Synthesizing Invariant Barrier Certificates via Difference-of-Convex Programming

Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan, Joost-Pieter Katoen

CAV · July 2021

Cyber-Physical Systems (CPS)

An open, interconnected form of embedded systems that integrates capabilities of computing, communication and control, among which many are safety-critical.

Cyber-Physical Systems (CPS)

An open, interconnected form of embedded systems that integrates capabilities of computing, communication and control, among which many are safety-critical.

"How can we provide people with CPS they can bet their lives on?"

[Jeannette Wing]

Hybrid Systems

Hybrid Systems

Ordinary Differential Equations (ODEs) of the autonomous type :

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

Ordinary Differential Equations (ODEs) of the autonomous type :

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

⇒ Unique *solution* (*trajectory*): $\zeta_{\mathbf{x}_0}$: $[0, T) \rightarrow \mathbb{R}^n$.

Ordinary Differential Equations (ODEs) of the autonomous type :

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

⇒ Unique *solution* (*trajectory*): $\zeta_{\mathbf{x}_0}$: $[0, T) \rightarrow \mathbb{R}^n$.

Example (running [Djaballah et al., 2017])

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}_1 \mathbf{x}_2 - 0.5 \mathbf{x}_2^2 + 0.1 \end{pmatrix}.$$

Ordinary Differential Equations (ODEs) of the autonomous type :

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

⇒ Unique *solution* (*trajectory*): $\zeta_{\mathbf{x}_0}$: $[0, T) \rightarrow \mathbb{R}^n$.

Example (running [Djaballah *et al.*, 2017])

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}_1 \mathbf{x}_2 - 0.5 \mathbf{x}_2^2 + 0.1 \end{pmatrix}.$$

$$\mathcal{X}_0 = \{ \mathbf{x} \mid \mathcal{I}(\mathbf{x}) \le 0 \} \text{ with } \mathcal{I}(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 2)^2 - 1;$$

$$\mathcal{X}_u = \{ \mathbf{x} \mid \mathcal{U}(\mathbf{x}) \le 0 \} \text{ with } \mathcal{U}(\mathbf{x}) = \mathbf{x}_2 + 1;$$

$$\mathcal{X} = \mathbb{R}^n.$$

Ordinary Differential Equations (ODEs) of the autonomous type :

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

⇒ Unique *solution* (*trajectory*): $\zeta_{\mathbf{x}_0}$: $[0, T) \rightarrow \mathbb{R}^n$.

Example (running [Djaballah *et al.*, 2017])

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}_1 \mathbf{x}_2 - 0.5 \mathbf{x}_2^2 + 0.1 \end{pmatrix}.$$

$$\mathcal{X}_0 = \{ \mathbf{x} \mid \mathcal{I}(\mathbf{x}) \le 0 \} \text{ with } \mathcal{I}(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 2)^2 - 1;$$

$$\mathcal{X}_u = \{ \mathbf{x} \mid \mathcal{U}(\mathbf{x}) \le 0 \} \text{ with } \mathcal{U}(\mathbf{x}) = \mathbf{x}_2 + 1;$$

$$\mathcal{X} = \mathbb{R}^n.$$

Safety Verification of ODEs

Given $\mathcal{X} \subseteq \mathbb{R}^n$, $\mathcal{X}_0 \subseteq \mathcal{X}$, $\mathcal{X}_u \subseteq \mathcal{X}$, whether

$$\mathcal{R}_{\mathcal{X}_0} \cap \mathcal{X}_u = \emptyset$$
 ?

Barrier Certificates (BCs)

$$\begin{aligned} \forall \mathbf{x}_0 \in \mathcal{X}_0. \, \forall \boldsymbol{t} \in [0, T) \colon \boldsymbol{B}(\boldsymbol{\zeta}_{\mathbf{x}_0}(\boldsymbol{t})) \leq 0, \\ \forall \mathbf{x} \in \mathcal{X}_{\boldsymbol{u}} \colon \boldsymbol{B}(\mathbf{x}) > 0. \end{aligned}$$

Barrier Certificates (BCs)

 $\forall \mathbf{x}_0 \in \mathcal{X}_0. \forall t \in [0, T]: \mathbf{B}(\boldsymbol{\zeta}_{\mathbf{x}_0}(t)) \leq 0,$ $\forall \mathbf{x} \in \mathcal{X}_{u} \colon \mathbf{B}(\mathbf{x}) > 0.$

Barrier Certificates (BCs) vs. Inductive Invariants

 $\begin{aligned} \forall \mathbf{x}_0 \in \mathcal{X}_0, \forall t \in [0, T) \colon \boldsymbol{B}(\boldsymbol{\zeta}_{\mathbf{x}_0}(t)) \leq 0, \\ \forall \mathbf{x} \in \mathcal{X}_{\boldsymbol{u}} \colon \boldsymbol{B}(\mathbf{x}) > 0. \end{aligned}$

$$\forall \mathbf{x}_0 \in \Psi. \forall t \in [0, T): \boldsymbol{\zeta}_{\mathbf{x}_0}(t) \in \Psi,$$

