Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions

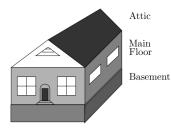
Decidability of the Reachability for a Family of Linear Vector Fields

Ting Gan 1 , Mingshuai Chen 2 , Yangjia Li 2 , Bican Xia 1 , and Naijun Zhan 2

 $^1\,{\rm LMAM}$ & School of Mathematical Sciences, Peking University $^2\,{\rm State}$ Key Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences

Aalborg, June 2016

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction 000000000	Conclusions O



 $x_3(t)$ = Temperature in the attic, $x_2(t)$ = Temperature in the living area, $x_1(t)$ = Temperature in the basement, t = Time in hours.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction 000000000	Conclusions O

 $x_3(t)$ = Temperature in the attic, $x_2(t)$ = Temperature in the living area, $x_1(t)$ = Temperature in the basement, t = Time in hours.

$$\begin{split} \dot{x_1} &= \frac{1}{2}(45 - x_1) + \frac{1}{2}(x_2 - x_1), \\ \dot{x_2} &= \frac{1}{2}(x_1 - x_2) + \frac{1}{4}(35 - x_2) + \frac{1}{4}(x_3 - x_2) + 20, \\ \dot{x_3} &= \frac{1}{4}(x_2 - x_3) + \frac{3}{4}(35 - x_3), \end{split}$$

with the initial set $X = \{(x_1, x_2, x_3)^T \mid 1 - (x_1 - 45)^2 - (x_2 - 35)^2 - (x_3 - 35)^2 > 0\}.$

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction 000000000	Conclusions O

 $x_3(t)$ = Temperature in the attic, $x_2(t)$ = Temperature in the living area, $x_1(t)$ = Temperature in the basement, t = Time in hours.

$$\begin{split} \dot{x_1} &= \frac{1}{2}(45 - x_1) + \frac{1}{2}(x_2 - x_1), \\ \dot{x_2} &= \frac{1}{2}(x_1 - x_2) + \frac{1}{4}(35 - x_2) + \frac{1}{4}(x_3 - x_2) + 20, \\ \dot{x_3} &= \frac{1}{4}(x_2 - x_3) + \frac{3}{4}(35 - x_3), \end{split}$$

with the initial set $X = \{(x_1, x_2, x_3)^T \mid 1 - (x_1 - 45)^2 - (x_2 - 35)^2 - (x_3 - 35)^2 > 0\}.$

Is it possible for the temperature x_2 getting over than $70^{\circ}F$ (unsafe)?

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction 000000000	Conclusions O

 $x_3(t)$ = Temperature in the attic, $x_2(t)$ = Temperature in the living area, $x_1(t)$ = Temperature in the basement, t = Time in hours.

$$\begin{split} \dot{x_1} &= \frac{1}{2}(45 - x_1) + \frac{1}{2}(x_2 - x_1), \\ \dot{x_2} &= \frac{1}{2}(x_1 - x_2) + \frac{1}{4}(35 - x_2) + \frac{1}{4}(x_3 - x_2) + 20, \\ \dot{x_3} &= \frac{1}{4}(x_2 - x_3) + \frac{3}{4}(35 - x_3), \end{split}$$

with the initial set $X = \{(x_1, x_2, x_3)^T \mid 1 - (x_1 - 45)^2 - (x_2 - 35)^2 - (x_3 - 35)^2 > 0\}.$

Is it possible for the temperature x_2 getting over than $70^{\circ}F$ (unsafe)? **UNBOUNDED.**

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions

Outline

1 Background and Contributions

- 2 For Linear Systems with Purely Imaginary Eigenvalues
- 3 Abstraction of the General Cases
- 4 Concluding Remarks

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions

Outline

1 Background and Contributions

- Background and Preliminaries
- Reachability of the Linear Dynamical Systems (LDSs) with Inputs

2 For Linear Systems with Purely Imaginary Eigenvalues

- Preliminaries
- Decidability of the Reachability
- An Illustrating Example

3 Abstraction of the General Cases

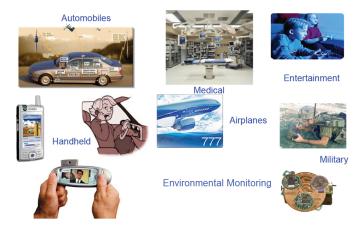
- Preliminaries
- Abstraction of the Reachable Sets
- Examples

4 Concluding Remarks

Conclusions

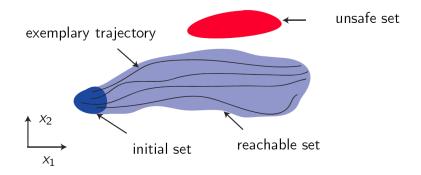
Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction 00000000	Conclusions O
Background and Preliminaries			
Hybrid Systems			

Hybrid systems exhibit combinations of discrete jumps and continuous evolution, many of which are Safety-critical.



