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Abstract. Essential tasks for the verification of probabilistic programs
include bounding expected outcomes and proving termination in finite
expected runtime. We contribute a simple yet effective inductive synthesis
approach for proving such quantitative reachability properties by generat-
ing inductive invariants on source-code level. Our implementation shows
promise: It finds invariants for (in)finite-state programs, can beat state-
of-the-art probabilistic model checkers, and is competitive with modern
tools dedicated to invariant synthesis and expected runtime reasoning.

1 Introduction

Reasoning about reachability probabilities is a foundational task in the analysis
of randomized systems. Such systems are (possibly infinite-state) Markov chains,
which are typically described as probabilistic programs – imperative programs
that may sample from probability distributions. We contribute a method for
proving bounds on quantitative properties of probabilistic programs, which finds
inductive invariants on source-code level by inductive synthesis. We discuss each
of these ingredients below, present our approach with a running example in
Sect. 2, and defer a detailed discussion of related work to Sect. 8.

1) Quantitative Reachability Properties. We aim to verify properties such as “is
the probability of reaching an error at most 1%?” More generally, our technique
proves bounds on the expected value of a probabilistic program terminating in
designated states (see Sect. 2.1). Various verification problems are ultimately
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Fig. 1: Our CEGIS framework for synthesizing quantitative inductive invariants.

solved by bounding quantitative reachability properties (cf. [7,47]). Further
examples of such problems include “does a program terminate with finite expected
runtime?” and “is the expected sum of program variables x and y at least one?”

2) Inductive Invariants. An inductive invariant is a certificate that witnesses a
certain quantitative reachability property. Quantitative (and qualitative) reacha-
bility are typically captured as least fixed points (cf. [52,47,7]). For upper bounds,
this characterization makes it natural to search for a prefixed point – the in-
ductive invariant – that, by standard fixed point theory [56], is greater than or
equal to the least fixed point. Our invariants assign every state a quantity. If the
initial state is assigned a quantity below the desired threshold, then the invariant
certifies that the property in question holds. We detail quantitative inductive
invariants in Sect. 2.2; we adapt our method to lower bound reasoning in Sect. 6.

3) Source-Code Level. We consider probabilistic programs over (potentially un-
bounded) integer variables that conceptually extend while-programs with coin
flips, see e.g. Fig. 2.6 We exploit the program structure to reason about infinite-
state (and large finite-state) programs: We never construct a Markov chain but
find symbolic inductive invariants (mapping from program states to nonnegative
reals) on source-code level. We particularly discover inductive invariants that are
piecewise linear, as they can often be verified efficiently.

4) Inductive Synthesis. Our approach to finding invariants, as sketched in Fig. 1,
is inspired by inductive synthesis [4]: The inner loop (shaded box) is provided
with a template T which may generate an infinite set 〈T 〉 of instances. We
then synthesize a template instance I that is an inductive invariant witnessing
quantitative reachability, or determine that no such instance exists. We search for
such instances in a counterexample-guided inductive synthesis (CEGIS) loop: The
synthesizer constructs a candidate. (A tailored variant of) an off-the-shelf verifier
either (i) decides that the candidate is a suitable inductive invariant or (ii) reports
a counterexample state s back to the synthesizer. Upon termination (guaranteed
for finite-state programs), the inner loop has either found an inductive invariant
or the solver reports that the template T does not admit an inductive invariant.

Contributions. We show that inductive synthesis for verifying quantitative
reachability properties by finding inductive invariants on source-code level is

6 Prism programs can be interpreted as an implicit while(not error-state) {. . .}
program – see [40] for an explicit translation.
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1 : fail := 0 ; sent := 0 ;

2 : while ( sent < 8 000 000 ∧ fail < 10 ) {
3 : { fail := 0 ; sent := sent + 1 } [ 0.999 ] { fail := fail + 1 } }

Fig. 2: Model for the bounded retransmission protocol (BRP).

feasible: Our approach is sound for arbitrary probabilistic programs, and complete
for finite-state programs. We implemented our simple yet powerful technique.
The results are promising: Our CEGIS loop is sufficiently fast to support large
templates and finds inductive invariants for various probabilistic programs and
properties. It can prove, amongst others, upper and lower bounds on reachability
probabilities and universal positive almost-termination [42]. Our implementation
is competitive with three state-of-the-art tools – Storm [39], Absynth [50], and
Exist [9] – on subsets of their benchmarks fitting our framework.

Applicability and Limitations. We consider programs with possibly unbounded
nonnegative integer-valued variables and arbitrary affine expressions in quantita-
tive specifications. As for other synthesis-based approaches, there are unrealizable
cases – loops for which no piecewise linear invariant exists. But, if there is an
invariant, our CEGIS loop often finds it within a few iterations.

2 Overview

We illustrate our approach using the bounded retransmission protocol (BRP)
– a standard probabilistic model checking benchmark [38,28] – modeled by the
probabilistic program in Fig. 2. The model attempts to transmit 8 million packets7

over a lossy channel, where each packet is lost with probability 0.1%; if a packet
is lost, we retry sending it; if any packet is lost in 10 consecutive sending attempts
(fail = 10), the entire transmission fails; if all packets have been transmitted
successfully (sent = 8 000 000), the transmission succeeds.

2.1 Reachability Probabilities and Loops

We aim to reason about the transmission-failure probability of BRP, i.e. the
probability that the loop terminates in a target state t with t(fail) = 10 when
started in initial program state s0 with s0(fail) = s0(sent) = 0. One approach to
determine this probability is to (i) construct an explicit-state Markov chain (MC)
per Fig. 2, (ii) derive its Bellmann operator Φ [52], (iii) compute its least fixed
point lfp Φ (a vector containing for each state the probability to reach t), e.g.
using value iteration (cf. [7, Thm 10.15]), and finally (iv) evaluate lfp Φ at s0.