Barrier Certificates (BCs) vs. Inductive Invariants

 $\begin{aligned} \forall \mathbf{x}_0 \in \mathcal{X}_0, \forall t \in [0, T) \colon \boldsymbol{B}(\boldsymbol{\zeta}_{\mathbf{x}_0}(t)) \leq 0, \\ \forall \mathbf{x} \in \mathcal{X}_{\boldsymbol{u}} \colon \boldsymbol{B}(\mathbf{x}) > 0. \end{aligned}$

$$\begin{aligned} \forall \mathbf{x}_0 \in \Psi. \, \forall t \in [0, \mathit{T}) \colon \boldsymbol{\zeta}_{\mathbf{x}_0}(t) \in \Psi, \\ \mathcal{X}_0 \subseteq \Psi \text{ and } \mathcal{X}_u \cap \Psi = \emptyset. \end{aligned}$$

Barrier Certificates (BCs) vs. Inductive Invariants

 $\begin{aligned} \forall \mathbf{x}_0 \in \mathcal{X}_0, \forall t \in [0, T) \colon \boldsymbol{B}(\boldsymbol{\zeta}_{\mathbf{x}_0}(t)) \leq 0, \\ \forall \mathbf{x} \in \mathcal{X}_{\boldsymbol{u}} \colon \boldsymbol{B}(\mathbf{x}) > 0. \end{aligned}$

$$\begin{aligned} \forall \mathbf{x}_0 \in \Psi. \, \forall t \in [0, \mathit{T}) \colon \boldsymbol{\zeta}_{\mathbf{x}_0}(t) \in \Psi, \\ \mathcal{X}_0 \subseteq \Psi \text{ and } \mathcal{X}_u \cap \Psi = \emptyset. \end{aligned}$$

inductive invariance [Platzer & Clarke, 2008] [Liu *et al.*, 2011]

Outline

- 1 Invariant Barrier-Certificate Condition
- 2 Encoding as a BMI Optimization
- 3 Solving BMIs using DCP
- 4 Experimental Results

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
••				
Lie Derivatives				
Lie Derivatives	5			

$$\mathcal{L}_{\boldsymbol{f}}^{\boldsymbol{k}}\boldsymbol{B}(\mathbf{x}) \stackrel{\sim}{=} \begin{cases} \boldsymbol{B}(\mathbf{x}), \quad \boldsymbol{k}=0, \\ \left\langle \frac{\partial}{\partial \mathbf{x}} \mathcal{L}_{\boldsymbol{f}}^{\boldsymbol{k}-1} \boldsymbol{B}(\mathbf{x}), \boldsymbol{f}(\mathbf{x}) \right\rangle, \quad \boldsymbol{k}>0. \end{cases} \quad \boldsymbol{\Xi} \stackrel{\boldsymbol{\partial}}{\xrightarrow{\boldsymbol{\partial}}} \boldsymbol{B}_{\boldsymbol{f}}^{\boldsymbol{k}}$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
•0				
Lie Derivatives				
Lie Derivatives				

$$\mathcal{L}_{\boldsymbol{f}}^{\boldsymbol{k}} \boldsymbol{\mathcal{B}}(\mathbf{x}) \ \widehat{=} \ \left\{ \begin{array}{ll} \boldsymbol{\mathcal{B}}(\mathbf{x}), & \boldsymbol{k} = 0, \\ \left\langle \frac{\partial}{\partial \mathbf{x}} \mathcal{L}_{\boldsymbol{f}}^{\boldsymbol{k}-1} \boldsymbol{\mathcal{B}}(\mathbf{x}), \boldsymbol{f}(\mathbf{x}) \right\rangle, & \boldsymbol{k} > 0. \end{array} \right.$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
00				
Invariant BC Condition				

Invariant Barrier Certificates

$$\begin{array}{c} \textbf{I} \quad \forall \mathbf{x} \in \mathcal{X}_0 \colon \mathcal{B}(\mathbf{x}) \leq 0, \quad (\text{initial}) \\ \textbf{I} \quad \forall \mathbf{x} \in \mathcal{X}_u \colon \mathcal{B}(\mathbf{x}) > 0, \quad (\text{separation}) \\ \textbf{I} \quad \forall \mathbf{x} \in \mathbb{R}^n \colon \bigwedge_{i=1}^{N_{Bf}} \left(\left(\bigwedge_{j=0}^{i-1} \mathcal{L}_f^j \mathcal{B}(\mathbf{x}) = 0 \right) \implies \mathcal{L}_f^i \mathcal{B}(\mathbf{x}) \leq 0 \right). \quad (\text{consecution}) \end{array}$$

Invariant BC Condition ○●	Encoding as BMIs	Solving BMIs via DCP 00000	Experimental Results 000	Concluding Remarks O
Invariant BC Condition				
Invariant Barr	ier Certificate	25		

 $\Psi = \{\mathbf{x} \mid \mathbf{B}(\mathbf{x}) \leq 0\}$ is an invariant (separating \mathcal{X}_0 and \mathcal{X}_u).