Background and Contributions ○●○○○	LDSs with Purely Imaginary Eigenvalues	Abstraction 00000000	Conclusions O
Background and Preliminaries			

Safety Verification Using Reachable Set¹



System is safe, if no trajectory enters the unsafe set.

^{1.} The figure is taken from [M. Althoff, 2010].

Background and Contributions ○○●○○	LDSs with Purely Imaginary Eigenvalues	Abstraction 00000000	Conclusions O
Reachability of LDSs			
LDSs with Inputs			

Linear dymamical systems (LDSs) with inputs :

$$\dot{\xi} = A\xi + \mathbf{u},$$
 (1)

where $\xi(t) \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, and $\mathbf{u} : \mathbb{R} \to \mathbb{R}^n$.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction 000000000	Conclusions O
Reachability of LDSs			
LDSs with Inputs			

Linear dymamical systems (LDSs) with inputs :

$$\dot{\xi} = A\xi + \mathbf{u},\tag{1}$$

where $\xi(t) \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, and $\mathbf{u} : \mathbb{R} \to \mathbb{R}^n$.

Reachability problem (Unbounded) :

 $\mathcal{F}(\mathbf{X},\mathbf{Y}) := \exists \mathbf{x} \exists \mathbf{y} \exists t : \mathbf{x} \in \mathbf{X} \land \mathbf{y} \in \mathbf{Y} \land t \ge 0 \land \Phi(\mathbf{x},t) = \mathbf{y}.$

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction 000000000	Conclusions O
Reachability of LDSs			
LDSs with Inputs			

Linear dymamical systems (LDSs) with inputs :

$$\dot{\xi} = A\xi + \mathbf{u},\tag{1}$$

where $\xi(t) \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, and $\mathbf{u} : \mathbb{R} \to \mathbb{R}^n$.

Reachability problem (Unbounded) :

 $\mathcal{F}(\mathbf{X},\mathbf{Y}) := \exists \mathbf{x} \exists \mathbf{y} \exists t : \mathbf{x} \in \mathbf{X} \land \mathbf{y} \in \mathbf{Y} \land t \ge 0 \land \Phi(\mathbf{x},t) = \mathbf{y}.$

with initial set :

$$\mathbf{X} = \{ \mathbf{x} \in \mathbb{R}^n \mid \boldsymbol{\rho}_1(\mathbf{x}) \ge 0, \cdots, \boldsymbol{\rho}_{J_1}(\mathbf{x}) \ge 0 \},\$$

and unsafe set :

$$\mathbf{Y} = \{\mathbf{y} \in \mathbb{R}^n \mid \boldsymbol{\rho}_{J_1+1}(\mathbf{y}) \ge 0, \cdots, \boldsymbol{\rho}_J(\mathbf{y}) \ge 0\}.$$

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
00000			
Reachability of LDSs			

Decidability Results of the Reachability of LDSs

In [LPY 2001], Lafferriere *et al.* proved the decidability of the reachability problems of the following three families of LDSs :

- **1** A is *nilpotent*, i.e. $A^n = 0$, and each component of **u** is a polynomial;
- **I** A is *diagonalizable* with purely imaginary eigenvalues, and each component of **u** of the form $\sum_{i=1}^{m} c_i \sin(\lambda_i t) + d_i \cos(\lambda_i t)$, where λ_i s are rationals and c_i s and d_i s are subject to semi-algebraic constraints.

Background and Contributions ○○○○●	LDSs with Purely Imaginary Eigenvalues	Abstraction 000000000	Conclusions O
Reachability of LDSs			
Main Contributions			

Generalization of case 2 and case 3 :

- **2** A has real eigenvalues, and each component of **u** is of the form $\sum_{i=1}^{m} c_i e^{\lambda_i t}$, where $\lambda_i s$ are reals and $c_i s$ are subject to semi-algebraic constraints; [Gan *et al.* 15]
- **3** A has purely imaginary eigenvalues, and each component of **u** of the form $\sum_{i=1}^{m} c_i \sin(\lambda_i t) + d_i \cos(\lambda_i t)$, where $\lambda_i s$ are reals and $c_i s$ and $d_i s$ are subject to semi-algebraic constraints.