The explicit-state MC of BRP has ca. 80 million states. We avoid building
such large state spaces by computing a symbolic representation of Φ from the

7 Large constants like the number of packets appear naturally in quantitative models
of protocols and have a non-trivial impact on probabilities.
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program. More formally, let S be the set of all states, loop the entire loop (ll. 2–3
in Fig. 2), body the loop’s body (l. 3), and JbodyK(s)(s′) the probability of
reaching state s′ by executing body once on state s. Then the least fixed point of
the loop’s Bellmann operator Φ :

(
S → R∞≥0

)
→
(
S → R∞≥0

)
, defined by

Φ(I) = λs.



1, if s(fail) = 10 ,∑
s′∈S

JbodyK(s)(s′) · I(s′),
if s(sent) < 8 000 000

and s(fail) < 10 ,

0, otherwise ,

captures the transmission-failure probability for the entire execution of loop and
for any initial state, that is, (lfp Φ)(s) is the probability of terminating in a target
state when executing loop on s (even if loop would not terminate almost-surely).
Intuitively, Φ(I)(s) maps to 1 if loop has terminated meeting the target condition
(transmission failure); and to 0 if loop has terminated otherwise (transmission
success). If loop is still running (i.e. it has neither failed nor succeeded yet), then
Φ(I)(s) maps to the expected value of I after executing body on state s.

2.2 Quantitative Inductive Invariants

Reachability probabilities are generally not computable for infinite-state proba-
bilistic programs [43]. Even for finite-state programs the state-space explosion
may prevent us from computing reachability probabilities exactly. However, it
often suffices to know that the reachability probability is bounded from above by
some threshold λ. For BRP, we hence aim to prove that (lfp Φ)(s0) ≤ λ.

We attack the above task by means of (quantitative) inductive invariants :
a candidate for an inductive invariant is a mapping I : S → R∞≥0. Intuitively, such
a candidate I is inductive if the following holds: when assuming that I(s) is (an
over-approximation of) the probability to reach a target state upon termination
of loop on s, then the probability to reach a target state after performing one
more guarded loop iteration, i.e. executing if ( sent < . . . ) { body ; loop } on s,
must be at most I(s). Formally, I is an inductive invariant8 if

∀s : Φ(I)(s) ≤ I(s) which implies ∀s :
(
lfp Φ

)
(s) ≤ I(s)

by Park induction [51]. Hence, I(s) bounds for each initial state s the exact
reachability probability from above. If we are able to find an inductive I that is
below λ for the initial state s0 with fail = sent = 0, i.e. I(s0) ≤ λ, then we have
indeed proven the upper bound λ on the transmission-failure probability of our
BRP model. In a nutshell, our goal can be phrased as follows:

Goal: Find an inductive invariant I, i.e. an I with Φ(I) ≤ I, s.t. I(s0) ≤ λ.

8 For an exposition of why it makes sense to speak of invariants even in a quantitative
setting, [42, Sect. 5.1] relates quantitative invariants to invariants in Hoare logic.
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2.3 Our CEGIS Framework for Synthesizing Inductive Invariants

While finding a safe inductive invariant I is challenging, checking whether a given
candidate I is indeed inductive is easier: it is decidable for certain infinite-state
programs (cf. [14, Sect. 7.2]), it may not require an explicit exploration of the
whole state space, and it can be done efficiently for piecewise linear I. Hence,
techniques that generate decent candidate expressions fast and then check their
inductivity could enable the automatic verification of probabilistic programs with
gigantic and even infinite state spaces.

In this paper, we test this hypothesis by developing the CEGIS framework
depicted in Fig. 1 for incrementally synthesizing inductive invariants. A template
generator generates parametrized templates for inductive invariants. The inner
loop (shaded box in Fig. 1) then tries to solve for appropriate template-parameter
instantiations. If it succeeds, an inductive invariant has been synthesized. Other-
wise, the template provably cannot be instantiated into an inductive invariant.
The inner loop then reports that back to the template generator (possibly with
some hint on why it failed, see [12, Appx. D]) and asks for a refined template.

For our running example, we start with the template

T = [fail < 10 ∧ sent < 8 000 000] · (α · sent + β · fail + γ) + [fail = 10] , (1)

where we use Iverson brackets for indicators, i.e. [ϕ] (s) = 1 if s |= ϕ and 0
otherwise. T contains two kinds of variables: integer program variables fail, sent
and Q-valued parameters α, β, γ. While the template is nonlinear, substituting
α, β, γ with concrete values yields piecewise linear candidate invariants I. We
ensure that those I are piecewise linear to render the repeated inductivity checks
efficient. We construct only so-called natural templates T with Φ in mind, e.g.
we want to construct only I such that I(s) = 1 when s(fail) = 10.

Our inner CEGIS loop checks whether there exists an assignment from these
template variables to concrete values such that the resulting piecewise linear
expression is an inductive invariant. Concretely, we try to determine whether
there exist values for α, β, γ such that T (α, β, γ) is inductive. For that, we first
guess values for α, β, γ, say all 0’s, and ask a verifier whether the instantiated
(and now piecewise linear) template I = T (0, 0, 0) is indeed inductive. In our
example, the verifier determines that I is not inductive: a counterexample is
s(fail) = 9, s(sent) = 7999999. Intuitively, the probability to reach the target
after one more loop iteration exceeds the value in I for this state, that is,
Φ(I)(s) = 0.001 > 0 = I(s). From this counterexample, our synthesizer learns

Φ(T )(s) = 0.001
!
≤ α · 7999999 + β · 9 + γ = T (s) .

