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Hybrid System Identification The Dainarx Framework Experimental Results Concluding Remarks

Background

Cyber-Physical Systems (CPS)

An open, interconnected form of embedded systems that integrates capabilities of
computing, communication, and control :
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Hybrid Systems (HS) – A Formal Model of CPS
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Background

Model-Based Design of CPSFormal Verification of a Descent Guidance Control Program 743

Under assumption (A1) all the max and min functions can be simplified and it is easy to
check that the computation of thrust in the guidance program is equivalent to Fc := F ′

c.
As in iSAT-ODE, we can also build three different models in Flow∗ with the switch-

ing conditions (SW1), (SW2) and (SW3) respectively. In the following, we only discuss
the model with (SW1) as illustrated by Figure 8, and the verification work done with it.

Fig. 8. The HA model of the slow descent phase Fig. 9. The invariant for HHL Prover

For Figure 8, we give the following explanations:

– the three modes represent the slow descent phase with specific impulse 2500, 2800,
and the free fall phase, respectively; the mode domains are shown in the picture;
the continuous dynamics are the two in (1) and the standard dynamics of free fall
on the lunar surface; all dynamics are augmented with the flow rate of time ṫ = 1
and Ṫ = 1, where t represents the local elapsed time in the current sampling cycle
and T denotes the total elapsed time since the beginning;

– all the discrete jumps take place at t = 0.128 and t is reset to 0 for every jump;
– the jumps from Mode_slow_Isp1 or Mode_slow_Isp2 to Mode_free_fall depend on

the truth value of (SW1), i.e. r ≤ 6 ∧ T > 10;
– the jumps from Mode_slow_Isp1 and Mode_slow_Isp2 to themselves, or the jumps

between them, depend on (SW1) and the comparison of F ′
c (defined in (2)) to 3000;

the value of Fc is updated to F ′
c for every such jump.

Introducing Uncertainties. We next modify the model in Figure 8 by introducing into
it various kinds of uncertainties according to different origins:

– The initial states are chosen to be intervals, e.g. v ∈ [−2.5,−1.5], r ∈ [29.5, 30.5],
m ∈ [1245, 1255] Fc ∈ [2020, 2035],5 and so on.

– Add interval disturbances to dynamics (1) and the dynamics of free fall. The causes
of such uncertainties could be: the direction of Fc may deviate from the vertical

5 Thus the initial mode should be the slow descent phase with specific impulse 2500.
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The Pipeline

HS Identification – A Typical Pipeline
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The Pipeline

The Inference Landscape

Method System Scope Dynamics Type High-Order Resets Inputs

Jin et al. [1] Switched Systems Polynomial ODEs 7 7 7

Dayekh et al. [2] Switched Systems Polynomial ODEs 7 7 7

POSEHAD [3] Hybrid Automata Polynomial ODEs 7 7 3

LearnHA [4] Hybrid Automata Polynomial ODEs 7 3 3

HySynth [5] Hybrid Automata Linear ODEs 7 7 7

HAutLearn [6] Hybrid Automata Linear ODEs 3 7 3

FaMoS [7] Hybrid Automata Linear ARX 3 7 3

Madary et al. [8] Switched Systems Nonlinear ARX 3 7 3

Dainarx (ours) Hybrid Automata Nonlinear ARX 3 3 3

[1] X. Jin et al. Inferring switched nonlinear dynamical systems. Formal Aspects Comput. ’21

[2] H. Dayekh, N. Basset, T. Dang. Active learning of switched nonlinear dynamical systems. CDC ’24

[3] I. Saberi, F. Faghih, F. S. Bavil. A passive online technique for learning hybrid automata from input/output traces. ACM TECS ’24

[4] A. Gurung, M. Waga, K. Suenaga. Learning nonlinear hybrid automata from input-output time-series data. ATVA ’23

[5] M. G. Soto, T. A. Henzinger, C. Schilling. Synthesis of hybrid automata with affine dynamics from time-series data. HSCC ’21

[6] X. Yang et al. A framework for identification and validation of affine hybrid automata from input-output traces. ACM TCPS ’22

[7] S. Plambeck et al. FaMoS – Fast model learning for hybrid cyber-physical systems using decision trees. HSCC ’24

[8] A. Madary et al. Hierarchical identification of nonlinear hybrid systems in a Bayesian framework. Inf. Comput. ’22
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Overview

The Dainarx Framework
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Guard Learning
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NARX
Model Fitting
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Fig. 1. The general workflow of Dainarx.