 Abstraction of general dynamical systems where A may have complex eigenvalues, by reducing the problem to the reachability in the case 2.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions

Outline

1 Background and Contributions

- Background and Preliminaries
- Reachability of the Linear Dynamical Systems (LDSs) with Inputs

2 For Linear Systems with Purely Imaginary Eigenvalues

- Preliminaries
- Decidability of the Reachability
- An Illustrating Example

3 Abstraction of the General Cases

- Preliminaries
- Abstraction of the Reachable Sets
- Examples

4 Concluding Remarks

Conclusions

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction 000000000	Conclusions O
Preliminaries			
Tarski Algebra and C	Quantifier Elimination		

Tarski Algebra $(T(\mathbb{R}))$ = real numbers with arithmetic and ordering.

Example

$$\varphi := \forall \mathbf{x} \exists \mathbf{y} : \mathbf{x}^2 + \mathbf{x} \mathbf{y} + \mathbf{b} > 0 \land \mathbf{x} + \mathbf{a} \mathbf{y}^2 + \mathbf{b} \le 0$$

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
	00000		
Preliminaries			

■ Tarski Algebra (*T*(ℝ))= real numbers with arithmetic and ordering.

Tarski Algebra and Quantifier Elimination

Example $\varphi := \forall x \exists y : x^2 + xy + b > 0 \land x + ay^2 + b \le 0$ • Quantifier Elimination : $T(\mathbb{R}) \models \varphi \longleftrightarrow \varphi'$ Example $T(\mathbb{R}) \models \underbrace{\forall x \exists y(x^2 + xy + b > 0 \land x + ay^2 + b \le 0)}_{\varphi} \longleftrightarrow \underbrace{a < 0 \land b > 0}_{\varphi'}$

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
	00000		
Decidability of the Reachability			

LDSs with Trigonometric Function Inputs (LDS_{TMF})

Definition (TMF)

A term is called a trigonometric function (TMF) w.r.t. t if it can be written as

$$\sum_{l=1}^{r} c_l \cos(\mu_l t) + d_l \sin(\mu_l t),$$

where $r \in \mathbb{N}$, c_l , d_l , $\mu_l \in \mathbb{R}$.

Definition (LDS_{TMF})

An LDS is a linear dynamical system with trigonometric function input (LDS_{TMF}) if every component of \mathbf{u} is a TMF.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues ○○●○○○	Abstraction 000000000	Conclusions O
Decidability of the Reachability			
Computing Reacha	ble Set		

Given an $\rm LDS_{TMF}$ whose system matrix A has purely imaginary eigenvalues, the reachability can be reformulated as :

The Reachability Problem

$$\mathcal{F}(\mathbf{X},\mathbf{Y}) := \exists \mathbf{x} \exists \mathbf{y} \exists t : \mathbf{x} \in \mathbf{X} \land \mathbf{y} \in \mathbf{Y} \land t \ge 0 \land$$
$$\bigwedge_{i=1}^{n} y_{i} = \sum_{k=1}^{K_{i}} z_{ik}^{c}(\mathbf{x}) \cos(\gamma_{ik}t) + z_{ik}^{s}(\mathbf{x}) \sin(\gamma_{ik}t).$$
(2)

where $z_{ik}^{c}(\mathbf{x}), z_{ik}^{s}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ and $\gamma_{ik} \in \mathbb{R}$.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
00000	000000	00000000	
Decidability of the Reachability			

Decidability by Reduction to Tarski's Algebra

Theorem (Reduction to Tarski's Algebra)

where f_{ik}^{c} and f_{ik}^{s} are polynomials, and X, Y are open sets.

Proof.

Built on the density results given by *Kronecker's Theorem* in number theory.

