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Reachability Analysis for Solvable
Dynamical Systems

Ting Gan , Mingshuai Chen , Yangjia Li , Bican Xia , and Naijun Zhan

Abstract—The reachability problem is one of the most
important issues in the verification of hybrid systems. But
unfortunately the reachable sets for most of hybrid sys-
tems are not computable. In the literature, only some spe-
cial families of linear vector fields are proved with decid-
able reachability problem, let alone nonlinear ones. In this
paper, we investigate the reachability problem of nonlinear
vector fields by identifying three families of nonlinear vec-
tor fields with solvability and prove that their reachability
problems are decidable. An n-dimension dynamical system
is called solvable if its state variables can be partitioned into
m groups such that the derivatives of the variables in the
ith group are linear in themselves, but possibly nonlinear
in the variables from the 1st to i − 1th groups. The three
families of nonlinear solvable vector fields under consider-
ation are: the matrices corresponding to the linear parts of
any vector field in the first family are nilpotent; the matri-
ces corresponding to the linear parts of any vector in the
second family are only with real eigenvalues; the matrices
corresponding to the linear parts of any vector field in the
third family are only with pure imaginary eigenvalues. The
experimental results indicate the efficiency of our approach.

Index Terms—Hybrid systems (HS), reachability analysis,
solvable systems (SSs), Tarski’s algebra.

I. INTRODUCTION

HYBRID systems (HSs) integrate computation with phys-
ical processes: embedded computers and networks mon-

itor and control physical processes and feedback loops con-
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tinuously influence computations, which are known as cyber-
physical systems (CPSs) nowadays. Applications of CPS span
over many safety-critical domains, e.g., communication, health-
care, manufacturing, aerospace, transportation, etc. To guaran-
tee the correctness of these systems is vital so that we can bet our
lives on them, and challenging [40]. Therefore, formal methods
has been widely used in the verification of HSs. The reachability
problem of HSs is to verify that unsafe states are not reachable
from the set of the initial states for a given HS, which is one of
most important issues in the verification of HSs.

As HSs consist of intangibly interaction between continu-
ous evolutions and discrete transitions, the reachability problem
of most of HSs is undecidable [21], except for some simple
cases, either their vector fields, i.e., their continuous evolution
parts, are quite simple such as timed automata [4] and multirate
automata [3], or there are very restrictive constraints on their
discrete transitions such as o-minimal HSs [26].

In [27], Lafferriere et al. investigated vector fields of the form

ξ̇ = Aξ + u (1)

where ξ(t) ∈ Rn is the state of the system at time t, A ∈ Rn×n

is the system matrix, and u : R → Rn is a piecewise continuous
function, which is called the input. They obtained the decidabil-
ity of the reachability problems of the following three families
of vector fields:

1) A is nilpotent, i.e., An = 0, and each component of u is
a polynomial.

2) A is diagonalizable with rational eigenvalues, and each
component of u is of the form

∑m
i=1 cie

λi t , where λi s are
rationals and cis are subject to semialgebraic constraints.

3) A is diagonalizable with purely imaginary eigenvalues,
whose imaginary parts are rationals, and each component
of u of the form

∑m
i=1 ci sin (λi t) + di cos (λi t), where

λis are rationals and cis and dis are subject to semialge-
braic constraints.

The above results are achieved by reducing the problems into
Tarski’s algebra [39].

In [5], Anai and Weispfenning presented a systematic ap-
proach on how to reduce the reachability problem and control
parameter set problem of parametric inhomogeneous linear dif-
ferential systems, with the form1

ξ̇ = Aξ + u(t, r) (2)

where A ∈ Rn×n is an n × n matrix, r = (r1 , . . . , rk ) is a vec-
tor of parameters, to the transcendental implicitization problem
of a fundamental system of solutions of ξ̇ = Aξ by quantifier

1This form can be generalized to ξ̇ = A(t)ξ + u(t, r).
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elimination. They further proved (see [5, Corollary 2]) that ex-
act semialgebraic implicitization is possible for a fundamental
system of solutions of ξ̇ = Aξ if and only if one of the following
cases holds:

1’) All eigenvalues of A are zero, i.e., A is nilpotent.
2’) All eigenvalues λ1 , . . . , λn of A are nonzero, pairwise

distinct reals, and dimQ(span(λ1 , . . . , λn )) ≤ 1.
3’) All eigenvalues λ1 , . . . , λn of A are purely imaginary,

say of the form λi = μii with nonzero, pairwise distinct
reals μi s, and dimQ(span(μ1 , . . . , μn )) ≤ 1.