(initial)

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Recasting into SOSs				

For $\mathcal{B}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$, $\epsilon \in \mathbb{R}^+$, $v_{i,j} \in \mathbb{R}[\mathbf{x}]$ and sum-of-squares (SOS) polynomials $\sigma(\mathbf{x}), \sigma'(\mathbf{x})$, the following polynomials are SOS :

$$\begin{array}{l} \mathbf{1} \quad -B(\mathbf{x}) + \sigma(\mathbf{x}) \cdot \mathcal{I}(\mathbf{x}), & (\text{initial}) \\ \\ \mathbf{2} \quad B(\mathbf{x}) + \sigma'(\mathbf{x}) \cdot \mathcal{U}(\mathbf{x}) - \epsilon, & (\text{separation}) \\ \\ \\ \\ \mathbf{3} \quad \text{for all } 1 \leq i \leq N_{\mathcal{B},\mathbf{f}^{i}} \quad -\mathcal{L}_{\mathbf{f}}^{i} B(\mathbf{x}) + \sum_{j=0}^{i-1} \ \mathbf{v}_{i,j}(\mathbf{x}) \cdot \mathcal{L}_{\mathbf{f}}^{j} B(\mathbf{x}). & (\text{consecution}) \end{array}$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Recasting into SOSs				

For $\mathcal{B}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$, $\epsilon \in \mathbb{R}^+$, $v_{i,j} \in \mathbb{R}[\mathbf{x}]$ and sum-of-squares (SOS) polynomials $\sigma(\mathbf{x}), \sigma'(\mathbf{x})$, the following polynomials are SOS :

$$\begin{array}{c} \label{eq:alpha} \blacksquare -B(\mathbf{x}) + \sigma(\mathbf{x}) \cdot \mathcal{I}(\mathbf{x}), & (\text{initial}) \\ \mbox{2} B(\mathbf{x}) + \sigma'(\mathbf{x}) \cdot \mathcal{U}(\mathbf{x}) - \epsilon, \\ \mbox{5} B(\mathbf{x}) + \mathcal{L}_{f}^{i}B(\mathbf{x}) + \sum_{j=0}^{i-1} \underbrace{\mathbf{v}_{i,j}(\mathbf{x}) \cdot \mathcal{L}_{f}^{j}B(\mathbf{x})}_{\text{unknown}} & (\text{consecution}) \\ \mbox{5} bilinearity arises! \end{array}$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Recasting into SOSs				

For $B(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$, $\epsilon \in \mathbb{R}^+$, $v_{i,j} \in \mathbb{R}[\mathbf{x}]$ and sum-of-squares (SOS) polynomials $\sigma(\mathbf{x}), \sigma'(\mathbf{x})$, the following polynomials are SOS :

$$\begin{array}{c} \blacksquare & -B(\mathbf{x}) + \sigma(\mathbf{x}) \cdot \mathcal{I}(\mathbf{x}), \\ \blacksquare & |B| \\ \blacksquare & |B| \\ \blacksquare & |S| \\$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Recasting into SOSs				

For $B(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$, $\epsilon \in \mathbb{R}^+$, $v_{i,j} \in \mathbb{R}[\mathbf{x}]$ and sum-of-squares (SOS) polynomials $\sigma(\mathbf{x})$, $\sigma'(\mathbf{x})$, the following polynomials are SOS :

⇒ Mitigate bilinearity by difference-of-convex programming (DCP).

Constant for billion of kills

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Reducing to BMIs				
	· · · · /			

 $h(\mathbf{a}, \mathbf{s}, \mathbf{x}) \in \Sigma^{\leq 2d}[\mathbf{x}]$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Reducing to BMIs				

$$h(\mathbf{a},\mathbf{s},\mathbf{x}) \in \Sigma^{\leq 2d}[\mathbf{x}]$$

$$(\uparrow, \chi_1\chi_2, \chi_1, \chi_3, \dots, \chi_n)$$

$$(h(\mathbf{a},\mathbf{s},\mathbf{x}) = \mathbf{b}^{\mathsf{T}}Q(\mathbf{a},\mathbf{s})\mathbf{b}$$

$$Q(\mathbf{a},\mathbf{s}) \succeq 0$$

12/22

.

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Reducing to BMIs				

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Reducing to BMIs				

$$\begin{aligned} h(\mathbf{a}, \mathbf{s}, \mathbf{x}) &\in \Sigma^{\leq 2d}[\mathbf{x}] \\ & \bigoplus h(\mathbf{a}, \mathbf{s}, \mathbf{x}) = \mathbf{b}^{\mathsf{T}} Q(\mathbf{a}, \mathbf{s}) \mathbf{b} \\ Q(\mathbf{a}, \mathbf{s}) &\succeq 0 \\ & \bigoplus \mathcal{F}(\mathbf{a}, \mathbf{s}) = -Q(\mathbf{a}, \mathbf{s}) \\ \mathcal{F}(\mathbf{a}, \mathbf{s}) &\preceq 0 \end{aligned}$$

Example (running)

$$-a(x_1x_2 - 0.5x_2^2 + 0.1) + (s_0 + s_1x_1 + s_2x_2) \cdot ax_2 \in \Sigma^{\leq 2}[\mathbf{x}] \quad \text{(consecution)}$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Reducing to BMIs				

Example (running)

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Reducing to BMIs				
BMI Optimiza	ation			

$$\# (SDS Cons)$$

$$\mathcal{F}_{\iota}(\mathbf{a}, \mathbf{s}) \leq 0, \quad \iota = 1, 2, \dots, l. \qquad (1)$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Reducing to BMIs				
BMI Ontimiza	tion			

13/22

. . .

