Decidability of the Reachability for a Family of Linear Vector Fields

Ting Gan ${ }^{1}$, Mingshuai Chen ${ }^{2}$, Yangjia Li ${ }^{2}$, Bican Xia ${ }^{1}$, and Naijun Zhan ${ }^{2}$
${ }^{1}$ LMAM \& School of Mathematical Sciences, Peking University
${ }^{2}$ State Key Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences

Aalborg, June 2016

Example : Home Heating

$x_{3}(t)=$ Temperature in the attic, $x_{2}(t)=$ Temperature in the living area, $x_{1}(t)=$ Temperature in the basement, $t=$ Time in hours.

Example : Home Heating

$x_{3}(t)=$ Temperature in the attic, $x_{2}(t)=$ Temperature in the living area, $x_{1}(t)=$ Temperature in the basement, $t=$ Time in hours.

$$
\begin{aligned}
\dot{x_{1}} & =\frac{1}{2}\left(45-x_{1}\right)+\frac{1}{2}\left(x_{2}-x_{1}\right) \\
\dot{x_{2}} & =\frac{1}{2}\left(x_{1}-x_{2}\right)+\frac{1}{4}\left(35-x_{2}\right)+\frac{1}{4}\left(x_{3}-x_{2}\right)+20, \\
\dot{x_{3}} & =\frac{1}{4}\left(x_{2}-x_{3}\right)+\frac{3}{4}\left(35-x_{3}\right),
\end{aligned}
$$

with the initial set $\mathrm{X}=\left\{\left(x_{1}, x_{2}, x_{3}\right)^{T} \mid 1-\left(x_{1}-45\right)^{2}-\left(x_{2}-35\right)^{2}-\left(x_{3}-35\right)^{2}>0\right\}$.

Example : Home Heating

$x_{3}(t)=$ Temperature in the attic, $x_{2}(t)=$ Temperature in the living area, $x_{1}(t)=$ Temperature in the basement, $t=$ Time in hours.

$$
\begin{aligned}
\dot{x_{1}} & =\frac{1}{2}\left(45-x_{1}\right)+\frac{1}{2}\left(x_{2}-x_{1}\right) \\
\dot{x_{2}} & =\frac{1}{2}\left(x_{1}-x_{2}\right)+\frac{1}{4}\left(35-x_{2}\right)+\frac{1}{4}\left(x_{3}-x_{2}\right)+20, \\
\dot{x_{3}} & =\frac{1}{4}\left(x_{2}-x_{3}\right)+\frac{3}{4}\left(35-x_{3}\right),
\end{aligned}
$$

with the initial set $\mathrm{X}=\left\{\left(x_{1}, x_{2}, x_{3}\right)^{T} \mid 1-\left(x_{1}-45\right)^{2}-\left(x_{2}-35\right)^{2}-\left(x_{3}-35\right)^{2}>0\right\}$.
Is it possible for the temperature x_{2} getting over than $70^{\circ} \mathrm{F}$ (unsafe)?

Example : Home Heating

$x_{3}(t)=$ Temperature in the attic, $x_{2}(t)=$ Temperature in the living area, $x_{1}(t)=$ Temperature in the basement, $t=$ Time in hours.

$$
\begin{aligned}
\dot{x_{1}} & =\frac{1}{2}\left(45-x_{1}\right)+\frac{1}{2}\left(x_{2}-x_{1}\right) \\
\dot{x_{2}} & =\frac{1}{2}\left(x_{1}-x_{2}\right)+\frac{1}{4}\left(35-x_{2}\right)+\frac{1}{4}\left(x_{3}-x_{2}\right)+20, \\
\dot{x_{3}} & =\frac{1}{4}\left(x_{2}-x_{3}\right)+\frac{3}{4}\left(35-x_{3}\right),
\end{aligned}
$$

with the initial set $\mathrm{X}=\left\{\left(x_{1}, x_{2}, x_{3}\right)^{T} \mid 1-\left(x_{1}-45\right)^{2}-\left(x_{2}-35\right)^{2}-\left(x_{3}-35\right)^{2}>0\right\}$.
Is it possible for the temperature x_{2} getting over than $70^{\circ} F$ (unsafe)? UNBOUNDED.