Observe that this learned lemma is linear in α, β, γ. The synthesizer will now
keep “guessing” assignments to the parameters which are consistent with the
learned lemmas until either no such parameter assignment exists anymore, or
until it produces an inductive invariant I = T (. . .). In our running example,
assuming λ = 0.9, after 6 lemmas, our synthesizer finds the inductive invariant I[

fail < 10 ∧ sent < 8 · 106
]
· (− 9

8·107 · sent + 79 991
72·107 · fail + 9

10 ) + [fail = 10] (2)
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fail := 0 ; sent := 0 ;

while ( sent < P ∧ fail < R ∧ P ≤ 8 000 000 ∧ R ≥ 5 ) {
{ fail := 0 ; sent := sent + 1 } [ 0.99 ] { fail := fail + 1 }

}

(a) A family of retransmission protocols
(b) Inductive invariant for
fail = 0 and R ≥ 5

Fig. 3: A bounded retransmission protocol family and piece of a matching invariant.

where indeed I(s0) ≤ λ holds. For a tighter threshold λ, such simple templates
do not suffice. For example, it is impossible to instantiate this template to an
inductive invariant for λ = 0.8, even though 0.8 is an upper bound on the actual
reachability probability. We therefore support more general templates of the form

T =
∑
i

[Bi] · (αi · sent + βi · fail + γi) + [fail = 10] ,

where the Bi are (restricted) predicates over program and template variables
which partition the state space. In particular, we allow for a template such as

T = [fail < 10 ∧ sent < δ] · (α1 · sent + β1 · fail + γ1) +

[fail < 10 ∧ sent ≥ δ] · (α2 · sent + β2 · fail + γ2) + [fail = 10]
(3)

However, such templates are challenging for the CEGIS loop. Thus, we additionally
consider templates where the Bi’s range only over program variables, e.g.

[fail < 10 ∧ sent < 4 000 000] · (. . .) + [fail < 10 ∧ sent ≥ 4 000 000] · (. . .) + . . .

Our partition refinement algorithms automatically produce these templates,
without the need for user interaction.

Finally, we highlight that we may use our approach for more general questions.
For BRP, suppose we want to verify an upper bound λ = 0.05 on the probability of
failing to transmit all packages for an infinite set of models (also called a family)
with varying upper bounds on packets 1 ≤ P ≤ 8000000 and retransmissions
R ≥ 5. This infinite set of models is described by the loop shown in Fig. 3a. Our
approach fully automatically synthesizes the following inductive invariant I:

[
fail < R ∧ sent < P ∧ P < 8 000 000 ∧ R ≥ 5

∧ R > 1 + fail ∧ 13067990199
5280132671650

· fail ≤ 5278689867
211205306866000

]
·


−19

3820000040
· sent

+ 19
3820000040

· P
+ 19500001

1910000020


+ . . . (7 additional summands omitted)

The first summand of I is plotted in Fig. 3b. Since I overapproximates the
probability of failing to transmit all packages for every state, I may be used to
infer additional information about the reachability probabilities.
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3 Formal Problem Statement

Before we state the precise invariant synthesis problem that we aim to solve, we
summarize the essential concepts underlying our formalization.

Probabilistic Loops. We consider single probabilistic loops while (ϕ ) {C } whose
loop guard ϕ and (loop-free) body C adhere to the grammar

C −→ skip | x := e | C ; C | {C } [ p ] {C } | if (ϕ ) {C } else {C }
ϕ −→ e < e | ¬ϕ | ϕ ∧ ϕ e −→ z | x | z · e | e+ e ,

where z ∈ Z is a constant and x is from an arbitrary finite set Vars of N-valued
program variables. Program states in S = { s | s : Vars→ N } map variables to
natural numbers.9 All statements are standard (cf. [47]). {C1 } [ p ] {C2 } is a
probabilistic choice which executes C1 with probability p ∈ [0, 1] ∩Q and C2 with
probability 1− p. Fig. 2 (ll. 2–3) is an example of a probabilistic loop.

Expectations. In Sect. 2, we considered whether final states meet some target
condition by assigning 0 or 1 to each final state. The assignment can be generalized
to more general quantities in R∞≥0. We call such assignments f expectations [47]
(think: random variable) and collect them in the set E, i.e.

E =
{
f
∣∣ f : S → R∞≥0

}
, where f � g iff ∀ s ∈ S : f(s) ≤ g(s) .

� is a partial order on E – necessary to sensibly speak about least fixed points.

Characteristic Functions. The expected behavior of a probabilistic loop for an
expectation f is captured by an expectation transformer (namely the Φ : E→ E of
Sect. 2), called the loop’s characteristic function. To focus on invariant synthesis,
we abstract from the details10 of constructing characteristic functions from
probabilistic loops; our framework only requires the following key property:

Proposition 1 (Characteristic Functions). For every loop while (ϕ ) {C }
and expectation f , there exists a monotone function Φf : E→ E such that

Φf (I)(s) =

f(s), if s 6|= ϕ ,

“expected value of I after executing C once on s”, if s |= ϕ ,

and the least fixed point of Φf , denoted lfp Φf , satisfies(
lfp Φf

)
(s) = “expected value of f after executing while (ϕ ) {C } on s” .