Obviously, Anai and Weispfenning’s work extended
Lafferriere et al.’s further, and particularly proved the largest
families of linear vector fields whose exact reachable set com-
putations are computable by reduction to Tarski’s algebra.

In [16] and [17], we extended the decidability results of reach-
ability problems of linear vector fields due to Lafferriere et al.
[27] and Anai and Weispfenning [5].

1) In [16], we generalized the above cases 2) and 2’) to the
following:

a) A is diagonalizable with real eigenvalues, and each
component of u is of the form

∑m
i=1 cie

λi t , where
λis are reals and cis are subject to semialgebraic
constraints.

Note that compared with [5, case 2’)], we dropped the
constraint dimQ(span(λ1 , . . . , λn )) ≤ 1, which restrict
the eigenvalues to be linearly dependent over Q. Such
extension is substantial, since the new family is strictly
more expressive, whose reachability problem cannot be
essentially reduced to Tarski’s algebra any more as in [5]
and [27]. To obtain the decidability, we have to resort to
the decidability of the extension of Tarski’s algebra with
functions of the form

f(t,x) =
m∑

i=0

fi(t,x)eλi t (3)

where m ∈ N, fi(t,x) ∈ R[t,x], λi ∈ R, i = 0, 1,
. . . , m, and e is an irrational and transcendental num-
ber approximately equal to 2.718281828459. We denote
the extension by Te .

2) In [17], we generalized the above cases 3) and 3’) to the
following:

a) A is diagonalizable with purely imaginary eigen-
values, whose imaginary parts are reals, and each
component of u is of the form

∑m
i=1 ci sin (λi t) +

di cos (λi t), where λis are reals and cis and dis are
subject to semialgebraic constraints.

This is still achieved by reducing the decidability to
Tarski’s algebra [39] using the density results in number
theory [20], rather either by direct replacement such as
[27] or by reduction to the transcendental implicitization
problem such as [5]. Note that compared to [5, case 3’)],
we dropped the constraint dimQ(span(μ1 , . . . , μn )) ≤ 1.

It is also worth noting that for linear vector fields, some other
problems that are quite related to the reachability problem have
been investigated and proved to be decidable in the literature,
such as the polytope escape problem [32], Recurrent reachability
problem [8], and the Skolem problem [9]. But a main restriction
on all of the results is that the unsafe set should only be linear and
represented as a polyhedra, whereas in our results, the unsafe

set can be nonlinear and represented by a semialgebraic set. For
an effective verification method for the reachability problem of
the former case, we refer to Yazarel and Pappas’s work [43].

Tarski’s algebra is the first-order theory of reals over the
structure 〈R; +,−, ·, 0, 1〉, which is also called the elementary
algebra and geometry. In [39], Tarski showed the decidabil-
ity of Tarski’s algebra. But whether the extension of Tarski’s
algebra with exponentiation over real closed fields is decid-
able (so-called “Tarski’s conjecture”) is still open. In [2] and
[30], Weispfenning et al. gave a partial solution to Tarski’s
conjecture by showing the decidability of the extension of
Tarski’s algebra by allowing terms of the form f(t,x, et), where
f(t,x, y) ∈ R[t,x, y]. In [41], Xu et al. considered how to gen-
eralize Weispfenning et al.’s approach by allowing functions of
the form (3), but with the restriction that all the λis are nonnega-
tive integers. Obviously, Te is strictly more expressive than the
ones considered in [2], [30], and [41].

In the literature, there is very little decidability results on
the reachability problems of nonlinear vector fields. The first
decidability results are given in [42] on the reachability prob-
lems for some specific solvable nonlinear vector fields, which
are proper subsets of the second family below we consider, by
exploiting Weispfenning et al.’s result on Tarski’s conjecture
[2]. In this paper, we investigate this issue by identifying three
families of solvable vector fields and proving their reachability
problems are decidable by exploiting the techniques developed
in our previous work [16], [17], which are the three largest non-
linear vector fields with decidable reachability to the best of our
knowledge.

The notion of solvability was first proposed in [35] for a class
of polynomial programs, and was extended to dynamical and
HSs in [42]. Formally, a dynamical system

ξ̇ = F (ξ,u(t))

is called solvable system (SS) if the variable vector ξ =
(ξ1 , . . . , ξn ) can be classified into m groups (m ≤ n)

ζ1 = (ξ11 , . . . , ξ1n1 ), . . . , ζm = (ξm1 , . . . , ξmnm
)

and the dynamical system can be represented as the form:

ξ̇ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ζ̇1

ζ̇2

...
˙ζm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

A1ζ1 + u1(t)
A2ζ2 + u2(t, ζ1)

...