Outline

1 Background and Contributions

2 For Linear Systems with Purely Imaginary Eigenvalues
3 Abstraction of the General Cases

4 Concluding Remarks

Outline

1 Background and Contributions
■ Background and Preliminaries
■ Reachability of the Linear Dynamical Systems (LDSs) with Inputs

2 For Linear Systems with Purely Imaginary Eigenvalues

- Preliminaries
- Decidability of the Reachability
- An Illustrating Example

3 Abstraction of the General Cases

- Preliminaries
- Abstraction of the Reachable Sets
- Examples

4 Concluding Remarks

- Conclusions

Hybrid Systems

Hybrid systems exhibit combinations of discrete jumps and continuous evolution, many of which are Safety-critical.

Safety Verification Using Reachable Set ${ }^{1}$

■ System is safe, if no trajectory enters the unsafe set.

1. The figure is taken from [M. Althoff, 2010].

LDSs with Inputs

■ Linear dymamical systems (LDSs) with inputs :

$$
\begin{equation*}
\dot{\xi}=A \xi+\mathbf{u} \tag{1}
\end{equation*}
$$

where $\xi(t) \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$, and $\mathbf{u}: \mathbb{R} \rightarrow \mathbb{R}^{n}$.

LDSs with Inputs

- Linear dymamical systems (LDSs) with inputs :

$$
\begin{equation*}
\dot{\xi}=A \xi+\mathbf{u} \tag{1}
\end{equation*}
$$

where $\xi(t) \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$, and $\mathbf{u}: \mathbb{R} \rightarrow \mathbb{R}^{n}$.

- Reachability problem (Unbounded) :

$$
\mathcal{F}(\mathrm{X}, \mathrm{Y}):=\exists \mathbf{x} \exists \mathbf{y} \exists t: \mathbf{x} \in \mathrm{X} \wedge \mathbf{y} \in \mathrm{Y} \wedge t \geq 0 \wedge \Phi(\mathbf{x}, t)=\mathbf{y}
$$

LDSs with Inputs

- Linear dymamical systems (LDSs) with inputs :

$$
\begin{equation*}
\dot{\xi}=A \xi+\mathbf{u} \tag{1}
\end{equation*}
$$

where $\xi(t) \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$, and $\mathbf{u}: \mathbb{R} \rightarrow \mathbb{R}^{n}$.
Reachability problem (Unbounded) :

$$
\mathcal{F}(\mathrm{X}, \mathrm{Y}):=\exists \mathrm{x} \exists \mathbf{y} \exists t: \mathbf{x} \in \mathrm{X} \wedge \mathbf{y} \in \mathrm{Y} \wedge t \geq 0 \wedge \Phi(\mathbf{x}, t)=\mathbf{y}
$$

with initial set:

$$
\mathrm{X}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid p_{1}(\mathbf{x}) \geq 0, \cdots, p_{J_{1}}(\mathbf{x}) \geq 0\right\}
$$

and unsafe set:

$$
\mathrm{Y}=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid p_{J_{1}+1}(\mathbf{y}) \geq 0, \cdots, p_{J}(\mathbf{y}) \geq 0\right\}
$$

Decidability Results of the Reachability of LDSs

In [LPY 2001], Lafferriere et al. proved the decidability of the reachability problems of the following three families of LDSs:

11 is nilpotent, i.e. $A^{n}=0$, and each component of u is a polynomial;
2. A is diagonalizable with rational eigenvalues, and each component of u is of the form $\sum_{i=1}^{m} c_{i} \mathrm{e}^{\lambda_{i} t}$, where λ_{i} s are rationals and c_{i} s are subject to semi-algebraic constraints;
$3 A$ is diagonalizable with purely imaginary eigenvalues, and each component of u of the form $\sum_{i=1}^{m} c_{i} \sin \left(\lambda_{i} t\right)+d_{i} \cos \left(\lambda_{i} t\right)$, where $\lambda_{i} s$ are rationals and $c_{i} s$ and $d_{i} s$ are subject to semi-algebraic constraints.

Main Contributions

■ Generalization of case 2 and case 3 :
$2 A$ has real eigenvalues, and each component of \mathbf{u} is of the form $\sum_{i=1}^{m} c_{i} \mathrm{e}^{\lambda_{j} t}$, where $\lambda_{j} \mathrm{~s}$ are reals and c_{i} s are subject to semi-algebraic constraints; [Gan et al. 15]

3 A has purely imaginary eigenvalues, and each component of u of the form $\sum_{i=1}^{m} c_{i} \sin \left(\lambda_{i} t\right)+d_{i} \cos \left(\lambda_{i} t\right)$, where $\lambda_{i} s$ are reals and $c_{i} s$ and d_{i} s are subject to semi-algebraic constraints.