NARX model fitting as an efficient engine throughout these steps and yields threshold-free inference
of a high-order nonlinear hybrid automatonH that closely approximates the target systemH .

We use the following example to demonstrate the application of Dainarx.

Example 1 (Duffing Oscillator [31]). The Duffing oscillator is a second-order nonlinear ODE
commonly used to describe, e.g., magnetoelastic systems and nonlinear circuits. Consider the hybrid
automaton depicted in Fig. 2a, which models a mass undergoing a nonlinear, forced vibration and
constantly switches between two controlled modes with different damping coefficients. Each
guarded transition between modes is accompanied by a loss of speed (via resets). The input signal 𝑢
is a cosine function of time 𝑡 modeling an external driving force. To the best of our knowledge, none
of the existing techniques suffices to identify a relatively accurate and useful model of this system
due to its complex nature of high-order nonlinear dynamics, non-polynomial inputs, and resets.
Suppose we have collected a dataset D of 10 discrete-time traces (9 for training, 1 for testing;

each with 10,000 data points) via external observations ofH . Then, given a template NARX model
with nonlinear terms 𝑥3 [𝜏 − 1] and 𝑥3 [𝜏 − 2] (see details in Section 3.2), Dainarx first segments
the training traces into 155 segments by detecting mode-switching points via NARX model fitting:
A model switching is detected if and only if the the current segment under consideration cannot be
fitted by a single NARX model; Then, all segments that are fittable by the same NARX model are
grouped into the same cluster, yielding 2 clusters for this example. The flow dynamics of these two
modes are then inferred, again, by NARX model fitting. Finally, we extract the complete hybrid
automaton by learning guard conditions using support vector machines (SVMs) with kernel tricks
[12] as well as reset functions expressed by NARX models. Dainarx ultimately infers a hybrid
automatonH (Fig. 2c) with NARX-modeled dynamics that closely approximates the behavior of
H : As depicted in Fig. 2b, the trace generated byH exhibits a maximum (average, resp.) deviation
of 0.0003 (2.8 × 10−5, resp.) from the testing trace of the original systemH . See Section 5 for more
details on this example (the duffing benchmark). ◁

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. x, Article xxx. Publication date: October 2025.
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Overview

An Illustrating Example

A PID-controlled permanent-magnet synchronous motor
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An Illustrating Example
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Derivative-based segmentation :

‘’derivative change” > γ

genuine CPs may be missed if γ is too large;
spurious CPs may be found if γ is too small
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NARX Model Fitting

NARX Models

Definition (Nonlinear Autoregressive Exogenous (NARX) Model)

A NARX model is a k-th order difference equation :

x⃗[τ ] = Fq
(⃗
x[τ − 1], x⃗[τ − 2], . . . , x⃗[τ − k], u⃗[τ ]

)
, for τ ≥ k

x⃗[τ ] =
∑α

i=1
a⃗i ◦ fi

(⃗
x[τ − 1], . . . , x⃗[τ − k], u⃗[τ ]

)︸ ︷︷ ︸
nonlinear terms

+
∑k

i=1
Bi · x⃗[τ − i] + Bk+1 ·u⃗[τ ]︸ ︷︷ ︸

linear terms

+ c⃗

A =
[⃗
a1 a⃗2 . . . a⃗α B1 B2 . . . Bk Bk+1 c⃗

]
N = (A, {fi}) : a template NARX model with unknown parametersA ;

N [Λ] : the instance ofN under Λ ∈ A ; ⟨N⟩ : the set of all instances ofN .
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NARX Model Fitting

NARX Model Fitting – via Linear Least Squares Method

Given : A NARX templateN = (A, {fi}) and a set S = {ξj} of discrete-time traces.