Am ζm + um (t, ζ1 , . . . , ζm−1)

⎤

⎥
⎥
⎥
⎥
⎦

(4)

where 0 < n1 < . . . < nm = n are integers, m ∈ N,
A1 , . . . , Am are real matrices with corresponding dimen-
sions, u1 , . . . ,um are polynomial–exponential–trigonometric
functions (PETFs, the definition will be given later). For
example

⎡

⎢
⎣

ẋ

ẏ

ż

⎤

⎥
⎦ =

⎡

⎢
⎣

x + e−t

2y + x2 − e−
√

2t

√
3z + xy + 2e−t

⎤

⎥
⎦ (5)

is a SS, which is beyond the expression of the linear system.
Obviously, all linear dynamical systems (LDSs) are also SS s.

Thus, the main contributions of this paper can be summarized
as follows:

1”) If A1 , . . . , Am in (4) are nilpotent, i.e., Ak1
1 =

0, . . . , Akm
m = 0, for some k1 , . . . , km ∈ N, and each
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component of ui is a polynomial, then the reachability
problem of (4) is decidable. This is achieved by reduc-
tion to Tarski’s algebra similarly to [27].

2”) If each Ai is diagonalizable with real eigenvalues, and
each component of ui is of the form

∑mi

j=1 cij e
λi j t ,

where λij s are reals and cij s are subject to semialge-
braic constraints, then the reachability problem of (4) is
decidable, where i = 1, . . . , m. The technique adopted
for this case is adapted from [16]. In [16], it is assumed
that any expression of Te has no multiple real roots, we
will drop such restriction in this paper.

3”) If each Ai is diagonalizable with purely imaginary
eigenvalues, whose imaginary parts are reals, and each
component of ui of the form

∑mi

j=1 cij sin (λij t) +
dij cos (λij t), where λij s are reals and cij s and dij s
are subject to semialgebraic constraints, the reachability
problem of (4) is decidable, where i = 1, . . . , m. The
technique adopted for this case is essentially same as
what we used in [17], but the reduction procedure is
more complicated for the nonlinear case.

Additionally, similar to [5] and [17], we present an abstraction
of general solvable dynamical systems of the form (4). That is,

1) each Ai is a real matrix, and each component of ui is
of the form

∑ri

k=0 pik (t) expαi k t cos (βik t + γik ), where
i = 1, . . . , m, ri ∈ N, αik , βik , γik ∈ R, and pik (t) ∈
R[t].

The basic idea of our approach is as follows: For each eigen-
value α ± βi of Ai , we introduce two fresh variables a and b,
and let a = sinβt and b = cos βt. So, it derives a new constraint
a2 + b2 = 1. Using such replacement, the reachable set of (4)
can be essentially represented as the form

f(t,x,a,b) =
m∑

i=0

ni∑

j=0

fij (t,x,a,b)eαi j t .

Clearly, constraints over such expressions together with all the
derived constraints fall into the decidable theory Te .

We implement a prototypical tool of our approach, and some
case studies are conducted. To demonstrate the efficiency of our
approach, first, we compare our tool with CT1D [38], a general-
ized CAD implementation of Mathematica’s Reduce command,
which can cope with quantifier elimination of Te . For Te formu-
las only with strict inequalities, our tool outperforms CT1D, and
for the rest cases, their efficiencies are nearly same. As other
state-of-the-art tools for quantifier elimination, e.g., REDLOG
[14], QEPCAD, and SyNRAC [24] cannot handle the decidabil-
ity problems we considered in this paper in general, it is thus
not comparable. Second, we also compare our tool with several
well-known reachability computation tools based on approxi-
mation and numeric computation, e.g., HSolver [33], FLOW*
[7], dReach [25], etc., although such comparisons are not fairly
as they deal with different problems in general. After necessary
preprocessing in order to make the comparison reasonable, our
tool is more efficient.

II. PRELIMINARIES

In this section, we first introduce some basic notions and
theories, then explain the problem we consider. We use x to
stand for a vector variable (x1 , . . . , xn ), N, Q, R, C for natural,
rational, real, and complex numbers, respectively, R[x] for the

polynomial ring in x with coefficients in R in what follows. We
denote by Λ(M) the set of all the eigenvalues of matrix M . For
any c ∈ C, denote by Im(c) the imaginary part of c.