- Abstraction of general dynamical systems where A may have complex eigenvalues, by reducing the problem to the reachability in the case 2.

Outline

1 Background and Contributions

- Background and Preliminaries
- Reachability of the Linear Dynamical Systems (LDSs) with Inputs

2 For Linear Systems with Purely Imaginary Eigenvalues

- Preliminaries
- Decidability of the Reachability
- An Illustrating Example

3 Abstraction of the General Cases

- Preliminaries
- Abstraction of the Reachable Sets
- Examples

4 Concluding Remarks

- Conclusions

Tarski Algebra and Quantifier Elimination

- Tarski Algebra $(T(\mathbb{R}))=$ real numbers with arithmetic and ordering.

Example

$$
\varphi:=\forall x \exists y: x^{2}+x y+b>0 \wedge x+a y^{2}+b \leq 0
$$

Tarski Algebra and Quantifier Elimination

- Tarski Algebra $(T(\mathbb{R}))=$ real numbers with arithmetic and ordering.

Example

$$
\varphi:=\forall x \exists y: x^{2}+x y+b>0 \wedge x+a y^{2}+b \leq 0
$$

■ Quantifier Elimination :

$$
T(\mathbb{R}) \models \varphi \longleftrightarrow \varphi^{\prime}
$$

Example

$$
T(\mathbb{R}) \models \underbrace{\forall x \exists y\left(x^{2}+x y+b>0 \wedge x+a y^{2}+b \leq 0\right)}_{\varphi} \longleftrightarrow \underbrace{a<0 \wedge b>0}_{\varphi^{\prime}}
$$

LDSs with Trigonometric Function Inputs (LDS TMF)

Definition (TMF)

A term is called a trigonometric function (TMF) w.r.t. t if it can be written as

$$
\sum_{l=1}^{r} c_{l} \cos \left(\mu_{l} t\right)+d_{l} \sin \left(\mu_{l} t\right)
$$

where $r \in \mathbb{N}, c_{l}, d_{l}, \mu_{l} \in \mathbb{R}$.

Definition (LDSTMF)
An LDS is a linear dynamical system with trigonometric function input (LDStMF) if every component of u is a TMF.

Computing Reachable Set

Given an $\operatorname{LDS}_{\text {TMF }}$ whose system matrix A has purely imaginary eigenvalues, the reachability can be reformulated as :

The Reachability Problem

$$
\begin{align*}
\mathcal{F}(\mathrm{X}, \mathrm{Y}):= & \exists \mathbf{x} \exists \mathbf{y} \exists t: \mathbf{x} \in \mathrm{X} \wedge \mathbf{y} \in \mathrm{Y} \wedge t \geq 0 \wedge \\
& \bigwedge_{i=1}^{n} y_{i}=\sum_{k=1}^{K_{i}} z_{i k}^{c}(\mathbf{x}) \cos \left(\gamma_{i k} t\right)+z_{i k}^{s}(\mathbf{x}) \sin \left(\gamma_{i k} t\right) . \tag{2}
\end{align*}
$$

where $z_{i k}^{\mathrm{c}}(\mathbf{x}), z_{i k}^{s}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ and $\gamma_{i k} \in \mathbb{R}$.

Decidability by Reduction to Tarski's Algebra

Theorem (Reduction to Tarski's Algebra)

$$
\begin{aligned}
\mathcal{F}(\mathrm{X}, \mathrm{Y}): & \exists \mathbf{x} \exists \mathbf{y} \exists t: \mathbf{x} \in \mathrm{X} \wedge \mathbf{y} \in \mathrm{Y} \wedge t \geq 0 \wedge \\
& \bigwedge_{i=1}^{n} y_{i}=\sum_{k=1}^{K_{i}} z_{i k}^{c}(\mathbf{x}) \cos \left(\gamma_{i k} t\right)+z_{i k}^{s}(\mathbf{x}) \sin \left(\gamma_{i k} t\right) \\
& \exists \mathbf{\mathbb { x }} \exists \mathbf{y} \exists \mathbf{u} \exists \mathbf{v}: \mathbf{x} \in \mathrm{X} \wedge \mathbf{y} \in \mathrm{Y} \wedge \bigwedge_{j=1}^{N} u_{j}^{2}+v_{j}^{2}=1 \wedge \\
& \bigwedge_{i=1}^{n} y_{i}=\sum_{k=1}^{K_{i}}\binom{z_{i k}^{c}(\mathbf{x}) \mathcal{F}_{i k}^{c}\left(u_{1}, v_{1}, \ldots, u_{N}, v_{N}\right)}{\left.+z_{i k}^{s}(\mathbf{x})\right)_{i k}^{5}\left(u_{1}, v_{1}, \ldots, u_{N}, v_{N}\right)},
\end{aligned}
$$

where $f_{i k}^{f}$ and $f_{i k}^{s}$ are polynomials, and X, Y are open sets.