9 Considering only unsigned integers does not decrease expressive power but simplifies
the technical presentation (cf. [16, Sect. 11.2] for a detailed discussion). We statically
ensure that for every assignment x := e, e always evaluates to some value in N.

10 We can (and our tool does) derive a symbolic representation of a loop’s characteristic
function from the program structure using a weakest-precondition-style calculus (cf.
[47]); see [12, Appx. A] for details. If f maps only to 0 or 1, Φf corresponds to the
least fixed point characterization of reachability probabilities [7, Thm. 10.15].
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Example 1. In our running example from Sect. 2.1, we chose as f the expression
[fail = 10], which evaluates to 1 in every state s where fail = 10 and to 0 otherwise.
The characteristic function Φf (I) of the loop in Fig. 2 is
[¬ϕ] · [fail=10] + [ϕ] ·

(
0.999 · I [sent/sent+1] [fail/0] + 0.001 · I [fail/fail+1]

)
,

where ϕ = sent < 8 000 000 ∧ fail < 10 is the loop guard and I [x/e] denotes the
(syntactic) substitution of variable x by expression e in expectation I – the latter
is used to model the effect of assignments as in standard Hoare logic. C

Inductive Invariants. For a probabilistic loop while (ϕ ) {C }, and pre- and
postexpectations g, f ∈ E, we aim to verify lfp Φf � g, i.e. that the expected value
of f after termination of the loop is bounded from above by g. We discuss how to
adapt our approach to expected runtimes and lower bounds in Sect. 6. Intuitively,
f assigns a quantity to all target states reached upon termination. g assigns to all
initial states a desired bound on the expected value of f after termination of the
loop. By choosing g(s) =∞ for certain s, we can make s so-to-speak “irrelevant”.
An I ∈ E is an inductive invariant proving lfp Φf � g iff Φf (I) � I and I � g.
Continuing our example, Eq. (2) on p. 5 shows an inductive invariant proving
that lfp Φf � g := [fail = 0 ∧ sent = 0] · 0.9 + [¬(fail = 0 ∧ sent = 0)] · ∞.

Our framework employs syntactic fragments of expectations on which the
check Φf (I) � I can be done symbolically by an SMT solver. As illustrated in
Fig. 1, we use templates to further narrow down the invariant search space.

Templates. Let TVars = {α, β, . . .} be a countably infinite set of Q-valued template
variables. A template valuation is a function I : TVars→ Q that assigns to each
template variable a rational number. We will use the same expressions as in
our programs except that we admit both rationals and template variables as
coefficients. Formally, arithmetic and Boolean expressions E and B adhere to

E −→ r | x | r · x | E + E B −→ E < E | ¬B | B ∧B ,

where x ∈ Vars and r ∈ Q∪TVars. The set TExp of templates then consists of all

T = [B1] · E1 + . . .+ [Bn] · En ,

for n ≥ 1, where the Boolean expressions Bi partition the state space, i.e. for all
template valuations I and all states s, there is exactly one Bi such that I, s |= Bi.
T is a fixed-partition template if additionally no Bi contains a template variable.

Notice that templates are generally not linear (over Vars ∪ TVars). Sect. 2
gives several examples of templates, e.g. Eq. (1).

Template Instances. We denote by T [I] the instance of template T under I, i.e.
the expression obtained from substituting every template variable α in T by its
valuation I(α). For example, the expression in Eq. (2) on p. 5 is an instance of
the template in Eq. (1) on p. 5. The set of all instances of template T is defined
as 〈T 〉 = {T [I] | I : TVars→ Q }. We chose the shape of templates on purpose:
To evaluate an instance T [I] of a template T in a state s, it suffices to find the
unique Boolean expression Bi with I, s |= Bi and then evaluate the single linear
arithmetic expression Ei [I] in s. For fixed-partition templates, the selection of
the right Bi does not even depend on the template evaluation I.
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Piecewise Linear Expectations. Some template instances T [I] do not represent
expectations, i.e. they are not of type S → R∞≥0, as they may evaluate to negative
numbers. Template instances T [I] that do represent expectations are piecewise
linear ; we collect such well-defined instances in the set LinExp. Formally,

Definition 1 (LinExp). The set LinExp of (piecewise) linear expectations is
LinExp = {T [I] | T ∈ TExp and I : TVars→ Q and ∀s ∈ S : T [I] (s) ≥ 0}.

We identify well-defined instances of templates in LinExp with the expectation in E
that they represent, e.g. when writing the inductivity check Φf (T [I])

?� (T [I]).

Natural Templates. As suggested in Sect. 2.3, it makes sense to focus only on
so-called natural templates. Those are templates that even have a chance of
becoming inductive, as they take the loop guard ϕ and postexpectation f into
account. Formally, a template T is natural (wrt. to ϕ and f) if T is of the form

T = [¬ϕ ∧B1] · E1 + . . .+ [¬ϕ ∧Bn] · En︸ ︷︷ ︸
must be equivalent to [¬ϕ] · f

+ [B′1] · E′1 + . . .+ [B′m] · E′m .

We collect all natural templates in the set TnExp.

Formal Problem Statement. Throughout this paper, we fix an ambient
single loop while (ϕ ) {C }, a postexpectation f ∈ LinExp, and a preexpectation
g ∈ LinExp11 such that lfp Φf (I) � g12. The set AdmInv of admissible invariants
(i.e. those expectations that are both inductive and safe) is then given by

AdmInv = { I ∈ LinExp︸ ︷︷ ︸
well-definedness: I�0

| Φf (I) � I︸ ︷︷ ︸
inductivity

and I � g︸ ︷︷ ︸
safety

} ,

where the underbraces summarize the tasks for a verifier to decide whether a
template instance I is an admissible inductive invariant. We require lfp Φf � g,
so that AdmInv is not vacuously empty due to an unsafe bound g.