Mingshuai Chen Institute of Software, CAS

Decidability of the Reachability for LDSs

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
00000	000000	00000000	
An Illustrating Example			

An Example of the Reduction

Example

Given an $\mathrm{LDS}_{\mathrm{TMF}}$ as

$$\begin{pmatrix} \dot{\xi_1} \\ \dot{\xi_2} \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} + \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

with an initial point $\xi(0) = (x_1, x_2)$. The solution is

$$\Phi((\mathbf{x}_1, \mathbf{x}_2), t) = \begin{pmatrix} (\mathbf{x}_1 + 2)\alpha_1 + \sqrt{2}(\mathbf{x}_1 + \mathbf{x}_2)\beta_1 - 2\alpha_2 - \beta_2\\ (\mathbf{x}_2 - 2)\alpha_1 - \sqrt{2}(\frac{3}{2}\mathbf{x}_1 + \mathbf{x}_2 + 1)\beta_1 + 2\alpha_2 + 2\beta_2 \end{pmatrix}$$

where $\alpha_1 = \cos(\sqrt{2}t), \beta_1 = \sin(\sqrt{2}t), \alpha_2 = \cos(t), \beta_2 = \sin(t)$.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues ○○○○○●	Abstraction 000000000	Conclusions O
An Illustrating Example			
An Example of the R	eduction		

• For $X = \{(x_1, x_2) \mid x_1^2 + x_2^2 < 1\}$, $Y = \{(y_1, y_2) \mid y_1 + y_2 > 4\}$, the reachability is equivalently reduced to

$$\begin{aligned} \mathcal{F} &:= & \mathbf{x}_1^2 + \mathbf{x}_2^2 < 1 \wedge \alpha_1^2 + \beta_1^2 = 1 \wedge \alpha_2^2 + \beta_2^2 = 1 \\ & \wedge (\mathbf{x}_1 + \mathbf{x}_2)\alpha_1 - \sqrt{2}(\frac{1}{2}\mathbf{x}_1 + 1)\beta_1 + \beta_2 > 4. \end{aligned}$$

 $\nexists x_1, x_2, \alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ s.t. \mathcal{F} holds. Thus, the system is safe.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction 000000000	Conclusions O
An Illustrating Example			
An Example of the	Reduction		

For $X = \{(x_1, x_2) \mid x_1^2 + x_2^2 < 1\}$, $Y = \{(y_1, y_2) \mid y_1 + y_2 > 4\}$, the reachability is equivalently reduced to

$$\begin{aligned} \mathcal{F} &:= \mathbf{x}_1^2 + \mathbf{x}_2^2 < 1 \wedge \alpha_1^2 + \beta_1^2 = 1 \wedge \alpha_2^2 + \beta_2^2 = 1 \\ & \wedge (\mathbf{x}_1 + \mathbf{x}_2)\alpha_1 - \sqrt{2}(\frac{1}{2}\mathbf{x}_1 + 1)\beta_1 + \beta_2 > 4. \end{aligned}$$

 $\nexists x_1, x_2, \alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ s.t. \mathcal{F} holds. Thus, the system is safe.

• While if Y is replaced by $Y' = \{(y_1, y_2) \mid y_1 + y_2 > 3\}$, then

$$\begin{aligned} \mathcal{F}' &:= x_1^2 + x_2^2 < 1 \land \alpha_1^2 + \beta_1^2 = 1 \land \alpha_2^2 + \beta_2^2 = 1 \\ &\land (x_1 + x_2)\alpha_1 - \sqrt{2}(\frac{1}{2}x_1 + 1)\beta_1 + \beta_2 > 3. \end{aligned}$$

Let $x_1 = 0.99$, $x_2 = 0$, $\alpha_1 = \frac{\sqrt{5}}{5}$, $\beta_1 = -\frac{2\sqrt{5}}{5}$, $\alpha_2 = 0$, $\beta_2 = 1$, then $(x_1 + x_2)\alpha_1 - \sqrt{2}(\frac{1}{2}x_1 + 1)\beta_1 + \beta_2 \approx 3.334 > 3$, indicating that the system becomes unsafe.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
00000	000000	00000000	

Outline

- Background and Preliminaries
- Reachability of the Linear Dynamical Systems (LDSs) with Inputs

- Preliminaries
- Decidability of the Reachability
- An Illustrating Example

3 Abstraction of the General Cases

- Preliminaries
- Abstraction of the Reachable Sets
- Examples

Conclusions

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
00000	000000	00000000	
Preliminaries			

Decidability of an Extension of Tarski Algebra

$\mathrm{LDS}_{\mathrm{PEF}}$ is decidable due to [Gan *et al.* 15]

$$\mathcal{F}(\mathbf{X},\mathbf{Y}) := \exists \mathbf{x} \exists \mathbf{y} \exists t : \mathbf{x} \in \mathbf{X} \land \mathbf{y} \in \mathbf{Y} \land t \geq 0 \land \bigwedge_{i=1}^{n} y_{i} = \sum_{j=1}^{s_{i}} \phi_{ij}(\mathbf{x},t) \mathrm{e}^{\nu_{ij}t}$$

where ϕ_{ii} are polynomials.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
		00000000	
Abstraction of the Reachable Sets			