Proof.

Built on the density results given by Kronecker's Theorem in number theory.

An Example of the Reduction

Example

Given an $\operatorname{LDS}_{\text {TMF }}$ as

$$
\binom{\dot{\xi_{1}}}{\dot{\xi_{2}}}=\left(\begin{array}{cc}
2 & 2 \\
-3 & -2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}+\binom{\cos (t)}{\sin (t)},
$$

with an initial point $\xi(0)=\left(x_{1}, x_{2}\right)$. The solution is

$$
\Phi\left(\left(x_{1}, x_{2}\right), t\right)=\binom{\left(x_{1}+2\right) \alpha_{1}+\sqrt{2}\left(x_{1}+x_{2}\right) \beta_{1}-2 \alpha_{2}-\beta_{2}}{\left(x_{2}-2\right) \alpha_{1}-\sqrt{2}\left(\frac{3}{2} x_{1}+x_{2}+1\right) \beta_{1}+2 \alpha_{2}+2 \beta_{2}},
$$

where $\alpha_{1}=\cos (\sqrt{2} t), \beta_{1}=\sin (\sqrt{2} t), \alpha_{2}=\cos (t), \beta_{2}=\sin (t)$.

An Example of the Reduction

- For $\mathrm{X}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2}<1\right\}, \mathrm{Y}=\left\{\left(y_{1}, y_{2}\right) \mid y_{1}+y_{2}>4\right\}$, the reachability is equivalently reduced to

$$
\begin{aligned}
\mathcal{F}:= & x_{1}^{2}+x_{2}^{2}<1 \wedge \alpha_{1}^{2}+\beta_{1}^{2}=1 \wedge \alpha_{2}^{2}+\beta_{2}^{2}=1 \\
& \wedge\left(x_{1}+x_{2}\right) \alpha_{1}-\sqrt{2}\left(\frac{1}{2} x_{1}+1\right) \beta_{1}+\beta_{2}>4 .
\end{aligned}
$$

$\nexists x_{1}, x_{2}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}$ s.t. \mathcal{F} holds. Thus, the system is safe.

An Example of the Reduction

■ For $\mathrm{X}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2}<1\right\}, \mathrm{Y}=\left\{\left(y_{1}, y_{2}\right) \mid y_{1}+y_{2}>4\right\}$, the reachability is equivalently reduced to

$$
\begin{aligned}
\mathcal{F}:= & x_{1}^{2}+x_{2}^{2}<1 \wedge \alpha_{1}^{2}+\beta_{1}^{2}=1 \wedge \alpha_{2}^{2}+\beta_{2}^{2}=1 \\
& \wedge\left(x_{1}+x_{2}\right) \alpha_{1}-\sqrt{2}\left(\frac{1}{2} x_{1}+1\right) \beta_{1}+\beta_{2}>4 .
\end{aligned}
$$

$\nexists x_{1}, x_{2}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}$ s.t. \mathcal{F} holds. Thus, the system is safe.

- While if Y is replaced by $\mathrm{Y}^{\prime}=\left\{\left(y_{1}, y_{2}\right) \mid y_{1}+y_{2}>3\right\}$, then

$$
\begin{aligned}
\mathcal{F}^{\prime}:= & x_{1}^{2}+x_{2}^{2}<1 \wedge \alpha_{1}^{2}+\beta_{1}^{2}=1 \wedge \alpha_{2}^{2}+\beta_{2}^{2}=1 \\
& \wedge\left(x_{1}+x_{2}\right) \alpha_{1}-\sqrt{2}\left(\frac{1}{2} x_{1}+1\right) \beta_{1}+\beta_{2}>3 .
\end{aligned}
$$

Let $x_{1}=0.99, x_{2}=0, \alpha_{1}=\frac{\sqrt{5}}{5}, \beta_{1}=-\frac{2 \sqrt{5}}{5}, \alpha_{2}=0, \beta_{2}=1$, then $\left(x_{1}+x_{2}\right) \alpha_{1}-\sqrt{2}\left(\frac{1}{2} x_{1}+1\right) \beta_{1}+\beta_{2} \approx 3.334>3$, indicating that the system becomes unsafe.