Goal : Find Λ ∈ A such thatN [Λ] fits S, denoted byN [Λ] |= S.

x[τ ] = a1 · x2[τ − 1] + a2 · x3[τ − 2] + B1 · x[τ − 1] + B2 · x[τ − 2] + c · 1

O =
[
x4 x3 x2

]
; D =

x
2
3 x32 x3 x2 1

x22 x31 x2 x1 1

x21 x30 x1 x0 1


T

min
Λ

∥O− Λ · D ∥2 = 0 ⇐⇒ N [Λ] |= ξ
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The Dainarx Steps

Trace Segmentation
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The Dainarx Steps

Trace Segmentation

∃𝑁:𝑁 ⊨ 𝜉!,#$!

𝑤
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The Dainarx Steps

Trace Segmentation

Trace Segmentation

…
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The Dainarx Steps

Segment Clustering

Segmentation Clustering

ξ1

ξ2 ξ3

ξ4

ξ5

∃N ∈ ⟨N⟩ : N ⊨ {ξ1, ξ5}
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The Dainarx Steps

Mode Characterization

Segmentation Clustering

ξ1

ξ2 ξ3

ξ4

ξ5

find N ∈ ⟨N⟩ : N ⊨ {ξ1, ξ5}
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The Dainarx Steps

Guard Learning

 

 

 

 

 

Φ

SVM space transformation and kernel tricks

(
q, q′

)+ =
⋃M

j=1

{
ξj(τ) | Mj(τ) = q and Mj(τ + 1) = q′

}
,(

q, q′
)− =

⋃M

j=1

{
ξj(τ) | Mj(τ) = q and Mj(τ + 1) ≠ q′

}
.
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The Dainarx Steps

Reset Learning

N1 :
(⃗
x[τ − k + 1], . . . , x⃗[τ ], u⃗[τ + 1]

)
7→ x⃗[τ + 1]

N2 :
(⃗
x[τ − k + 2], . . . , x⃗[τ + 1], u⃗[τ + 2]

)
7→ x⃗[τ + 2]

...

Nk :
(⃗
x[τ ], . . . , x⃗[τ + k− 1], u⃗[τ + k]

)
7→ x⃗[τ + k]


x⃗(k−1)

...
x⃗(1)

x⃗

 = T ·


x⃗(k−1)

...
x⃗(1)

x⃗


?
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Hybrid System Identification The Dainarx Framework Experimental Results Concluding Remarks

Implementation

Tool Support

Dainarx : Derivative-Agnostic Inference via NARXmodel fitting

https://github.com/FICTION-ZJU/Dainarx

q1 (high damping)
x(2) = u − 0.5x(1) + x − 1.5x3

q2 (low damping)
x(2) = u − 0.2x(1) + x − 0.5x3

x2 ≤ 0.64

x(1) := 0.95x(1)
x2 ≥ 1.44

x(1) := 0.95x(1)

(a) Target systemH.
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Ground Truth
Dainarx (ours)
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(b) Example trace ofH andH.

q1
x[τ ] = 2x[τ − 1] − x[τ − 2] −

1.5 × 10−6x3[τ − 1] + 10−7u[τ ]

q2
x[τ ] = 2x[τ − 1] − x[τ − 2] −
5 × 10−7x3[τ − 1] + 10−7u[τ ]

svm1
r : {N1, N2}

svm2
r : {N3, N4}

(c) Inferred automatonH.

Figure – Inference of the Duffing oscillator via Dainarx (w. high-order nonlinearF , non-polynomial U, and R ).
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Hybrid System Identification The Dainarx Framework Experimental Results Concluding Remarks

