Decidability of the Reachability for a Family of Linear Vector Fields

Ting Gan 1 , Mingshuai Chen 2 , Liyun Dai 1 , Bican Xia 1 , and Naijun Zhan 2

 $^1\,{\rm LMAM}$ & School of Mathematical Sciences, Peking University $^2\,{\rm State}$ Key Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences

Shanghai, October 2015

Outline

1 Background

- 2 Computing Reachable Sets of Linear Dynamics Systems (LDSs) with Inputs
- 3 Decision Procedure for T_e
- 4 Isolating Real Roots of PEFs
- 5 Evaluation Results
- 6 **Discussions and Conclusions**

 $x_3(t)$ = Temperature in the attic, $x_2(t)$ = Temperature in the living area, $x_1(t)$ = Temperature in the basement, t = Time in hours.

 $x_3(t)$ = Temperature in the attic, $x_2(t)$ = Temperature in the living area, $x_1(t)$ = Temperature in the basement, t = Time in hours.

$$\begin{split} \dot{x_1} &= \frac{1}{2}(45 - x_1) + \frac{1}{2}(x_2 - x_1), \\ \dot{x_2} &= \frac{1}{2}(x_1 - x_2) + \frac{1}{4}(35 - x_2) + \frac{1}{4}(x_3 - x_2) + 20, \\ \dot{x_3} &= \frac{1}{4}(x_2 - x_3) + \frac{3}{4}(35 - x_3), \end{split}$$

 $x_3(t)$ = Temperature in the attic, $x_2(t)$ = Temperature in the living area, $x_1(t)$ = Temperature in the basement, t = Time in hours.

$$\begin{split} \dot{x_1} &= \frac{1}{2}(45 - x_1) + \frac{1}{2}(x_2 - x_1), \\ \dot{x_2} &= \frac{1}{2}(x_1 - x_2) + \frac{1}{4}(35 - x_2) + \frac{1}{4}(x_3 - x_2) + 20, \\ \dot{x_3} &= \frac{1}{4}(x_2 - x_3) + \frac{3}{4}(35 - x_3), \end{split}$$

with the initial set $X = \{(x_1, x_2, x_3)^T \mid 1 - (x_1 - 45)^2 - (x_2 - 35)^2 - (x_3 - 35)^2 > 0\}.$

 $x_3(t)$ = Temperature in the attic, $x_2(t)$ = Temperature in the living area, $x_1(t)$ = Temperature in the basement, t = Time in hours.

$$\begin{split} \dot{x_1} &= \frac{1}{2}(45 - x_1) + \frac{1}{2}(x_2 - x_1), \\ \dot{x_2} &= \frac{1}{2}(x_1 - x_2) + \frac{1}{4}(35 - x_2) + \frac{1}{4}(x_3 - x_2) + 20, \\ \dot{x_3} &= \frac{1}{4}(x_2 - x_3) + \frac{3}{4}(35 - x_3), \end{split}$$

with the initial set $X = \{(x_1, x_2, x_3)^T \mid 1 - (x_1 - 45)^2 - (x_2 - 35)^2 - (x_3 - 35)^2 > 0\}.$

Is it possible for the temperature x_2 getting over than $70^{\circ}F$ (unsafe)?

 $x_3(t)$ = Temperature in the attic, $x_2(t)$ = Temperature in the living area, $x_1(t)$ = Temperature in the basement, t = Time in hours.

$$\begin{split} \dot{x_1} &= \frac{1}{2}(45 - x_1) + \frac{1}{2}(x_2 - x_1), \\ \dot{x_2} &= \frac{1}{2}(x_1 - x_2) + \frac{1}{4}(35 - x_2) + \frac{1}{4}(x_3 - x_2) + 20, \\ \dot{x_3} &= \frac{1}{4}(x_2 - x_3) + \frac{3}{4}(35 - x_3), \end{split}$$

with the initial set $X = \{(x_1, x_2, x_3)^T \mid 1 - (x_1 - 45)^2 - (x_2 - 35)^2 - (x_3 - 35)^2 > 0\}.$

Is it possible for the temperature x_2 getting over than $70^{\circ}F$ (unsafe)? **UNBOUNDED.**

Hybrid Systems

Hybrid systems exhibit combinations of discrete jumps and continuous evolution, many of which are Safety-critical.