Outline

1 Background and Contributions

- Background and Preliminaries
- Reachability of the Linear Dynamical Systems (LDSs) with Inputs

2 For Linear Systems with Purely Imaginary Eigenvalues

- Preliminaries
- Decidability of the Reachability
- An Illustrating Example

3 Abstraction of the General Cases
■ Preliminaries

- Abstraction of the Reachable Sets
- Examples

4 Concluding Remarks

- Conclusions

Decidability of an Extension of Tarski Algebra

LDS $_{\text {PEF }}$ is decidable due to [Gan et al. 15]

$$
\mathcal{F}(\mathrm{X}, \mathrm{Y}):=\exists \mathbf{x} \exists \mathbf{y} \exists t: \mathbf{x} \in \mathrm{X} \wedge \mathbf{y} \in \mathrm{Y} \wedge t \geq 0 \wedge \bigwedge_{i=1}^{n} y_{i}=\sum_{j=1}^{s_{i}} \phi_{i j}(\mathbf{x}, t) \mathrm{e}^{\nu_{j j} t}
$$

where $\phi_{i j}$ are polynomials.

LDSs with Polynomial-exponential-trigonometric Function Inputs (LDSpetf)

Definition (PETF)

A term is called a polynomial-exponential-trigonometric function (PETF) w.r.t. t if it can be written as

$$
\sum_{k=0}^{r} p_{k}(t) \mathrm{e}^{\alpha_{k} t} \cos \left(\beta_{k} t+\gamma_{k}\right)
$$

where $r \in \mathbb{N}, \alpha_{k}, \beta_{k}, \gamma_{k} \in \mathbb{R}$, and $p_{k}(t) \in \mathbb{R}[t]$.

Definition (LDSpetf)
An LDS is a linear dynamical system with polynomial-exponential-trigonometric function input (LDS $_{\text {PETF }}$) if every component of u is a PETF.

Computing Reachable Set

Given an $\operatorname{LDS}_{\text {PETF }}$ with the system matrix with complex eigenvalues, the reachability can be reformulated, due to Jordan decomposition, as :

The Reachability Problem

$$
\begin{align*}
\mathcal{F}(\mathrm{X}, \mathrm{Y}):= & \exists \mathbf{x} \exists \mathbf{y} \exists t: \mathbf{x} \in \mathrm{X} \wedge \mathbf{y} \in \mathrm{Y} \wedge t \geq 0 \wedge \\
& \bigwedge_{k=1}^{n} y_{k}=\sum_{\gamma \in \Gamma} g_{\gamma, k}(\mathbf{x}, t) \cos (\gamma t)+h_{\gamma, k}(\mathbf{x}, t) \sin (\gamma t) . \tag{3}
\end{align*}
$$

where $g_{\gamma, k}$ and $h_{\gamma, k}$ are linear on x , and are polynomial-exponential functions w.r.t. t.

Abstraction by Eliminating trigonometric functions

Theorem (Overapproximation of the Reachable Set)

$$
\begin{aligned}
\mathcal{F}(\mathrm{X}, \mathrm{Y}): & \exists \mathbf{x} \exists \mathbf{y} \exists t: \mathbf{x} \in \mathrm{X} \wedge \mathbf{y} \in \mathrm{Y} \wedge t \geq 0 \wedge \\
& \bigwedge_{k=1}^{n} y_{k}=\sum_{\gamma \in \Gamma} g_{\gamma, k}(\mathbf{x}, t) \cos (\gamma t)+h_{\gamma, k}(\mathbf{x}, t) \sin (\gamma t) \\
& \forall \mathbf{x} \exists \mathbf{y} \exists u_{\gamma} \exists v_{\gamma}: \mathbf{x} \in \mathrm{X} \wedge \mathbf{y} \in \mathrm{Y} \wedge t \geq 0 \wedge \bigwedge_{\gamma} u_{\gamma}^{2}+v_{\gamma}^{2}=1 \wedge \\
& \bigwedge_{k=1}^{n} y_{k}=\sum_{\gamma} g_{\gamma, k}(\mathbf{x}, t) u_{\gamma}+h_{\gamma, k}(\mathbf{x}, t) v_{\gamma}
\end{aligned}
$$

Illustrating Examples

Example (Pond Pollution)

$x_{1}(t)=$ Amount of pollutant in pond 1 , $x_{2}(t)=$ Amount of pollutant in pond 2 , $x_{3}(t)=$ Amount of pollutant in pond 3 , $t=$ Time in minutes.