Formal problem statement: Given a natural template T , find an instan-
tiation I ∈ 〈T 〉 ∩ AdmInv or determine that there is no such I.

Notice that AdmInv might be empty, even for safe g’s, because generally one
might need more complex invariants than piecewise linear ones [16]. However,
there always exists an inductive invariant in LinExp if a loop can reach only
finitely many states.13 We call a loop while (ϕ ) {C } finite-state, if only finitely
many states satisfy the loop guard ϕ, i.e. if Sϕ = { s ∈ S | s |= ϕ } is finite.

Syntactic Characteristic Functions. We work with linear expectations
I, f ∈ LinExp, so that we can check inductivity (Φf (I) � I) symbolically (via
SMT) without state space construction. In particular, we can construct a
syntactic counterpart Ψf to Φf that operates on templates. Intuitively, whether

11 To enable declaring certain states as irrelevant, we additionally allow Ei =∞ in the
linear preexpectation g = [B1] · E1 + . . .+ [Bn] · En.

12 We discuss in Sect. 6 how to reason about lower bounds g � lfp Φf (I).
13 Bluntly just choose as many pieces as there are states.
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we evaluate Ψf on a (syntactic) template T and then instantiate the result with
a valuation I, or we evaluate Φf on the (semantic) expectation T [I] emerging
from instantiating T with I – the results will coincide if T [I] is well-defined.
Formally:

Proposition 2. Given while (ϕ ) {C } and f ∈ LinExp, one can effectively
compute a mapping Ψf : TExp→ TExp, such that for all T and I

T [I] ∈ LinExp implies Ψf (T ) [I] = Φf

(
T [I]

)
.

Moreover, Ψf maps fixed-partition templates to fixed-partition templates.

In Ex. 1, we have already constructed such a Ψf to represent Φf . The general
construction is inspired by [14], but treats template variables as constants.

4 One-Shot Solver

One could address the template instantiation problem from Sect. 3 in one shot:
encode it as an SMT query, ask a solver for a model, and infer from the model an
admissible invariant. While this approach is infeasible in practice (as it involves
quantification over Sϕ), it inspires the CEGIS loop in Fig. 1.

Regarding the encoding, given a template T , we need a formula over TVars
that is satisfiable if and only if there exists a template valuation I such that T [I]
is an admissible invariant, i.e. T [I] ∈ AdmInv. To get rid of program variables
in templates, we denote by T (s) the expression over TVars in which all program
variables x ∈ Vars have been substituted by s(x).

Intuitively, we then encode that, for every state s, the expression T (s) satisfies
the three conditions of admissible invariants, i.e. well-definedness, inductivity, and
safety. In particular, we use Prop. 2 to compute a template Ψf (T ) that represents
the application of the characteristic function Φf to a candidate invariant, i.e.
Φf (T [I]) – a necessity for encoding inductivity.

Formally, we denote by Sat(φ) the set of all models of a first-order formula φ
(with a fixed underlying structure), i.e. Sat(φ) = {I | I |= φ}. Then:

Theorem 1. For every natural template T ∈ TnExp and f, g ∈ LinExp, we have

〈T 〉 ∩ AdmInv 6= ∅
iff Sat

(
∀s ∈ Sϕ : 0 ≤ T (s)︸ ︷︷ ︸

well-definedness

∧ Ψf (T )(s) ≤ T (s)︸ ︷︷ ︸
inductivity

∧ T (s) ≤ g(s)︸ ︷︷ ︸
safety

)
6= ∅ .

Notice that, for fixed-partition templates, the above encoding is particularly
simple: T (s) and Ψf (T )(s) are equivalent to single linear arithmetic expressions
over TVars; g(s) is either a single expression or ∞ – in the latter case, we get an
equisatisfiable formula by dropping the always-satisfied constraint T (s) ≤ g(s).

For general templates, one can exploit the partitioning to break it down into
multiple inequalities, i.e. every inequality becomes a conjunction over implications
of linear inequalities over the template variables TVars.
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Example 2. Reconsider template T in Eq. (3) on p. 6 and assume a state s with
s(fail) = 5 and s(sent) = 2. Then, we encode the well-definedness, T (s) ≥ 0, as(
5 < 10∧ 2 < δ ⇒ α1 · 2 + β1 · 5 + γ1 ≥ 0

)
∧
(
5 < 10∧ 2 ≥ δ ⇒ α2 · 2 + β2 · 5 + γ2 ≥ 0

)
where the trivially satisfiable conjunct 5 = 10⇒ true encoding the last summand,
i.e. [fail = 10], has been dropped. C

The query in Thm. 1 involves (non-linear) mixed real and integer arithmetic with
quantifiers – a theory that is undecidable in general. However, for finite-state
loops and natural templates, one can replace the universal quantifier ∀s by a
finite conjunction

∧
s∈Sϕ

to obtain a (decidable) QF LRA formula.

Theorem 2. The problem 〈T 〉 ∩ AdmInv
?

6= ∅ is decidable for finite-state loops
and T ∈ TnExp. If T is fixed-partition, it is decidable via linear programming.

5 Constructing an Efficient CEGIS Loop

We now present a CEGIS loop (see inner loop of Fig. 1) in which a synthesizer
and a verifier attempt to incrementally solve our problem statement (cf. p. 9).

5.1 The Verifier

We assume a verifier for checking I
?