Safety Verification Using Reachable Sets¹

System is safe, if no trajectory enters the unsafe set.

^{1.} The figure is taken from [M. Althoff, 2010].

Tarski Algebra and Quantifier Elimination

Tarski Algebra $(T(\mathbb{R}))$ = real numbers with arithmetic and ordering.

Example

$$\varphi := \forall \mathbf{x} \exists \mathbf{y} \colon \mathbf{x}^2 + \mathbf{x}\mathbf{y} + \mathbf{b} > 0 \land \mathbf{x} + \mathbf{a}\mathbf{y}^2 + \mathbf{b} \le 0$$

Tarski Algebra and Quantifier Elimination

■ Tarski Algebra (*T*(ℝ))= real numbers with arithmetic and ordering.

Example $\varphi := \forall x \exists y : x^2 + xy + b > 0 \land x + ay^2 + b \le 0$ • Quantifier Elimination : $T(\mathbb{R}) \models \varphi \longleftrightarrow \varphi'$ Example $T(\mathbb{R}) \models \underbrace{\forall x \exists y(x^2 + xy + b > 0 \land x + ay^2 + b \le 0)}_{\varphi} \longleftrightarrow \underbrace{a < 0 \land b > 0}_{\varphi'}$

Quantifier Elimination

Survey of QE Algorithms

- Tarski's algorithm [Tarski 51]: the first one, but its complexity is nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].
- Collins' algorithm [Collins 76]: based on cylindrical algebraic decomposition (CAD), double exponential in the number of variables, improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine partial cylindrical algebraic decomposition (PCAD), implemented in many computer algebra tools, e.g., QEPCAD,REDLOG,
- Ben-Or, Kozen and Reif's algorithm [Ben-Or, Kozen & Reif 86] : double exponential in the number of variables using sequential computation, single exponential using parallel computation, based on Sturm sequence and Sturm Theorem.
- More efficient algorithms [Grigor'ev & Vorobjov 88, Grigor'ev 88], [Renegar 89], [Heintz, Roy & Solerno 89], [Basu,Pollack & Roy 96] : mainly based on BKR's approach, double exponential in the number of quantifier alternation, no implementation yet.

Tarski's Conjecture (TC)

■ Whether the extension of TA with *exponentiation* is decidable?

Tarski's Conjecture (TC)

- Whether the extension of TA with *exponentiation* is decidable?
- TC is still open.

Tarski's Conjecture (TC)

- Whether the extension of TA with *exponentiation* is decidable?
- TC is still open.
- In 2008, Strzebonski showed the decidability of T_e, the extension of TA with polynomial exponential functions (PEFs):

$$f(t,\mathbf{x}) = \sum_{i=0}^{m} f_i(t,\mathbf{x}) e^{\lambda_i t}$$

LDSs with Inputs

 Linear dymamical systems (LDSs) with inputs are differential equations of the form

$$\dot{\xi} = A\xi + \mathbf{u},$$
 (1)

where $\xi(t) \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, and $\mathbf{u} : \mathbb{R} \to \mathbb{R}^n$ is a continuous function vector which is called the *input*.

LDSs with Inputs

 Linear dymamical systems (LDSs) with inputs are differential equations of the form

$$\dot{\xi} = A\xi + \mathbf{u},$$
 (1)

where $\xi(t) \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, and $\mathbf{u} : \mathbb{R} \to \mathbb{R}^n$ is a continuous function vector which is called the *input*.

The forward reachable set:

$$Post(\mathbf{X}) = \{ \mathbf{y} \in \mathbb{R}^n \mid \exists \mathbf{x} \exists t : \mathbf{x} \in \mathbf{X} \land t \ge 0 \land \Phi(\mathbf{x}, t) = \mathbf{y} \}$$
(2)

LDSs with Inputs

 Linear dymamical systems (LDSs) with inputs are differential equations of the form

$$\dot{\xi} = A\xi + \mathbf{u},$$
 (1)

where $\xi(t) \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, and $\mathbf{u} : \mathbb{R} \to \mathbb{R}^n$ is a continuous function vector which is called the *input*.