$$
\begin{aligned}
& \dot{x_{1}}(t)=0.001 x_{3}(t)-0.001 x_{1}(t)+0.01 \\
& \dot{x_{2}}(t)=0.001 x_{1}(t)-0.001 x_{2}(t) \\
& \dot{x_{3}}(t)=0.001 x_{2}(t)-0.001 x_{3}(t)
\end{aligned}
$$

with the initial set $\mathrm{X}=\left\{\left(x_{1}, x_{2}, x_{3}\right)^{T} \mid\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}+\left(x_{3}-1\right)^{2}<1\right\}$ and the unsafe set $Y=\left\{\left(y_{1}, y_{2}, y_{3}\right)^{T} \mid y_{2}-y_{3}+6<0\right\}$.

Illustrating Examples

$1 \mathrm{X} \cap \mathrm{Y}=\emptyset$.

Illustrating Examples

$1 \mathrm{X} \cap \mathrm{Y}=\emptyset$.
2 Note that the system matrix is diagonalizable with complex eigenvalues 0 , $(-3-\mathbf{i} \sqrt{3}) / 2000$, and $(-3+\mathbf{i} \sqrt{3}) / 2000$. By using the solution of this system, the reachability thus becomes

$$
\begin{aligned}
\mathcal{F}:= & \exists x_{1} \exists x_{2} \exists x_{3} \exists t: t>0 \wedge\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}+\left(x_{3}-1\right)^{2}-1<0 \\
& \wedge a+b \cos \left(\frac{\sqrt{3} t}{2000}\right)+c \sin \left(\frac{\sqrt{3} t}{2000}\right)<0,
\end{aligned}
$$

with $a=28 \mathrm{e}^{3 t / 2000}, b=3 x_{2}-3 x_{3}-10$, and $c=\sqrt{3}\left(2 x_{1}-x_{2}-x_{3}-10\right)$.

Illustrating Examples

3 Reduction to Tarski's algebra by abstracting the second constraint as

$$
a+b u+c v<0 \wedge u^{2}+v^{2}=1
$$

Illustrating Examples

3 Reduction to Tarski's algebra by abstracting the second constraint as

$$
a+b u+c v<0 \wedge u^{2}+v^{2}=1 .
$$

4 The reduced reachability problem is then verified as safe in LinR.

Illustrating Examples

3 Reduction to Tarski's algebra by abstracting the second constraint as

$$
a+b u+c v<0 \wedge u^{2}+v^{2}=1
$$

4 The reduced reachability problem is then verified as safe in LinR.

Figure : Overapproximation (the tube) of one single trajectory (the curve) starting from ($1,1,1)^{T}$ initially

Illustrating Examples

Example (PI Controller)

Consider a proportional-integral (PI) controller which is used to control a plant.

Safety property :

$$
\mathbf{G}(t>0.5 \Rightarrow x \geq 0.9 \wedge x \leq 1.1)
$$

Proving of this case was failed in [Tiwari et al. 13].

Illustrating Examples

■ Let $\mathrm{x}=\left[\int x, x, \dot{x}, t\right]^{\mathrm{T}}$, then $\dot{\mathrm{x}}=A \mathrm{x}+\mathrm{u}$, where

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-300 & -370 & -10 & 300 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and $\mathbf{u}=[0,0,350,1]^{\mathrm{T}}$. The initial value is $\mathbf{x}(0)=[0,0,0,0]$ and unsafe set is $Y=\{\mathbf{x} \mid t>0.5 \wedge(x<0.9 \vee x>1.1)\}$.

Figure : Overapproximation (the "broom") of the trajectory of x (the curve) starting from 0

Outline

1 Background and Contributions

- Background and Preliminaries
- Reachability of the Linear Dynamical Systems (LDSs) with Inputs

2 For Linear Systems with Purely Imaginary Eigenvalues

- Preliminaries
- Decidability of the Reachability
- An Illustrating Example

3 Abstraction of the General Cases

- Preliminaries
- Abstraction of the Reachable Sets
- Examples

4 Concluding Remarks
■ Conclusions

Concluding Remarks

- The decidability of the reachability problem of $\operatorname{LDS}_{\text {TMF }}$ by reduction to the decidability of Tarski's Algebra.
- A more precise abstraction that overapproximates the reachable sets of general linear dynamical systems (LDS ${ }_{\text {PETF }}$).

■ On-going work : extension of the results to solvable dynamical systems.
■ Question : is the abstraction complete (δ-decidable) for unbounded verification?