∈ AdmInv. For CEGIS, it is important to get
some feedback whenever I 6∈ AdmInv. To this end, we define:

Definition 2. For a state s ∈ S, the set AdmInv(s) of s-admissible invariants is

AdmInv(s) = { I | I(s) ≥ 0︸ ︷︷ ︸
s-well-defined

and Φf (I)(s) ≤ I(s)︸ ︷︷ ︸
s-inductive

and I(s) ≤ g(s)︸ ︷︷ ︸
s-safe

} .

For a subset S′ ⊆ S of states, we define AdmInv(S′) =
⋂

s∈S′ AdmInv(s).

Clearly, if I 6∈ AdmInv, then I /∈ AdmInv(s) for some s ∈ S, i.e. state s is a
counterexample to well-definedness, inductivity, or safety of I. We denote the
set of all such counterexamples (to the claim I ∈ AdmInv) by CounterExI . We
assume an effective (baseline) verifier for detecting counterexamples:

Definition 3. A verifier is any function Verify : LinExp→ {true} ∪ S such that

1. Verify(I) = true if and only if I ∈ AdmInv, and
2. Verify(I) = s implies s ∈ CounterExI .

Proposition 3 ([14]). There exist effective verifiers.

For example, one can implement an SMT-backed verifier using an encoding
analogous to Thm. 1, where every model is a counterexample s ∈ CounterExI :

I /∈ AdmInv iff Sat
(
¬
(

0 ≤ I ∧ Φf (I) ≤ I ∧ I ≤ g
) )
6= ∅︸ ︷︷ ︸

∃s∈S : I /∈AdmInv(s)

.
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Algorithm 1: Template-Instance Synthesizer for template T

1 S′ ← ∅ ;
2 while SyntT (S′) 6= false do
3 I ← SyntT (S′) ;
4 result ← Verify(I) ;
5 if result = true then
6 return I ; /* Verifier returns true, we have I ∈ AdmInv */

7 S′ ← S′ ∪ {result} ; /* result is a counterexample */

8 return false ; /* 〈T 〉 ∩ AdmInv = ∅ */

5.2 The Counterexample-Guided Inductive Synthesizer

A synthesizer must generate from a given template T instances I ∈ 〈T 〉 which
can be passed to a verifier for checking admissibility. To make an informed guess,
our synthesizers can take a finite set of witnesses S′ ⊆ S into account:

Definition 4. Let FinStates be the set of finite sets of states. A synthesizer for
template T ∈ TnExp is any function SyntT : FinStates→ 〈T 〉 ∪ {false} such that

1. if SyntT (S′) = I, then I ∈ 〈T 〉 ∩ AdmInv(S′), and

2. SyntT (S′) = false if and only if 〈T 〉 ∩ AdmInv(S′) = ∅.

To build a synthesizer SyntT (S′) for finite sets of states S′ ⊆ S, we proceed
analogously to one-shot solving for finite-state loops (Thm. 2), i.e. we exploit

T [I] ∈ AdmInv(S′) iff I |=
∧
s∈S′

0 ≤ T (s) ∧ Ψf (T )(s) ≤ T (s) ∧ T (s) ≤ g(s)︸ ︷︷ ︸
T [I]∈AdmInv(s)

.

That is, our synthesizer may return any model I of the above constraint system;
it can be implemented as one SMT query. In particular, one can efficiently find
such an I for fixed-partition templates via linear programming.

Theorem 3 (Synthesizer Completeness). For finite-state loops and natural
templates T ∈ TnExp, we have SyntT (Sϕ) ∈ AdmInv or 〈T 〉 ∩ AdmInv = ∅.

Using the synthesizer and verifier in concert is then intuitive as in Alg. 1. We
incrementally ask our synthesizer to provide a candidate invariant I that is
s-admissible for all states s ∈ S′. Unless the synthesizer returns false, we ask
the verifier whether I is admissible. If yes, we return I; otherwise, we get a
counterexample s and add it to S′ before synthesizing the next candidate.

Remark 1. Without further restrictions, the verifier of Def. 3 may go into a coun-
terexample enumeration spiral. In [12, Appx. C], we therefore discuss additional
constraints that make this verifier act more cooperatively. C
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6 Generalization to Termination and Lower Bounds

We extend our approach to (i) proving universal positive almost-sure termination
(UPAST) – termination in finite expected runtime on all inputs, see [42, Sect. 6]
– by synthesizing piecewise linear upper bounds on expected runtimes, and to
(ii) verifying lower bounds on possibly unbounded expected values.

UPAST. We leverage Kaminski et al.’s weakest-precondition-style calculus for
reasoning about expected runtimes [44,45]:

Proposition 4. For every loop while (ϕ ) {C }, the monotone function

Θ : E→ E, Θ(I)(s) = 1 + Φ0(I)(s) ,

obtained from Φ0 (cf. Prop. 1) satisfies(
lfp Θ

)
(s) =

“expected number of loop guard evaluations
when executing while (ϕ ) {C } on s” .

All properties of Φ0 relevant to our approach carry over to Θ, thus enabling the
synthesis of inductive invariants I ∈ LinExp satisfying 0 � I and Θ(I) � I. Such I
upper-bound the expected number of loop iterations [44] and, since expectations
in LinExp never evaluate to infinity, I witnesses UPAST of the while-loop.