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
	000			
Reducing to BMIs				
BMI Ontimiza	tion			

$$\mathcal{F}_{\iota}(\mathbf{a}, \mathbf{s}) \leq 0, \quad \iota = 1, 2, \dots, l.$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$\begin{array}{ll} \underset{\lambda, \mathbf{a}, \mathbf{s}}{\text{maximize}} & \lambda \\ \text{subject to} & \mathcal{B}_{\iota}(\lambda, \mathbf{a}, \mathbf{s}) \cong \mathcal{F}_{\iota}(\mathbf{a}, \mathbf{s}) + \lambda I \preceq 0, \quad \iota = 1, 2, \dots, l. \end{array}$$

$$(2)$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks O
Expanded Bilinear Form				
General BMI C	Optimization			

$$\begin{array}{l} \underset{\mathbf{z} = (\mathbf{x}, \mathbf{y})}{\text{maximize}} \quad g(\mathbf{z}) \\ \text{subject to} \quad \mathcal{B}(\mathbf{x}, \mathbf{y}) \stackrel{\cong}{=} \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} y_{j} F_{i,j} + \sum_{i=1}^{m} x_{i} H_{i} + \sum_{j=1}^{n} y_{j} G_{j} + F \leq 0 \end{array}$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks O
Expanded Bilinear Form				
General BMI Op	otimization			

$$\begin{array}{ll} \underset{\mathbf{z} = (\mathbf{x}, \mathbf{y})}{\text{maximize}} & g(\mathbf{z}) \\ \text{subject to} & \mathcal{B}(\mathbf{x}, \mathbf{y}) \cong \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} y_{j} F_{i,j} + \sum_{i=1}^{m} x_{i} H_{i} + \sum_{j=1}^{n} y_{j} G_{j} + F \preceq 0 \end{array}$$

$$\mathcal{B}(\mathbf{x},\mathbf{y}) = \begin{pmatrix} \mathbf{x} \otimes I \\ \mathbf{y} \otimes I \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} 0 & \Gamma \\ \Gamma^{\mathsf{T}} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \otimes I \\ \mathbf{y} \otimes I \end{pmatrix} + \begin{pmatrix} \Omega_1 & \Omega_2 \end{pmatrix} \begin{pmatrix} \mathbf{x} \otimes I \\ \mathbf{y} \otimes I \end{pmatrix} + \mathcal{F}$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks O
Expanded Bilinear Form				
General BMI C	Optimization			

$$\begin{array}{l} \underset{\mathbf{z} = (\mathbf{x}, \mathbf{y})}{\text{maximize}} \quad \mathbf{y}(\mathbf{z}) \\ \text{subject to} \quad \mathcal{B}(\mathbf{x}, \mathbf{y}) \cong \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} y_{j} F_{i,j} + \sum_{i=1}^{m} x_{i} H_{i} + \sum_{j=1}^{n} y_{j} G_{j} + F \preceq 0 \\ \\ \mathcal{B}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \mathbf{x} \otimes I \\ \mathbf{y} \otimes I \end{pmatrix}^{\mathsf{T}} \underbrace{\begin{pmatrix} 0 & \Gamma \\ \Gamma^{\mathsf{T}} & 0 \end{pmatrix}}_{M = \mathbf{z}} \begin{pmatrix} \mathbf{x} \otimes I \\ \mathbf{y} \otimes I \end{pmatrix} + (\Omega_{1} \ \Omega_{2}) \begin{pmatrix} \mathbf{x} \otimes I \\ \mathbf{y} \otimes I \end{pmatrix} + F \\ \\ \\ \begin{array}{c} \mathcal{B}^{\mathsf{T}} - \mathcal{B}^{\mathsf{T}} \\ \end{array} \\ \\ \mathcal{B}(\mathbf{x}, \mathbf{y}) \text{ is convex } \iff M \succeq 0. \end{array}$$

movimize $q(\mathbf{z})$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
		00000		
DC Decomposition				

$$M = V^{\mathsf{T}} D V$$

(eigendecomposition)

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
		0000		
DC Decomposition				

$$M = V^{T} D V$$

= $\underbrace{V^{T} D^{T} V}_{M_{1} \geq 0} - \underbrace{V^{T} D^{T} V}_{M_{2} \geq 0} D^{+} D$

(eigendecomposition)

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
		0000		
DC Decomposition				

٨

(eigendecomposition)

$$\mathcal{B}(\mathbf{x},\mathbf{y}) \;=\; \underbrace{\mathcal{B}^+(\mathbf{x},\mathbf{y})}_{\text{convex}} - \underbrace{\mathcal{B}^-(\mathbf{x},\mathbf{y})}_{\text{convex}}$$

(DC decomposition)

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
		00000		
DC Decomposition				

$$M = V^{\mathsf{T}} D V$$
$$= \underbrace{V^{\mathsf{T}} D^{\mathsf{T}} V}_{M_1 \succeq 0} - \underbrace{V^{\mathsf{T}} D^{\mathsf{T}} V}_{M_2 \succeq 0}$$

(eigendecomposition)

$\mathcal{B}(\mathbf{x},\mathbf{y}) \;=\; \underbrace{\mathcal{B}^+(\mathbf{x},\mathbf{y})}_{\text{convex}} - \underbrace{\mathcal{B}^-(\mathbf{x},\mathbf{y})}_{\text{convex}}$