The forward reachable set:

$$Post(\mathbf{X}) = \{ \mathbf{y} \in \mathbb{R}^n \mid \exists \mathbf{x} \exists t : \mathbf{x} \in \mathbf{X} \land t \ge 0 \land \Phi(\mathbf{x}, t) = \mathbf{y} \}$$
(2)

Reachability problem :

$$\mathcal{F}(\mathbf{X},\mathbf{Y}) := \exists \mathbf{x} \exists \mathbf{y} \exists t : \mathbf{x} \in \mathbf{X} \land \mathbf{y} \in \mathbf{Y} \land t \ge 0 \land \Phi(\mathbf{x},t) = \mathbf{y}.$$

Decidability Results of the Reachability of LDSs

In [LPY 2001], Lafferriere, Pappas and Yovine proved the decidability of the reachability problems of the following three families of LDSs :

- **1** A is *nilpotent*, i.e. $A^n = 0$, and each component of **u** is a polynomial;
- A is diagonalizable with rational eigenvalues, and each component of u is of the form Σ^m_{i=1} c_ie^{λ_it}, where λ_is are rational and c_is are subject to semi-algebraic constraints;
- **B** A is diagonalizable with purely imaginary eigenvalues, and each component of **u** of the form $\sum_{i=1}^{m} c_i \sin(\lambda_i t) + d_i \cos(\lambda_i t)$, where λ_i s are rationals and c_i s and d_i s are subject to semi-algebraic constraints.

Decidability Results of the Reachability of LDSs

In [LPY 2001], Lafferriere, Pappas and Yovine proved the decidability of the reachability problems of the following three families of LDSs :

- **1** A is *nilpotent*, i.e. $A^n = 0$, and each component of **u** is a polynomial;
- 2 A is diagonalizable with real eigenvalues, and each component of **u** is of the form $\sum_{i=1}^{m} c_i e^{\lambda_i t}$, where $\lambda_i s$ are reals and $c_i s$ are subject to semi-algebraic constraints;
- **3** A is diagonalizable with purely imaginary eigenvalues, and each component of **u** of the form $\sum_{i=1}^{m} c_i \sin(\lambda_i t) + d_i \cos(\lambda_i t)$, where λ_i s are rationals and c_i s and d_i s are subject to semi-algebraic constraints.

Decidability of the Reachability for a Family of $\mathrm{LDS}_{\mathrm{PEF}}$

Definition (LDS_{PEF})

A Family of LDSs with diagonalizable matrices with real eigenvalues, and polynomial-exponential inputs ($\rm LDS_{PEF})$:

$$\dot{\xi} = A\xi + \mathbf{u},$$

where

•
$$A = QDQ^{-1}$$
, where $D = diag(\lambda_1, \cdots, \lambda_n)$, and $\lambda_1, \cdots, \lambda_n \in \mathbb{R}$;

u = $(u_1, u_2, \cdots, u_n)^T$, $u_i = \sum_{k=0}^{r_i} g_{ik}(t) e^{\mu_{ik}t}$, $i = 1, 2, \cdots, n$

$$\xi(t) = \Phi(\mathbf{x}, t) = e^{At}\mathbf{x} + \int_0^t e^{A(t-\tau)}\mathbf{u}(\tau)d\tau,$$
(3)

$$e^{At} = e^{QDQ^{-1}t} = Q \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & & e^{\lambda_n t} \end{bmatrix} Q^{-1},$$
(4)

$$(e^{At})_{ij} = \sum_{k=1}^{n} q_{ik} q_{kj}^{-} e^{\lambda_k t},$$
 (5)

$$(e^{At}\mathbf{x})_{i} = \sum_{j=1}^{n} (e^{At})_{ij} x_{j} = \sum_{j=1}^{n} \sum_{k=1}^{n} q_{ik} q_{kj}^{-} x_{j} e^{\lambda_{k} t}$$
(6)

$$= \sum_{k=1}^{n} (\sum_{j=1}^{n} q_{ik} q_{kj}^{-} x_{j}) e^{\lambda_{k} t} = \sum_{k=1}^{n} \alpha_{ik}(\mathbf{x}) e^{\lambda_{k} t},$$
(7)