Effectiveness

Experiments – Inferring Linear HS

Benchmark Details HDTc (seconds) Diffmax Diffavg

Name |Q| |X| k LearnHA FaMoS Dainarx LearnHA FaMoS Dainarx LearnHA FaMoS Dainarx

buck_converter 3 2 1 0.0001 0.0004 0.0000 0.1674 0.2065 0.0000 0.0046 0.0142 0.0000
complex_tank 8 3 1 3.6350 1.6350 0.0950 0.3483 0.2411 0.0451 0.0655 0.0151 0.0028
multi_room_heating 4 3 1 2.9750 0.0600 0.0350 0.2531 0.0094 0.0078 0.0590 0.0013 0.0008
simple_heating_syst 2 1 1 0.0400 0.4400 0.0200 0.0202 0.2126 0.0102 0.0037 0.0423 0.0007
three_state_HA 3 1 2 – 0.5700 0.0000 – 0.5388 0.0000 – 0.0178 0.0000
two_state_HA 2 1 2 – 0.3400 0.0000 – 0.1284 0.0000 – 0.0132 0.0000
variable_heating_syst 3 2 1 0.1100 0.0700 0.0300 0.0581 0.0272 0.0200 0.0082 0.0012 0.0005
cell 4 1 1 0.0100 29.2800 0.0100 0.0176 1.6144 0.0176 0.0001 0.1494 0.0002
oci 2 2 1 0.0500 – 0.0000 0.2002 – 0.0000 0.0259 – 0.0000
tanks (w. U) 4 2 1 13.9100 – 0.0100 1.1077 – 0.0177 0.2589 – 0.0007
ball (w. R) 1 2 1 0.0000 – 0.0000 0.0000 – 0.0000 0.0000 – 0.0000
dc_motor 2 2 4 – – 0.0000 – – 0.0000 – – 0.0000
simple_linear 2 2 1 7.9600 0.0600 0.0000 0.9999 0.1107 0.0000 0.1448 0.0071 0.0000
jumper 2 4 1 0.4500 – 0.0000 1.8182 – 0.0000 0.0899 – 0.0000
loop_syst 4 2 2 – 4.9100 0.0000 – 1.8929 0.0000 – 0.2470 0.0000
two_tank 2 2 1 0.0000 8.6400 0.0000 0.0000 1.5273 0.0000 0.0000 0.2324 0.0000
underdamped 2 2 2 – – 0.0000 – – 0.0000 – – 0.0000
underdamped-c (w. U,R) 4 2 2 – – 0.0100 – – 0.0080 – – 0.0004

; Applicability : Dainarx suffices to infer the HA for all the 18 benchmarks ;

; Mode-switching accuracy : Dainarx achieves (tied-)highest accuracy in detecting
mode switching in all the 18 benchmarks ;

; Trace fidelity : Dainarx attains highest trace fidelity across 17/18 benchmarks.
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Figure – Trace fidelity for complex_tank.
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Figure – Trace fidelity for buck_converter.
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Hybrid System Identification The Dainarx Framework Experimental Results Concluding Remarks

Effectiveness

Experiments – Inferring Nonlinear HS

Benchmark Details Dainarx

Name |Q| |X| k HDTc Diffmax Diffavg

lander 2 4 1 0.010 0.0024 0.0000
lotkaVolterra (w. nonlinear G) 2 2 1 0.020 0.0047 0.0006
simple_non_linear 2 1 1 0.006 0.0367 0.0020
simple_non_poly (w. R) 2 1 1 0.000 0.0000 0.0000
oscillator (w. trigonometric F ,G) 2 2 1 0.000 0.0000 0.0000
spacecraft (w. nonlinear G) 2 4 1 0.000 0.0000 0.0000
sys_bio 2 9 1 0.012 0.0960 0.0081
duffing (w. U,R, nonlinear G) 2 1 2 0.001 0.0003 0.0000

; Effectiveness in learning high-order nonlinear systems beyond polynomials.
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Hybrid System Identification The Dainarx Framework Experimental Results Concluding Remarks

Efficiency

Inference Time

Benchmark Details Segmentation Time Clustering Time Guard-Learning Time Total Time