(DC decomposition)

Example (running)

The decomposition of $\mathcal{B}(\lambda,\mathbf{a},\mathbf{s})$ for consecution, for instance, gives

$$\begin{split} \mathcal{B}^+(\lambda,\mathbf{a},\mathbf{s}) = \\ & \frac{1}{8} \begin{pmatrix} 8\lambda + 0.08a + a^2 + 0.408s_0^2 & 0.408s_0s_1 & -2as_0 + 0.816s_0s_2 \\ 0.408s_0s_1 & 8\lambda + a^2 + 0.408s_1^2 & 4a - 2as_1 + 0.816s_1s_2 \\ -2as_0 + 0.816s_0s_2 & 4a - 2as_1 + 0.816s_1s_2 & 8\lambda - 4a + 2.449a^2 - 4as_2 + s_0^2 + s_1^2 + 1.632s_2^2 \end{pmatrix} \\ \mathcal{B}^-(\lambda,\mathbf{a},\mathbf{s}) = \\ & \frac{1}{8} \begin{pmatrix} a^2 + 0.408s_0^2 & 0.408s_0s_1 & 2as_0 + 0.816s_0s_2 \\ 0.408s_0s_1 & a^2 + 0.408s_1^2 & 2as_1 + 0.816s_1s_2 \\ 2as_0 + 0.816s_0s_2 & 2as_1 + 0.816s_1s_2 & 2.449a^2 + 4as_2 + s_0^2 + s_1^2 + 1.632s_2^2 \end{pmatrix} . \end{split}$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
00	000	00000	000	
Reduction to LMIs				
	<u> </u>			

Reducing to a Series of Convex Programs

Linearize the "concave part" $-\mathcal{B}^{-}(\mathbf{x}, \mathbf{y})$ around a feasible solution \mathbf{z}^{k} :

$$\underbrace{\mathcal{B}^{+}(\mathbf{z}) - \mathcal{B}^{-}\left(\mathbf{z}^{k}\right) - \mathcal{D}\mathcal{B}^{-}\left(\mathbf{z}^{k}\right)\left(\mathbf{z} - \mathbf{z}^{k}\right)}_{\text{convex}} \preceq 0 \qquad (\text{QMIs})$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
		00000		
Reduction to LMIs				

Reducing to a Series of Convex Programs

Linearize the "concave part" $-\mathcal{B}^{-}(\mathbf{x}, \mathbf{y})$ around a feasible solution \mathbf{z}^{k} :

$$\underbrace{\mathcal{B}^{+}(\mathbf{z}) - \mathcal{B}^{-}(\mathbf{z}^{k}) - \mathcal{D}\mathcal{B}^{-}(\mathbf{z}^{k})(\mathbf{z} - \mathbf{z}^{k})}_{\text{convex}} \leq 0 \qquad \text{(QMIs)}$$

$$\underbrace{\mathbb{E}^{k+1} = \mathbb{E}^{k+1}}_{\left(\mathbf{z} \otimes \mathbf{h}\right)^{\mathsf{T}} \mathbf{N}^{\mathsf{T}}} - \mathcal{B}^{-}(\mathbf{z}^{k}) - \mathcal{D}\mathcal{B}^{-}(\mathbf{z}^{k})(\mathbf{z} - \mathbf{z}^{k}) + \Omega(\mathbf{z} \otimes \mathbf{h}) + F\right)}_{\text{convex}} \leq 0 \qquad \text{(LMIs)}$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
		00000		
Reduction to LMIs				

Reducing to a Series of Convex Programs

Linearize the "concave part" $-\mathcal{B}^{-}(\mathbf{x}, \mathbf{y})$ around a feasible solution \mathbf{z}^{k} :

$$\underbrace{\mathcal{B}^{+}(\mathbf{z}) - \mathcal{B}^{-}\left(\mathbf{z}^{k}\right) - \mathcal{D}\mathcal{B}^{-}\left(\mathbf{z}^{k}\right)\left(\mathbf{z} - \mathbf{z}^{k}\right)}_{\text{convex}} \leq 0 \qquad (\text{QMIs})$$

$$\underbrace{\left(\begin{matrix} -I \\ (\mathbf{z} \otimes I)^{\mathsf{T}} N^{\mathsf{T}} & -\mathcal{B}^{-}\left(\mathbf{z}^{k}\right) - \mathcal{D}\mathcal{B}^{-}\left(\mathbf{z}^{k}\right)\left(\mathbf{z} - \mathbf{z}^{k}\right) + \Omega(\mathbf{z} \otimes I) + F \right)}_{\text{convex}} \leq 0 \qquad (\text{LMIs})$$

$$\underbrace{\mathbf{z}^{\mathsf{O}}}_{\text{convex}}$$

⇒ DCP: an iterative procedure ($\mathbf{z}^{k+1} = \mathbf{z}^{*,k}$) that solves a series of convex programs.