LDSs with Polynomial-exponential-trigonometric Function Inputs (LDSPETE)

Definition (PETF)

A term is called a polynomial-exponential-trigonometric function (PETF) w.r.t. t if it can be written as

$$\sum_{k=0}^{\prime} \boldsymbol{p}_{k}(t) \mathrm{e}^{\alpha_{k} t} \cos(\beta_{k} t + \gamma_{k}),$$

where $r \in \mathbb{N}$, α_k , β_k , $\gamma_k \in \mathbb{R}$, and $p_k(t) \in \mathbb{R}[t]$.

Definition (LDS_{PETE})

An LDS is a linear dynamical system with polynomial-exponential-trigonometric function input (LDS_{PETE}) if every component of \mathbf{u} is a PETF.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions O
Abstraction of the Reachable Sets			
Computing Reachab	le Set		

Given an $\rm LDS_{PETF}$ with the system matrix with complex eigenvalues, the reachability can be reformulated, due to Jordan decomposition, as :

The Reachability Problem

$$\mathcal{F}(\mathbf{X},\mathbf{Y}) := \exists \mathbf{x} \exists \mathbf{y} \exists t : \mathbf{x} \in \mathbf{X} \land \mathbf{y} \in \mathbf{Y} \land t \ge 0 \land$$
$$\bigwedge_{k=1}^{n} y_{k} = \sum_{\gamma \in \Gamma} g_{\gamma,k}(\mathbf{x},t) \cos(\gamma t) + h_{\gamma,k}(\mathbf{x},t) \sin(\gamma t).$$
(3)

where $g_{\gamma,k}$ and $h_{\gamma,k}$ are linear on x, and are polynomial-exponential functions w.r.t. t.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
		00000000	
Abstraction of the Reachable Sets			

Abstraction by Eliminating trigonometric functions

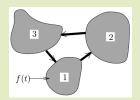
Theorem (Overapproximation of the Reachable Set)

$$\mathcal{F}(\mathbf{X},\mathbf{Y}) := \exists \mathbf{x} \exists \mathbf{y} \exists t : \mathbf{x} \in \mathbf{X} \land \mathbf{y} \in \mathbf{Y} \land t \ge 0 \land$$
$$\bigwedge_{k=1}^{n} y_{k} = \sum_{\gamma \in \Gamma} g_{\gamma,k}(\mathbf{x},t) \cos(\gamma t) + h_{\gamma,k}(\mathbf{x},t) \sin(\gamma t)$$
$$\Downarrow$$
$$\exists \mathbf{x} \exists \mathbf{y} \exists u_{\gamma} \exists v_{\gamma} : \mathbf{x} \in \mathbf{X} \land \mathbf{y} \in \mathbf{Y} \land t \ge 0 \land \bigwedge_{\gamma} u_{\gamma}^{2} + v_{\gamma}^{2} = 1 \land$$
$$\bigwedge_{k=1}^{n} y_{k} = \sum_{\gamma} g_{\gamma,k}(\mathbf{x},t) u_{\gamma} + h_{\gamma,k}(\mathbf{x},t) v_{\gamma}.$$

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions O
Examples			

Illustrating Examples

Example (Pond Pollution)



 $x_1(t)$ = Amount of pollutant in pond 1, $x_2(t)$ = Amount of pollutant in pond 2, $x_3(t)$ = Amount of pollutant in pond 3, t = Time in minutes.

$$\begin{split} \dot{x_1}(t) &= 0.001 x_3(t) - 0.001 x_1(t) + 0.01, \\ \dot{x_2}(t) &= 0.001 x_1(t) - 0.001 x_2(t), \\ \dot{x_3}(t) &= 0.001 x_2(t) - 0.001 x_3(t), \end{split}$$

with the initial set $X = \{(x_1, x_2, x_3)^T | (x_1 - 1)^2 + (x_2 - 1)^2 + (x_3 - 1)^2 < 1\}$ and the unsafe set $Y = \{(y_1, y_2, y_3)^T | y_2 - y_3 + 6 < 0\}$.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction ○○○○○●○○○	Conclusions O
Examples			
Illustrating Examples			

1 $X \cap Y = \emptyset$.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction ○○○○○●○○○	Conclusions O
Examples			
Illustrating Examples			

1 $X \cap Y = \emptyset$.