- $(\Phi(\mathbf{x}, t))_i = \sum_{k=1}^n \alpha_{ik}(\mathbf{x}) e^{\lambda_k t} + \sum_{j=0}^{c_i} \psi_{ij}(t) e^{\theta_{ij} t}.$
- The solution $\Phi(\mathbf{x}, t)_i$ can be reduced to

$$\Phi(\mathbf{x}, t)_i = \sum_{j=1}^{s_i} \phi_{ij}(\mathbf{x}, t) e^{\nu_{ij}t},$$

•
$$(\Phi(\mathbf{x}, t))_i = \sum_{k=1}^n \alpha_{ik}(\mathbf{x}) e^{\lambda_k t} + \sum_{j=0}^{c_i} \psi_{ij}(t) e^{\theta_{ij} t}.$$

• The solution $\Phi(\mathbf{x}, t)_i$ can be reduced to

$$\Phi(\mathbf{x},t)_i = \sum_{j=1}^{s_i} \phi_{ij}(\mathbf{x},t) e^{\nu_{ij}t},$$

Forward Reachable Sets Revisited

$$\textit{Post}(\mathbf{X}) = \{\mathbf{y} \mid \exists \mathbf{x} \exists t : \mathbf{x} \in \mathbf{X} \land t \ge 0 \land \bigwedge_{i=1}^{n} \sum_{j=1}^{s_i} \phi_{ij}(\mathbf{x}, t) e^{\nu_{ij}t} = y_i\}$$

The Reachability Revisited

Given two semi-algebraic sets

$$X = \{ \mathbf{x} \in \mathbb{R}^{n} \mid p_{1}(\mathbf{x}) > 0, \cdots, p_{J_{1}}(\mathbf{x}) > 0 \},$$

$$Y = \{ \mathbf{y} \in \mathbb{R}^{n} \mid p_{J_{1}+1}(\mathbf{y}) > 0, \cdots, p_{J}(\mathbf{y}) > 0 \},$$

$$\mathcal{F}(X, Y) := \exists \mathbf{x} \exists \mathbf{y} \exists t : \mathbf{x} \in X \land \mathbf{y} \in Y \land t \ge 0 \land \bigwedge_{i=1}^{n} \sum_{j=1}^{s_{i}} \phi_{ij}(\mathbf{x}, t) e^{\nu_{ij}t} = y_{i}$$
(8)

Theorem (Decidability of the Reachability of LDS_{PEF})

The reachability problem of LDS_{PEF} is decidable if \mathcal{T}_e is decidable.

Cylindrical Algebraic Decomposition (CAD)²

$$\exists x_1 \exists x_2 \exists x_3 : f_1 > 0 \land f_2 \ge 0 \land f_3 > 0 \land f_4 \le 0?$$

$$f_{1} = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} - 4$$

$$f_{2} = x_{1}^{2} + x_{2}^{2} - 4$$

$$f_{3} = x_{1} + 2$$

$$f_{4} = x_{1} - 2$$

2. Taken from Thomas Sturm.

Isolating Real Roots of PEF

Evaluation Discussions and

Cylindrical Algebraic Decomposition (CAD)

$$\exists x_1 \exists x_2 \exists x_3 : f_1 > 0 \land f_2 \ge 0 \land f_3 > 0 \land f_4 \le 0?$$

$$f_1 = x_1^2 + x_2^2 + x_3^2 - 4$$

$$f_2 = x_1^2 + x_2^2 - 4$$

$$f_3 = x_1 + 2$$

$$f_4 = x_1 - 2$$

Cylindrical Algebraic Decomposition (CAD)

$$\exists x_1 \exists x_2 \exists x_3 : f_1 > 0 \land f_2 \ge 0 \land f_3 > 0 \land f_4 \le 0?$$

$$f_1 = x_1^2 + x_2^2 + x_3^2 - 4$$

$$f_2 = x_1^2 + x_2^2 - 4$$

$$f_3 = x_1 + 2$$

$$f_4 = x_1 - 2$$

Isolating Real Roots of PEF

s of PEFs Evaluation Discu

Discussions and Conclusions

Cylindrical Algebraic Decomposition (CAD)

$$\exists x_1 \exists x_2 \exists x_3 : f_1 > 0 \land f_2 \ge 0 \land f_3 > 0 \land f_4 \le 0?$$

$$f_1 = x_1^2 + x_2^2 + x_3^2 - 4$$

$$f_2 = x_1^2 + x_2^2 - 4$$

$$f_3 = x_1 + 2$$

$$f_4 = x_1 - 2$$

Definition (CAD(openCAD))