Lower Bounds. Consider the problem of verifying a lower bound g � lfp Φf

for some loop C ′ = while (ϕ ) {C }. It is straightforward to modify our CEGIS
approach for synthesizing sub-invariants, i.e. I ∈ LinExp with I � Φf (I). However,
Hark et al. [36] showed that sub-invariants do not necessarily lower-bound lfp Φf ;
they hence proposed a more involved yet sound induction rule for lower bounds:

Theorem 4 (Adapted from Hark et al. [36]). Let T be a natural template
and I ∈ 〈T 〉. If 0 � I, I � Φf (I), and C ′ is UPAST, then

∃ c ∈ R≥0 ∀ s ∈ Sϕ : Φf

(
|I − I(s)|

)
(s) ≤ c︸ ︷︷ ︸

I is conditionally difference bounded (c.d.b.)

implies I � lfp Φf .

Akin to Prop. 2, given T ∈ TnExp, we can compute T ′ ∈ TnExp s.t. for all I,

T [I] ∈ LinExp implies T ′ [I] = λs. Φf

(
|T [I]− T [I] (s)|

)
(s) ,

which facilitates the extension of our verifier and synthesizer (see Sect. 5) for
encoding and checking conditional difference boundedness. Hence, we can employ
our CEGIS framework for verifying g � lfp Φf by (i) proving UPAST of C ′ as
demonstrated above and (ii) synthesizing a c.d.b. sub-invariant I with g � I.

7 Empirical Evaluation

We have implemented a prototype of our techniques called cegispro214: CEGIS
for PRObabilistic PROgrams. The tool is written in Python using pySMT [34]

14 � https://github.com/moves-rwth/cegispro2
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Fig. 4: Performance of cegispro2 vs. state-of-the-art tools on three verification tasks
(time in seconds, log-scaled; MO=8GB). Markers above the solid line depict benchmarks
where cegispro2 is faster (in different orders of magnitude marked by the dashed lines).

with Z3 [49] as the backend for SMT solving. cegispro2 proves upper- or
lower bounds on expected outcomes of a probabilistic program by synthesizing
quantitative inductive invariants. We investigate the applicability and scalability
of our approach with a focus on the expressiveness of piecewise linear invariants.
Moreover, we compare with three state-of-the-art tools – Storm [39], Absynth
[50], and Exist [9] – on subsets of their benchmarks fitting into our framework.

Template Refinement. We start with a fixed-partition template T1 constructed
automatically from the syntactic structure of the given loop (i.e. the loop guard
and branches in the loop body, see e.g. Eq. (1)). If we learn that T1 admits no
admissible invariant, we generate a refined template T2, and so on, until we find
a template Ti with 〈Ti〉 ∩ AdmInv 6= ∅ or realize that no further refinement is
possible. We implemented three strategies for template refinement (including one
producing non-fixed-partition templates); see [12, Appx. D] for details.

Finite-State Programs. Fig. 4a depicts experiments on verifying upper bounds
on expected values of finite-state programs. For each benchmark, i.e. program
and property with increasingly sharper bounds, we evaluate cegispro2 on all
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template-refinement strategies (cf. [12, Appx. D]). We compare explicit- and
symbolic-state engines of the probabilistic model checker Storm 1.6.3 [39] with
exact arithmetic. Storm implements LP-based model checking (as in Sect. 4) but
employs more efficient methods in its default configuration. Fig. 4a depicts the
runtime of the best configuration. See detailed configurations in [12, Appx. E.1].

Results. (i) Our CEGIS approach synthesizes inductive invariants for a variety of
programs. We mostly find syntactically small invariants with a small number of
counterexamples compared to the state-space size (cf. [12, Tab. 2]). This indicates
that piecewise linear inductive invariants can be sufficiently expressive for the
verification of finite-state programs. The overall performance of cegispro2
depends highly on the sharpness of the given thresholds. (ii) Our approach can
outperform state-of-the-art explicit- and symbolic-state model checking techniques
and can scale to huge state spaces. There are also simple programs where our
method fails to find an inductive invariant (gridbig) or finds inductive invariants
only for rather simple properties while requiring many counterexamples (gridsmall).
Whether we need more sophisticated template refinements or whether these
programs are not amenable to piecewise linear expectations is left for future work.
(iii) There is no clear winner between the two fixed-partition template-refinement
strategies (cf. [12, Tab. 2]). We further observe that the non-fixed-partition
refinement is not competitive as significantly more time is spent in the synthesizer
to solve formulae with Boolean structures. We thus conclude that searching for
good fixed-partition templates in a separate outer loop (cf. Fig. 1) pays off.

Proving UPAST. Fig. 4b depicts experiments on proving UPAST of (possibly
infinite-state) programs taken from [50] (restricted to N-valued, linear programs
with flattened nested loops). We compare to the LP-based tool Absynth [50]
for computing upper bounds on expected runtimes. These benchmarks do not
require template refinements. More details are given in [12, Appx. E.2].

Results. cegispro2 can prove UPAST of various infnite-state programs from
the literature using very few counterexamples. Absynth mostly outperforms
cegispro215, which is to be expected as Absynth is tailored to the computation
of expected runtimes. Remarkably, the runtime bounds synthesized by cegispro2
are often as tight as the bounds synthesized by Absynth (cf. [12, Tab. 3]).

Verifying Lower Bounds. Fig. 4c depicts experiments aiming to verify lower
bounds on expected values of (possibly infinite-state) programs taken from [9].
We compare to Exist [9]16, which combines CEGIS with sampling- and ML-
based techniques. However, Exist synthesizes sub-invariants only, which might be
unsound for proving lower bounds (cf. Sect. 6). Thus, for a fair comparison, Fig. 4c
depicts experiments where both Exist and cegispro2 synthesize sub-invariants
only, whereas in Fig. 4d, we compare cegispro2 that finds sub-invariants only
with cegispro2 that additionally proves UPAST and c.d.b., thus obtaining
sound lower bounds as per Thm. 4. No benchmark requires template refinements.