Note that the system matrix is diagonalizable with complex eigenvalues 0, (-3 - i√3)/2000, and (-3 + i√3)/2000. By using the solution of this system, the reachability thus becomes

$$\begin{aligned} \mathcal{F} := \exists \mathbf{x}_1 \exists \mathbf{x}_2 \exists \mathbf{x}_3 \exists t : t > 0 \land (\mathbf{x}_1 - 1)^2 + (\mathbf{x}_2 - 1)^2 + (\mathbf{x}_3 - 1)^2 - 1 < 0 \\ \land \mathbf{a} + \mathbf{b} \cos\left(\frac{\sqrt{3}t}{2000}\right) + \mathbf{c} \sin\left(\frac{\sqrt{3}t}{2000}\right) < 0, \end{aligned}$$

with $a = 28e^{3t/2000}$, $b = 3x_2 - 3x_3 - 10$, and $c = \sqrt{3}(2x_1 - x_2 - x_3 - 10)$.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions O
Examples			
Illustrating Examples			

3 Reduction to Tarski's algebra by abstracting the second constraint as

 $a + bu + cv < 0 \wedge u^2 + v^2 = 1.$

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions O
Examples			
Illustrating Examples			

3 Reduction to Tarski's algebra by abstracting the second constraint as

 $\mathbf{a} + \mathbf{b}\mathbf{u} + \mathbf{c}\mathbf{v} < 0 \wedge \mathbf{u}^2 + \mathbf{v}^2 = 1.$

The reduced reachability problem is then verified as safe in *LinR*.

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction ○○○○○○●○○	Conclusions O
Examples			
Illustrating Examples			

3 Reduction to Tarski's algebra by abstracting the second constraint as

 $\mathbf{a} + \mathbf{b}\mathbf{u} + \mathbf{c}\mathbf{v} < 0 \wedge \mathbf{u}^2 + \mathbf{v}^2 = 1.$

The reduced reachability problem is then verified as safe in *LinR*.

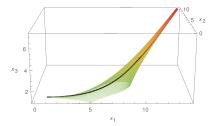


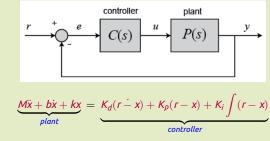
Figure : Overapproximation (the tube) of one single trajectory (the curve) starting from $(1, 1, 1)^T$ initially

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
		000000000	
Examples			

Illustrating Examples

Example (PI Controller)

Consider a proportional-integral (PI) controller which is used to control a plant.



Safety property :

 $\mathbf{G}(\boldsymbol{t} > 0.5 \Rightarrow \boldsymbol{x} \ge 0.9 \land \boldsymbol{x} \le 1.1).$

Proving of this case was failed in [Tiwari et al. 13].

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction ○○○○○○○○	Conclusions O
Examples			
Illustration Exampl			

Illustrating Examples

• Let $\mathbf{x} = [\int x, x, \dot{x}, t]^{\mathrm{T}}$, then $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{u}$, where

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -300 & -370 & -10 & 300 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and $\mathbf{u} = [0, 0, 350, 1]^{\mathrm{T}}$. The initial value is $\mathbf{x}(0) = [0, 0, 0, 0]$ and unsafe set is $Y = \{\mathbf{x} \mid t > 0.5 \land (\mathbf{x} < 0.9 \lor \mathbf{x} > 1.1)\}.$

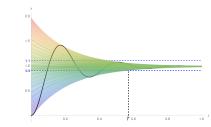


Figure : Overapproximation (the "broom") of the trajectory of x (the curve) starting from 0

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions

Outline

Background and Contributions

- Background and Preliminaries
- Reachability of the Linear Dynamical Systems (LDSs) with Inputs

2 For Linear Systems with Purely Imaginary Eigenvalues

- Preliminaries
- Decidability of the Reachability
- An Illustrating Example

3 Abstraction of the General Cases

- Preliminaries
- Abstraction of the Reachable Sets
- Examples

4 Concluding Remarks Conclusions

Background and Contributions	LDSs with Purely Imaginary Eigenvalues	Abstraction	Conclusions
			•
Conclusions			
Concluding Remar	ks		

- The decidability of the reachability problem of LDS_{TMF} by reduction to the decidability of Tarski's Algebra.
- A more precise abstraction that overapproximates the reachable sets of general linear dynamical systems (LDS_{PETF}).
- On-going work : extension of the results to solvable dynamical systems.
- **Question :** is the abstraction complete (δ -decidable) for unbounded verification ?