For a polynomial $f(x_1, ..., x_n) \in \mathbb{R}[x_1, ..., x_n]$, a CAD (openCAD) defined by f under the order $x_1 \prec x_2 \prec \cdots \prec x_n$ is a set of sample points in \mathbb{R}^n obtained through the following three phases :

Projection : Apply CAD (openCAD) projection operator on *f* to get a set of projection polynomials

{ $f_n = f(x_1, ..., x_n), f_{n-1}(x_1, ..., x_{n-1}), ..., f_1(x_1)$ };

- Base : Choose a rational point in each of the (open) intervals defined by the real roots of f_1 ;
- Lifting: Substitute each sample point in \mathbb{R}^{i-1} for $(x_1, ..., x_{i-1})$ in f_i to get a univariate polynomial $f'_i(x_i)$, and then, as in Base phase, choose sample points for $f'_i(x_i)$. Repeat this process for *i* from 2 to *n*.

Step 1 Check whether $X \cap Y = \emptyset$, if not \Rightarrow unsafe.

Step 1 Check whether $X \cap Y = \emptyset$, if not \Rightarrow unsafe.

Step 2 Translate the problem to an openCAD solvable problem if X and Y are open sets (otherwise a CAD solvable problem) :

$$\mathcal{F} := \exists \mathbf{x} \exists t \bigwedge_{j=1}^{J} p_j(\mathbf{x}, t) > 0 \land t > 0.$$

Step 1 Check whether $X \cap Y = \emptyset$, if not \Rightarrow unsafe.

Step 2 Translate the problem to an openCAD solvable problem if X and Y are open sets (otherwise a CAD solvable problem) :

$$\mathcal{F} := \exists \mathbf{x} \exists t \bigwedge_{j=1}^{J} \rho_j(\mathbf{x}, t) > 0 \land t > 0.$$

Step 3 Eliminate x_1, \dots, x_n one by one using CAD (openCAD) projection operator on $\prod_{j=1}^{J} \rho_j$ and obtain a set of projection polynomials $\{q_n(x_1, \dots, x_n, t) = \prod_{j=1}^{J} \rho_j, q_{n-1}(x_2, \dots, x_n, t)\}, \dots, q_0(t)\}.$

Step 4 Isolate the real roots of the resulted PEF q_0 based on **Rolle's** theorem.

Step 4 Isolate the real roots of the resulted PEF q_0 based on **Rolle's** theorem.

Step 5 Lift the solution using openCAD or CAD lifting procedure according to the order t, x_n, \dots, x_1 based on the projection factor $\{q_0, \dots, q_n\}$, and obtain a set S of sample points.

Step 4 Isolate the real roots of the resulted PEF q_0 based on *Rolle's* theorem.

Step 5 Lift the solution using openCAD or CAD lifting procedure according to the order t, x_n, \dots, x_1 based on the projection factor $\{q_0, \dots, q_n\}$, and obtain a set S of sample points.

Step 6 Check if \mathcal{F} holds by testing if there exists α in S such that $\bigwedge_{j=1}^{J} \rho_j(\alpha) \rhd 0$.

Isolating Real Roots of PEFs

Theorem 1.

Let f(t) be a PEF, f'(t) the derivative of f(t) w.r.t. t, I = (a, b) a non-empty open interval, and $\mathcal{L}_l(f') = \{I_j | j = 1, ..., J\}$ a real root isolation of f' in I, in which $I_j = (a_j, b_j)$ with

 $a = b_0 < a_1 < b_1 < \cdots < a_J < b_J < a_{J+1} = b.$

Furthermore, there is no real root of f(t) = 0 in any closed interval $[a_j, b_j]$, $1 \le j \le J$. Then,

 $\{ (b_{j}, a_{j+1}) \mid f(b_{j})f(a_{j+1}) < 0, \ 0 \le j \le J \}$

is a real root isolation of f(t) = 0 in I.

