Experimental results indicating that our method suffices to address more interpolation tasks, including those with perturbations in parameters, and in many cases synthesizes simpler interpolants.

Summary

Problem: We face that

- polynomial constraints have been shown useful to express invariant properties for programs and hybrid systems,
- little work on synthesizing nonlinear interpolants, which either restricts the input formulae or yields complex results.

Status: We present
■ a unified, counterexample-guided method for generating polynomial interpolants over the general quantifier-free theory of nonlinear arithmetic,
■ soundness of NIL, and sufficient conditions for its completeness and convergence,
■ Experimental results indicating that our method suffices to address more interpolation tasks, including those with perturbations in parameters, and in many cases synthesizes simpler interpolants.

Future Work: We plan to

- improve the efficiency of NIL by substituting the general purpose QE procedure with alternative methods,
- combine nonlinear arithmetic with EUFs, by resorting to, e.g., predicate-abstraction techniques,
■ investigate the performance of NIL over different classification techniques, e.g., the widespread regression-based methods.

Probabilistic Craig Interpolants?

Probabilistic Craig Interpolants?

■ Generalized Craig Interpolation for stochastic-SAT : resolution-based BMC of MDPs.
\Rightarrow Teige, T., Fränzle, M. : Generalized Craig Interpolation for Stochastic Boolean Satisf. Prob.. TACAS'11.
■ Generalized Craig Interpolation for stochastic-SMT : resolution-based UMC of PHA.
\Rightarrow Mahdi, A., Fränzle, M. : Generalized Craig Interpolation for Stochastic Satisf. Modulo Theory Prob.. RP '14.

RWTHMCM(SN