Invariant BC Condition	Encoding as BMIs 000	Solving BMIs via DCP ○○○●○	Experimental Results 000	Concluding Remarks O
Reduction to LMIs				
Finding the Ir	nitial Solution			

$$\begin{array}{l} \underset{\lambda, \mathbf{a}}{\operatorname{maximize}} \quad \lambda \\ \text{subject to} \quad \mathcal{F}_{\iota}(\mathbf{a}(\mathbf{s})|_{\mathbf{s}=(c_{\iota},0,\ldots,0)} + \lambda I \preceq 0, \quad \iota = 1, 2, \ldots, l. \end{array} \right\} \mathsf{LML}$$

Here, $\mathbf{c}_{\iota} \in \mathbb{R}^+_0$ encodes a non-negative constant multiplier polynomial :

$$\begin{cases} c_{\iota} = 0 : \text{ original BC cond. [Prajna & Jadbabaie, 2004]} \\ c_{\iota} > 0 : \text{ exponential-type BC cond. [Kong et al., 2013]} \end{cases}$$

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks	
		00000			
Reduction to LMIs					
Finding the Ir	nitial Solution				

$$\begin{array}{ll} \underset{\lambda, \mathbf{a}}{\operatorname{maximize}} & \lambda \\ \text{subject to} & \mathcal{F}_{\iota}(\mathbf{a}, \mathbf{s}) \big|_{\mathbf{s} = (\boldsymbol{c}_{\iota}, 0, \dots, 0)} + \lambda \boldsymbol{I} \preceq \boldsymbol{0}, \quad \iota = 1, 2, \dots, l. \end{array}$$

Here, $\mathbf{c}_{\iota} \in \mathbb{R}^+_0$ encodes a non-negative constant multiplier polynomial :

$$\begin{cases} c_{\iota} = 0 : \text{ original BC cond. [Prajna & Jadbabaie, 2004]} \\ c_{\iota} > 0 : \text{ exponential-type BC cond. [Kong et al., 2013]} \end{cases}$$

⇒ This LMI optimization always admits a strictly feasible solution (λ, \mathbf{a}) which induces also a strictly feasible solution $(\lambda, \mathbf{a}, (c_{\iota}, 0, ..., 0))$ to the original BMI optimization.

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP ○○○○●	Experimental Results	sults Concluding Remarks O		
Reduction to LMIs						
	6					

Example (running)

Our iterative procedure starts with a strictly feasible initial solution \mathbf{z}^0 and terminates with $\lambda^2 \geq 0$ (subject to numerical round-off) and $a^2 = -0.00363421$, yielding the barrier certificate

$$B(\mathbf{a}^2, \mathbf{x}) = -0.00363421 \mathbf{x}_2 \le 0.$$

Invariant BC Condition Encoding as BMIs		Solving BMIs via DCP	Experimental Results	sults Concluding Remarks		
		00000				
Reduction to LMIs						
D 11						

Example (running)

Our iterative procedure starts with a strictly feasible initial solution z^0 and terminates with $\lambda^2 \ge 0$ (subject to numerical round-off) and $a^2 = -0.00363421$, yielding the barrier certificate

$$B(\mathbf{a}^2, \mathbf{x}) = -0.00363421 \mathbf{x}_2 \le 0.$$

⇒ Soundness : every zⁱ is a feasible solution to the original BMI optimization;

Invariant BC Condition Encoding as BMIs		Solving BMIs via DCP	Experimental Results	sults Concluding Remarks		
		00000				
Reduction to LMIs						
D 11						

Example (running)

Our iterative procedure starts with a strictly feasible initial solution z^0 and terminates with $\lambda^2 \ge 0$ (subject to numerical round-off) and $a^2 = -0.00363421$, yielding the barrier certificate

$$B(\mathbf{a}^2, \mathbf{x}) = -0.00363421 \mathbf{x}_2 \le 0.$$

- ⇒ Soundness : every zⁱ is a feasible solution to the original BMI optimization;
- ⇒ Convergence : $\{z^i\}_{i \in \mathbb{N}}$ converges to a KKT point (local optimum);

Invariant BC Condition Encoding as BMIs		Solving BMIs via DCP	Experimental Results	sults Concluding Remarks		
		00000				
Reduction to LMIs						
D 11						

Example (running)

Our iterative procedure starts with a strictly feasible initial solution z^0 and terminates with $\lambda^2 \ge 0$ (subject to numerical round-off) and $a^2 = -0.00363421$, yielding the barrier certificate

$$B(\mathbf{a}^2, \mathbf{x}) = -0.00363421 \mathbf{x}_2 \le 0.$$

- ⇒ Soundness : every zⁱ is a feasible solution to the original BMI optimization;
- ⇒ Convergence : $\{z^i\}_{i \in \mathbb{N}}$ converges to a KKT point (local optimum);
- Weak completeness (via branch-and-bound) : an invariant BC is guaranteed to be found (under mild assumptions) whenever there exists an inductive invariant (in the form of the given template).

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
			000	
Implementation				

Prototypical Implementation

BMI-DC : open-source in Wolfram Mathematica :

- CSDP : COIN semidefinite programming library;
- Reduce & Z3 : posterior check of candidate BCs.

In comparison with off-the-shelf solvers in Matlab :

- PENLAB : solving BMIs (with no guarantee on convergence) [Fiala et al., 2013];
- SOSTOOLS : solving LMIs as per Prajna and Jadbabaie's original BC condition [Papachristodoulou et al., 2013].