Proof.

Attributes to *Rolle's theorem* (cf. differential mean value theorem).

Example (A Running Example)

$$f(t) = t + 1 + e^{\sqrt{2}t} - (t+2)e^{\sqrt{5}t}$$

Example (A Running Example)

$$f(t) = t + 1 + e^{\sqrt{2}t} - (t+2)e^{\sqrt{5}t}$$

Step 1 Computing Lower and Upper Bounds :

$$L(f) = -4, \quad U(f) = 12.$$

Step 2 Constructing a sequence of derivatives :

$$S_0 = f(t) = t + 1 + e^{\sqrt{2}t} - (t+2)e^{\sqrt{5}t}$$

$$S_1 = f'(t) = 1 + \sqrt{2}e^{\sqrt{2}t} - (\sqrt{5}t + 2\sqrt{5} + 1)e^{\sqrt{5}t}$$

$$f''(t) = 0 + 2e^{\sqrt{2}t} - (5t + 2\sqrt{5} + 10)e^{\sqrt{5}t}$$

$$S_2 = f''(t)e^{-\sqrt{2}t} = 2 - (5t + 2\sqrt{5} + 10)e^{(\sqrt{5} - \sqrt{2})t}$$

$$S_3 = S'_2 = 0 + 0 + he^{(\sqrt{5} - \sqrt{2})t}$$

where $h = -(5(\sqrt{5} - \sqrt{2})t + 15 + 10\sqrt{5} - 2\sqrt{10} - 10\sqrt{2}).$

Step 2 Constructing a sequence of derivatives :

$$S_0 = f(t) = t + 1 + e^{\sqrt{2}t} - (t+2)e^{\sqrt{5}t}$$

$$S_1 = f'(t) = 1 + \sqrt{2}e^{\sqrt{2}t} - (\sqrt{5}t + 2\sqrt{5} + 1)e^{\sqrt{5}t}$$

$$f''(t) = 0 + 2e^{\sqrt{2}t} - (5t + 2\sqrt{5} + 10)e^{\sqrt{5}t}$$

$$S_2 = f''(t)e^{-\sqrt{2}t} = 2 - (5t + 2\sqrt{5} + 10)e^{(\sqrt{5} - \sqrt{2})t}$$

$$S_3 = S'_2 = 0 + 0 + he^{(\sqrt{5} - \sqrt{2})t}$$

where $h = -(5(\sqrt{5} - \sqrt{2})t + 15 + 10\sqrt{5} - 2\sqrt{10} - 10\sqrt{2}).$

 $S_3 = 0$ if and only if h = 0, while the real zeros of h can be easily achieved by any real root isolation procedure for polynomials.

Step 3 Isolating all real roots of the sequence of derivatives :

For h(t) = 0, $t = -\frac{15 + 10\sqrt{5} - 2\sqrt{10} - 10\sqrt{2}}{5(\sqrt{5} - \sqrt{2})} \in (-5, -4).$

Step 3 Isolating all real roots of the sequence of derivatives :

For h(t) = 0, $t = -\frac{15 + 10\sqrt{5} - 2\sqrt{10} - 10\sqrt{2}}{5(\sqrt{5} - \sqrt{2})} \in (-5, -4).$

■ As $(-5, -4) \cap (-4, 12) = \emptyset$, there is no real root of $S_3 = 0$ in (-4, 12). Hence, we have $\mathcal{L}_{(-4, 12)}(S_3) = \emptyset$.