15 Absynth uses floating-point arithmetic whereas cegispro2 uses exact arithmetic.
16 Exist supports parametric probabilities, which are not supported by our tool. We

have instantiated these parameters with varying probabilities to enable a comparison.
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Results. cegispro2 is capable of verifying quantitative lower bounds and outper-
forms Exist (on 30/32 benchmarks) for synthesizing sub-invariants. Additionally
proving UPAST and c.d.b. naturally requires more time. A manual inspection re-
veals that, for most TO/MO cases in Fig. 4d, there is no c.d.b. sub-invariant. One
soundness check times out, since we could not prove UPAST for that benchmark.

8 Related Work

We discuss related works in invariant synthesis, probabilistic model checking,
and symbolic inference. ICE [33] is a template-based, cex.-guided technique for
learning invariants. More inductive synthesis approaches are surveyed in [4,29].

Quantitative Invariant Synthesis. Apart from the discussed method [9], constraint
solving-based approaches [30,26,46] aim to synthesize quantitative invariants for
proving lower bounds over R-valued program variables – arguably a simplification
as it allows solvers to use (decidable) real arithmetic. In particular, [26] also ob-
tains linear constraints from counterexamples ensuring certain validity conditions
on candidate invariants. Apart from various technical differences, we identify three
conceptual differences: (i) we support piecewise expectations which have been
shown sufficiently expressive for verifying quantitative reachability properties;
(ii) we focus on the integration of fast verifiers over efficiently decidable theories;
and (iii) we do not need to assume termination or boundedness of expectations.

Various martingale-based approaches, such as [19,23,24,32,31,2,48], aim to
synthesize quantitative invariants over R-valued variables, see [55] for a recent
survey. Most of these approaches yield invariants for proving almost-sure termi-
nation or bounding expected runtimes. ε-decreasing supermartingales [19,20] and
nonnegative repulsing supermartingales [55] can upper-bound arbitrary reach-
ability probabilities. In contrast, we synthesize invariants for proving upper-
or lower bounds for more general quantities, i.e. expectations. [10] can prove
bounds on expected values via symbolic reasoning and Doob’s decomposition,
which, however, requires user-supplied invariants and hints. [1] employs a CEGIS
loop to train a neural network dedicated to learning a ranking supermartingale
witnessing UPAST of (possibly continuous) probabilistic programs. They also
use counterexamples provided by SMT solvers to guide the learning process.

The recurrence solving-based approach in [11] synthesizes nonlinear invariants
encoding (higher-order) moments of program variables. However, the underlying
algebraic techniques are confined to the sub-class of prob-solvable loops.

Probabilistic Model Checking. Symbolic probabilistic model checking focusses
mostly on algebraic decision diagrams [6,3], representing the transition rela-
tion symbolically and using equation solving or value iteration [8,37,53] on that
representation. PrIC3 [15] finds quantitative invariants by iteratively overapprox-
imating k-step reachability. Alternative CEGIS approaches synthesize Markov
chains [18] and probabilistic programs [5] that satisfy reachability properties.

Symbolic Inference. Probabilistic inference – in the finite-horizon case – employs
weighted model counting via either decision diagrams annotated with probabilities
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as in Dice [41,40] or approximate versions by SAT/SMT-solvers [21,22,27,54,17].
PSI [35] determines symbolic representations of exact distributions. Prodigy [25]
decides whether a probabilistic loop agrees with an (invariant) specification.

Data-Availability Statement The datasets generated during and/or analysed dur-
ing the current study are available in the Zenodo repository [13].

References

1. Abate, A., Giacobbe, M., Roy, D.: Learning probabilistic termination proofs. In:
CAV (2). Lecture Notes in Computer Science, vol. 12760, pp. 3–26. Springer (2021)
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24. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for probabilistic
termination. In: POPL. pp. 145–160. ACM (2017)

25. Chen, M., Katoen, J., Klinkenberg, L., Winkler, T.: Does a program yield the right
distribution? Verifying probabilistic programs via generating functions. In: CAV
(1). Lecture Notes in Computer Science, vol. 13371, pp. 79–101. Springer (2022)

26. Chen, Y., Hong, C., Wang, B., Zhang, L.: Counterexample-guided polynomial loop
invariant generation by Lagrange interpolation. In: CAV (1). Lecture Notes in
Computer Science, vol. 9206, pp. 658–674. Springer (2015)

27. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and
value estimation for probabilistic programs. Acta Informatica 54(8), 729–764 (2017)

28. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis
of probabilistic systems by successive refinements. In: PAPM-PROBMIV. Lecture
Notes in Computer Science, vol. 2165, pp. 39–56. Springer (2001)

29. Fedyukovich, G., Bod́ık, R.: Accelerating syntax-guided invariant synthesis. In:
TACAS (1). Lecture Notes in Computer Science, vol. 10805, pp. 251–269. Springer
(2018)

30. Feng, Y., Zhang, L., Jansen, D.N., Zhan, N., Xia, B.: Finding polynomial loop
invariants for probabilistic programs. In: ATVA. Lecture Notes in Computer Science,
vol. 10482, pp. 400–416. Springer (2017)

31. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: Soundness, completeness,
and compositionality. In: POPL. pp. 489–501. ACM (2015)

32. Fu, H., Chatterjee, K.: Termination of nondeterministic probabilistic programs. In:
VMCAI. Lecture Notes in Computer Science, vol. 11388, pp. 468–490. Springer
(2019)

Probabilistic Program Verification via Inductive Synthesis 427
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