© BMI-DC, 2021

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
			000	
Experimental Results				

Example name	Deure	da	dae		BMI-DC		PEN	ILAB	SOS	TOOLS
Example name	risys	urlow	aBC	#iter.	time	verified	time	verified	time	verified
overview	2	2	1	2	0.03	1	0.31	1	0.07	1
contrived	2	1	2	0	0.01	1	0.48	1	0.75	1
lie-der	2	2	1	0	0.01	1	0.22	1	0.04	1
lorenz	3	2	2	8	2.37	1	75.11	×	1.47	×
lti-stable	2	1	2	0	0.01	1	0.23	1	0.14	1
lotka-volterra	3	2	1	3	0.07	1	0.36	1	0.21	1
clock	2	3	1	0	0.01	1	0.88	×	0.18	×
lyapunov	3	3	2	4	1.25	1	56.98	×	0.35	1
arch1	2	5	2	0	0.01	1	33.76	×	0.31	1
arch2	2	2	2	5	0.37	1	0.38	×	0.17	×
arch3	2	3	2	1	0.07	1	0.54	1	0.18	1
arch4	2	2	1	2	0.09	1	0.49	×	0.06	1
barr-cert1	2	3	2	12	0.85	1	2.53	×	0.09	×
barr-cert2	2	2	2	6	1.57	1	1.16	×	0.15	1
barr-cert3	2	2	1	0	0.01	1	0.20	1	0.11	×
barr-cert4	2	3	2	13	0.96	1	0.89	×	0.23	×
fitzhugh-nagumo	2	3	2	2	0.16	1	1.24	1	0.25	×
stabilization	3	2	2	9	2.88	1	55.22	1	0.11	1
lie-high-order	2	1	2	32	4.12	1	1.56	×	0.25	×
raychaudhuri	4	2	2	34	9.51	1	33.64	×	0.14	×
focus	2	1	4	100	54.89	×	0.95	×	0.48	×
sys-bio1	7	2	2	2	73.22	?	101.9 5	?	1.35	?
sys-bio2	9	2	1	1	1.03	?	15.54	?	0.16	?
quadcopter	12	1	1	0	0.03	?	65.42	?	0.36	?

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
			000	
Experimental Results				

Example name	Deure	da	dae		BMI-DC		PEN	ILAB	SOS	TOOLS
Example name	risys	arlow	GBC	#iter.	time	verified	time	verified	time	verified
overview	2	2	1	2	0.03	1	0.31	1	0.07	1
contrived	2	1	2	0	0.01	1	0.48	1	0.75	1
lie-der	2	2	1	0	0.01	1	0.22	1	0.04	1
lorenz	3	2	2	8	2.37	1	75.11	×	1.47	X
lti-stable	2	1	2	0	0.01	1	0.23	1	0.14	1
lotka-volterra	3	2	1	3	0.07	1	0.36	1	0.21	1
clock	2	3	1	0	0.01	1	0.88	×	0.18	×
lyapunov	3	3	2	4	1.25	1	56.98	×	0.35	1
arch1	2	5	2	0	0.01	1	33.76	×	0.31	1
arch2	2	2	2	5	0.37	1	0.38	×	0.17	×
arch3	2	3	2	1	0.07	1	0.54	1	0.18	1
arch4	2	2	1	2	0.09	1	0.49	×	0.06	1
barr-cert1	2	3	2	12	0.85	1	2.53	×	0.09	×
barr-cert2	2	2	2	6	1.57	1	1.16	×	0.15	1
barr-cert3	2	2	1	0	0.01	1	0.20	1	0.11	×
barr-cert4	2	3	2	13	0.96	1	0.89	×	0.23	X
fitzhugh-nagumo	2	3	2	2	0.16	1	1.24	1	0.25	×
stabilization	3	2	2	9	2.88	1	55.22	1	0.11	1
lie-high-order	2	1	2	32	4.12	1	1.56	×	0.25	×
raychaudhuri	4	2	2	34	9.51	1	33.64	×	0.14	X
focus	2	1	4	100	54.89	X	0.95	X	0.48	×
sys-bio1	7	2	2	2	73.22	?	101.9 5	?	1.35	?
sys-bio2	9	2	1	1	1.03	?	15.54	?	0.16	?
quadcopter	12	1	1	0	0.03	?	65.42	?	0.36	?

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
			000	
Experimental Results				