Step 3 Isolating all real roots of the sequence of derivatives :

For
$$h(t) = 0$$
,

$$t = -\frac{15 + 10\sqrt{5} - 2\sqrt{10} - 10\sqrt{2}}{5(\sqrt{5} - \sqrt{2})} \in (-5, -4).$$

■ As $(-5, -4) \cap (-4, 12) = \emptyset$, there is no real root of $S_3 = 0$ in (-4, 12). Hence, we have $\mathcal{L}_{(-4, 12)}(S_3) = \emptyset$.

$$\mathcal{L}_{(-4,12)}(S_2) = \{(-2,-1)\}.$$

- $\mathbf{L}_{(-4,12)}(S_1) = \{(-0.59375, -0.390625)\}.$

Implementation

- A prototype in Mathematica, called LinR, which takes a specific LDS reachability problem as input, and gives either False if the problem is not satisfiable, or True otherwise associated with some counterexamples.
- Both the tool and the forthcoming case studies can be found at http://lcs.ios.ac.cn/~chenms/tools/LinR.tar.bz2

Example (Constructed)

Consider the following LDS

$$\dot{\xi} = \begin{bmatrix} \sqrt{2} & & \\ & -\sqrt{2} & \\ & & -1 \end{bmatrix} \xi + \begin{bmatrix} 1-t \\ te^t \\ e^{-t} \end{bmatrix}.$$

Let

$$\begin{split} \mathbf{X} &= \{ (\pmb{x}_1, \pmb{x}_2, \pmb{x}_3)^T \mid 1 - \pmb{x}_1^2 - \pmb{x}_2^2 - \pmb{x}_3^2 > 0 \}, \\ \mathbf{Y} &= \{ (\pmb{y}_1, \pmb{y}_2, \pmb{y}_3)^T \mid \pmb{y}_1 + \pmb{y}_2 + \pmb{y}_3 + 2 < 0 \}. \end{split}$$

The safety property to be verified is to check if some state in Y is reachable from X.

The reachability problem becomes

$$\begin{aligned} \mathcal{F} &= \exists x_1 \exists x_2 \exists x_3 \exists t. \ \Phi(x_1, x_2, x_3, t); \\ \Phi(x_1, x_2, x_3, t) &= 1 - x_1^2 - x_2^2 - x_3^2 > 0 \\ &\wedge x_1 e^{\sqrt{2}t} + x_2 e^{-\sqrt{2}t} + x_3 e^{-t} + h(t) < 0 \wedge t > 0, \end{aligned}$$

where $h(t) &= \frac{e^{-\sqrt{2}t}}{3+2\sqrt{2}} + te^{-t} + \frac{\sqrt{2}t - \sqrt{2} + 5}{2} + \frac{(1+\sqrt{2})t - 1}{3+2\sqrt{2}}e^t + \frac{\sqrt{2} - 1}{2}e^{\sqrt{2}t}. \end{aligned}$

Using the projection operator to eliminate x₁, x₂, x₃ successively (Step 3), we have

$$\begin{split} q_3(x_1, x_2, x_3, t) &= (x_1^2 + x_2^2 + x_3^2 - 1)(ax_1 + bx_2 + cx_3 + h) \\ q_2(x_2, x_3, t) &= a(x_2^2 + x_3^2 - 1) \\ &\quad (-a^2 + a^2x_2^2 + a^2x_3^2 + b^2x_2^2 + 2bcx_2x_3 + 2bhx_2 + c^2x_3^2 + 2chx_3 + h^2), \\ q_1(x_3, t) &= a(x_3 - 1)(x_3 + 1)(a^2 + b^2)(2chx_3 + h^2 - b^2 + b^2x_3^2 + c^2x_3^2) \\ &\quad (-a^2 + a^2x_3^2 + 2chx_3 + h^2 - b^2 + b^2x_3^2 + c^2x_3^2), \\ q_0(t) &= ab(c - h)(c + h)(a^2 + b^2)(b^2 + c^2)(b^2 + c^2 - h^2)(a^2 + b^2 + c^2) \\ &\quad (a^2 + b^2 + c^2 - h^2), \end{split}$$

where $a = e^{\sqrt{2}t}$, $b = e^{-\sqrt{2}t}$ and $c = e^{-t}$.

Isolate all real roots of $q_0(t) = 0$ in $(0, +\infty)$ (Step 4)

 $\mathcal{L}(\mathbf{q}_0) = \{(1.08, 1.29)\}$

• Lift the real root isolation in the order t, x_3, x_2, x_1 (Step 5), and we finally obtain 48 sample points in which the sample point {-0.835, -0.212, 0.184, 2.} satisfies Φ , which implies that the safety property is not satisfied with the counter example starting from (-0.835, -0.212, 0.184) $\in X$, and ending at time t = 2.