Name |Q| |X| k LearnHA FaMoS Dainarx LearnHA FaMoS Dainarx LearnHA FaMoS Dainarx LearnHA FaMoS Dainarx

buck_converter 3 2 1 2.10 0.12 1.06 25.60 3.28 0.93 0.95 0.03 0.02 28.70 4.43 2.12
complex_tank 8 3 1 4.65 0.53 1.70 34.00 18.40 3.46 1.84 0.03 0.34 40.50 19.00 5.73
multi_room_heating 4 3 1 2.90 0.35 1.12 19.12 7.71 1.57 1.22 0.03 0.12 23.30 8.12 2.96
simple_heating_syst 2 1 1 2.09 0.26 0.52 10.70 8.10 0.19 0.58 0.01 0.01 13.40 8.39 0.78
three_state_HA 3 1 2 – 0.14 0.55 – 1.30 0.31 – 0.01 0.00 – 1.45 0.92
two_state_HA 2 1 2 – 0.20 0.54 – 1.50 0.22 – 0.01 0.01 – 1.72 0.80
variable_heating_syst 3 2 1 2.10 0.29 0.95 8.55 3.93 0.65 0.65 0.01 0.11 11.30 4.23 1.79
cell 4 1 1 9.28 0.44 3.38 55.10 39.94 3.80 0.80 0.02 0.02 65.20 40.42 7.47
oci 2 2 1 2.14 – 0.93 5.83 – 0.36 0.48 – 0.03 8.46 – 1.41
tanks 4 2 1 2.21 – 1.17 16.98 – 1.50 1.56 – 1.04 20.79 – 3.82
ball 1 2 1 0.59 – 0.26 2.17 – 0.13 0.62 – 0.31 3.38 – 0.72
dc_motor 2 2 4 – – 1.50 – – 2.09 – – 0.05 – – 4.08
simple_linear 2 2 1 2.23 0.19 0.60 9.99 3.58 0.86 0.56 0.02 0.42 12.79 3.80 1.97
jumper 2 4 1 0.62 – 0.11 2.24 – 0.11 0.49 – 1.78 3.35 – 2.38
loop_syst 4 2 2 – 0.20 1.36 – 3.09 1.57 – 0.01 0.01 – 3.30 3.10
two_tank 2 2 1 2.04 0.24 0.18 4.97 2.69 0.18 0.41 0.01 3.20 7.42 2.94 4.61
underdamped 2 4 1 – – 1.42 – – 0.67 – – 0.03 – – 2.25
underdamped-c 2 2 2 – – 1.52 – – 2.65 – – 0.06 – – 4.52

lander 2 4 1

– –

1.38

– –

1.03

– –

0.00

– –

2.58
lotkaVolterra 2 2 1 0.44 0.24 0.02 0.76
simple_non_linear 2 1 1 3.04 2.28 0.02 5.70
simple_non_poly 2 1 1 2.46 1.20 0.03 3.96
oscillator 2 2 1 0.65 0.43 0.01 1.13
spacecraft 2 4 1 1.20 0.72 0.01 2.01
sys_bio 2 9 1 13.17 12.60 0.20 27.40
duffing 2 1 2 3.92 2.98 0.06 7.34

; Segment clustering dominates the time of trace similarity-based methods ;

; Dainarx is 1.5–4 times faster than FaMoS; 2–6 times faster than LearnHA;

; Time complexity :O(|D|3 · n + |D|2 · d2 · n), i.e., polynomial in the size of the
learning dataD and the size of the target system d (much lower in practice).
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Summary

Summary

”Inferring a nonlinear hybrid automaton from a set of input-output traces of an HS.”

Main results :

Dainarx : threshold-free trace segmentation and clustering via NARX model fitting ;

The first approach that admits the inference of high-order non-polynomial dynamics with
exogenous inputs, non-polynomial guard conditions, and linear resets ;

Dainarx exhibits promising performance for inferring diverse, complex nonlinear systems.

Future directions :

Integrate Dainarx with ML for learning “good” NARX templates ;

Extend Dainarx to robust HS identification that admits noise (almost done!) ;

Establish quantitative guarantees via, e.g., probably approximately correct (PAC) learning;

Unleash Dainarx for online learning?

; H. Yu, B. Ma, H. Dong, M. Chen, J. An, B. Gu, N. Zhan, J. Yin : Derivative-Agnostic Inference of Nonlinear Hyb. Syst.
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