Example name	0	d.	d		BMI-DC		PEN	ILAB	SOS	TOOLS
	risys	flow	aBC	#iter.	time	verified	time	verified	time	verified
overview	2	2	1	2	0.03	1	0.31	1	0.07	1
contrived	2	1	2	0	0.01	1	0.48	1	0.75	1
lie-der	2	2	1	0	0.01	1	0.22	1	0.04	1
lorenz	3	2	2	8	2.37	1	75.11	×	1.47	×
lti-stable	2	1	2	0	0.01	1	0.23	1	0.14	1
lotka-volterra	3	2	1	3	0.07	1	0.36	1	0.21	1
clock	2	3	1	0	0.01	1	0.88	×	0.18	×
lyapunov	3	3	2	4	1.25	1	56.98	×	0.35	1
arch1	2	5	2	0	0.01	1	33.76	×	0.31	1
arch2	2	2	2	5	0.37	1	0.38	×	0.17	×
arch3	2	3	2	1	0.07	1	0.54	1	0.18	1
arch4	2	2	1	2	0.09	1	0.49	×	0.06	1
barr-cert1	2	3	2	12	0.85	1	2.53	×	0.09	×
barr-cert2	2	2	2	6	1.57	1	1.16	×	0.15	1
barr-cert3	2	2	1	0	0.01	1	0.20	1	0.11	×
barr-cert4	2	3	2	13	0.96	1	0.89	×	0.23	X
fitzhugh-nagumo	2	3	2	2	0.16	1	1.24	1	0.25	×
stabilization	3	2	2	9	2.88	1	55.22	1	0.11	1
lie-high-order	2	1	2	32	4.12	1	1.56	×	0.25	X
raychaudhuri	4	2	2	34	9.51	1	33.64	×	0.14	×
focus	2	1	4	100	54.89	×	0.95	X	0.48	×
sys-bio1	7	2	2	2	73.22	?	101.9 5	?	1.35	?
sys-bio2	9	2	1	1	1.03	?	15.54	?	0.16	?
quadcopter	12	1	1	0	0.03	?	65.42	?	0.36	?

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
			000	
Experimental Results				

Example name	0	d.	d		BMI-DC		PEN	ILAB	SOS	TOOLS
	nsys	flow	aBC	#iter.	time	verified	time	verified	time	verified
overview	2	2	1	2	0.03	1	0.31	1	0.07	1
contrived	2	1	2	0	0.01	1	0.48	1	0.75	1
lie-der	2	2	1	0	0.01	1	0.22	1	0.04	1
lorenz	3	2	2	8	2.37	1	75.11	×	1.47	×
lti-stable	2	1	2	0	0.01	1	0.23	1	0.14	1
lotka-volterra	3	2	1	3	0.07	1	0.36	1	0.21	1
clock	2	3	1	0	0.01	1	0.88	×	0.18	×
lyapunov	3	3	2	4	1.25	1	56.98	×	0.35	1
arch1	2	5	2	0	0.01	1	33.76	×	0.31	1
arch2	2	2	2	5	0.37	1	0.38	×	0.17	×
arch3	2	3	2	1	0.07	1	0.54	1	0.18	1
arch4	2	2	1	2	0.09	1	0.49	×	0.06	1
barr-cert1	2	3	2	12	0.85	1	2.53	×	0.09	×
barr-cert2	2	2	2	6	1.57	1	1.16	×	0.15	1
barr-cert3	2	2	1	0	0.01	1	0.20	1	0.11	×
barr-cert4	2	3	2	13	0.96	1	0.89	×	0.23	×
fitzhugh-nagumo	2	3	2	2	0.16	1	1.24	1	0.25	×
stabilization	3	2	2	9	2.88	1	55.22	1	0.11	1
lie-high-order	2	1	2	32	4.12	1	1.56	×	0.25	×
raychaudhuri	4	2	2	34	9.51	1	33.64	×	0.14	×
focus	2	1	4	100	54.89	×	0.95	×	0.48	×
sys-bio1	7	2	2	2	73.22	?	101.9 5	?	1.35	?
sys-bio2	9	2	1	1	1.03	?	15.54	?	0.16	?
quadcopter	12	1	1	0	0.03	?	65.42	?	0.36	?

Invariant BC Condition	Encoding as BMIs	Solving BMIs via DCP	Experimental Results	Concluding Remarks
			000	
Experimental Results				

Phase Portraits

Invariant BC Condition	Encoding as BMIs 000	Solving BMIs via DCP 00000	Experimental Results 000	Concluding Remarks
Summary				
Summary				

Invariant BC Condition	Encoding as BMIs 000	Solving BMIs via DCP 00000	Experimental Results 000	Concluding Remarks
Summary				
Summary				

Invariant BC condition : the weakest possible condition to attain inductive invariance;

Invariant BC Condition	Encoding as BMIs 000	Solving BMIs via DCP 00000	Experimental Results 000	Concluding Remarks
Summary				
Summary				

- Invariant BC condition : the weakest possible condition to attain inductive invariance;
- Discharging the invariant BC condition can be encoded as solving a BMI optimization;

Invariant BC Condition	Encoding as BMIs 000	Solving BMIs via DCP 00000	Experimental Results 000	Concluding Remarks
Summary				
Summarv				

- Invariant BC condition : the weakest possible condition to attain inductive invariance;
- Discharging the invariant BC condition can be encoded as solving a BMI optimization;
- DCP : approaches a local optimum via solving a series of convex problems;

Invariant BC Condition	Encoding as BMIs 000	Solving BMIs via DCP 00000	Experimental Results 000	Concluding Remarks
Summary				
Summary				

- Invariant BC condition : the weakest possible condition to attain inductive invariance;
- Discharging the invariant BC condition can be encoded as solving a BMI optimization;
- DCP : approaches a local optimum via solving a series of convex problems;
- branch-and-bound : searches for the global optimum in a divide-and-conquer fashion, yielding a weak completeness result.
- ⇒ Q. Wang, M. Chen, B. Xue, N. Zhan, J.-P. Katoen : Synthesizing Invariant Barrier Certificates via Difference-of-Convex Programming.