Example (Biochemical : nutrient flow in an aquarium)

Consider a vessel of water containing a radioactive isotope, to be used as a tracer for the food chain, which consists of aquatic plankton varieties phytoplankton A and zooplankton B. Let $\xi_1(t)$ be the isotope concentration in the water, $\xi_2(t)$ the isotope concentration in A and $\xi_3(t)$ the isotope concentration in B. The dynamics of the vessel is modeled by the following LDS

$$\dot{\xi} = A\xi$$
, where $A = \begin{bmatrix} -3 & 6 & 5\\ 2 & -12 & 0\\ 1 & 6 & -5 \end{bmatrix}$.

The initial radioactive isotope concentrations $\xi_1(0) = x_1 > 0, \xi_2(0) = 0, \xi_3(0) = 0.$

The safety property of our concern is whether $\forall t > 0 \ \xi_1(t) \ge \xi_2(t) + \xi_3(t)$.

A more general problem : For which $n_1, n_2 \in \mathbb{N}$ such that $\mathcal{F}(n_1, n_2) = \exists x_1 > 0 \ \exists t > 0 \ \xi_1(t) < n_1\xi_2(t) + n_2\xi_3(t)$ holds.

Example (Physics : home heating)

Consider a typical home with attic, basement and insulated main floor. Let $x_3(t), x_2(t), x_1(t)$ be the temperature in the attic, main living area and basement respectively, and t is the time in hours. Assume it is winter time, the outside temperature is nearly $35^{\circ}F$, and the basement earth temperature is nearly $45^{\circ}F$. Suppose a small electric heater is turned on, and it provides a $20^{\circ}F$ rise per hour. We want to verify that the temperature in main living area will never reach too high (maybe $70^{\circ}F$). Analyze the changing temperatures in the three levels using Newton's cooling law and given the value of the cooling constants, we obtain the model as follows :

$$\begin{split} \dot{x_1} &= \frac{1}{2}(45 - x_1) + \frac{1}{2}(x_2 - x_1), \\ \dot{x_2} &= \frac{1}{2}(x_1 - x_2) + \frac{1}{4}(35 - x_2) + \frac{1}{4}(x_3 - x_2) + 20, \\ \dot{x_3} &= \frac{1}{4}(x_2 - x_3) + \frac{3}{4}(35 - x_3), \end{split}$$

with the initial set $X = \{(x_1, x_2, x_3)^T | 1 - (x_1 - 45)^2 - (x_2 - 35)^2 - (x_3 - 35)^2 > 0\}$ and the unsafe set $Y = \{(y_1, y_2, y_3)^T | y_2 - 70 > 0\}$.

Evaluation Results for Open Constraints

LDS	Time (sec)					Memory (kb)				
	LinR	CTID	dReach	HSolver	Flow*	LinR	CTID	dReach	HSolver	Flow*
Constructed	1.35	×	37.36	-	-	112	Х	3812	-	-
Biochemical	0.03	0.20	0.71	-	_	131	2018	3816	-	-
Physics	1.68	×	0.05	0.72	16.50	166	×	3812	1076932	113492

 \times : the verification fails by non-termination within reasonable amount of time (10 hours) - : the verification fails because of giving an answer as "safety unknown"

Table 1. Evaluation results of different methods

Evaluation Results for Closed Constraints

LinR	CT1D	QEPCAD	dReach	HSolver	Flow*
39	33	57	110		

Table : Time consumption (in milliseconds) on Example 3.4 from [LPY2001]

Comparison with Strzebonski's Decision Procedure

	Strzebonski's	Ours
CAD	complete CAD	openCAD
real root isolation	weak Fourier sequence	Rolle's theorem
assumption	Schanuel's Conjecture	no multiple real root of PEFs

Concluding Remarks

- The decidability of the reachability problem of a family of LDSs, whose state parts are linear, and input parts are possibly with exponential expressions.
- The decidability is achieved by showing the decidability of the extension of TA.
- A sound and complete decision procedure for unbounded verification under the assumption that PEFs have no multiple real roots.