A. Basic Notions

A term f(t,x) is called polynomial–exponential function
(PEF) w.r.t. t if it can be written in the form of (3).

A term f(t,x) is called trigonometric function (TMF) w.r.t. t
if it can be written with the following form:

f(t,x) =
r∑

l=1

cl(x)cos (μlt) + dl(x)sin (μlt) (6)

where r ∈ N, cl(x), dl(x) ∈ R[x], and μl ∈ R, l = 1, . . . , r.
Denote by Γ(f(t,x)) the set {μ1 , μ2 , . . . , μr} in the sequel.

A term f(t,x) is called a polynomial–exponential–
trigonometric function (PETF) w.r.t. t, if it can be written with
the following form:

f(t,x) =
r∑

k=0

pk (t,x)eαk t cos(βk t + γk ) (7)

where r ∈ N, αk , βk , γk ∈ R, and pk (t,x) ∈ R[t,x]. Obvi-
ously, PEFs and TMFs are PETFs as sin (α) can be seen as
cos ( π

2 + α).
A function vector is said to be PEF (TMF or PETF) if every

component is a PEF (TMF or PETF).
A set X ⊂ Rn is said to be semialgebraic if it is defined as

X = {x ∈ Rn | p1(x) � 0, · · · , pj (x) � 0}
for some polynomials p1(x), · · · , pj (x) ∈ R[x], where � ∈ {≥
, >} and j ∈ N. X is called open semialgebraic if there is a ball
bδ (x) such that bδ (x) ⊆ X, where δ is the radius and x is the
center of the ball, for any x ∈ X.

B. Density Results in Number Theory

In this part, we introduce some theoretical results on density
in number theory.

Definition 1 (Rational linear independent): Let a1 , . . . , ak

are some real numbers. We say a1 , . . . , ak are rational lin-
ear independent if

∑k
i=1 ciai = 0 implies

∧k
i=1 ci = 0, for all

c1 , . . . , ck ∈ Q.
Definition 2 (Basis): Let A ⊂ R with #(A) ≤ +∞ be a set

of real numbers, where #(A) means the number of elements in
A. A set B ⊆ A is said be a basis of A, if the elements in B
are rational linear independent and for any element a ∈ A\B,
where A\B denotes the set of all the elements in A but not in B,
then the elements in {a} ∪ B are not rational linear independent.

Let A = {a1 , . . . , ak} be a set of real number, B =
{b1 , . . . , bj} ⊆ A be a basis of A. It is easy to see
that for any ai ∈ A, there exists c = (ci1 , . . . , cij ) ∈ Q
such that ai = ci1b1 + · · · + cij bj . For 1 ≤ l ≤ j, let dl =
lcm(denom(c1l), . . . ,denom(ckl)) where denom(c) is the de-
nominator of rational number c and lcm means the least common
multiple. Let B = { b1

d1
, . . . ,

bj

dj
} be a basis of A, then for any

a ∈ A, a can be written as an integer linear combination of the
elements in B. We call such basis B an integer-basis of A.

The following Kronecker Theorem gives a nice density prop-
erty of a rational or integer linear independent set [20].

Theorem 1 (Kronecker): The set {({ξ1t}1 , . . . , {ξk t}1) |
t ∈ N} is dense in [0, 1]k , if 1, ξ1 , . . . , ξk are integer linear
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independent, where {ξ}1 ∈ [0, 1) is the decimal part of the real
number ξ.

Corollary 1: The set {({ξ1t}2π , . . . , {ξk t}2π ) | t ≥ 0} is
dense in [0, 2π]k , if ξ1 , . . . , ξk are integer linear independent,
where {ξ}2π ∈ [0, 2π) is the remainder of ξ by 2π.

Proof: Let ξ′i = ξi

2π , for i = 1, . . . , k. It is easy to see that we
just need to prove that

{({ξ′1t}1 , . . . , {ξ′k t}1) | t ≥ 0} (8)

is dense in [0, 1]k .
Since ξ1 , . . . , ξk are integer linear independent, ξ′1 , . . . , ξ

′
k

are also integer linear independent. Thus, it is easy to see that
there exists ξ0 > 0 such that 1, ξ0ξ

′
1 , . . . , ξ0ξ

′
k are integer linear

independent. By Theorem 1, it follows

{({ξ0ξ
′
1n}1 , . . . , {ξ0ξ

′
kn}1) | n ∈ N} (9)

is dense in [0, 1]k . As ξ0 > 0 implies {ξ0n | n ∈ N} ⊂ {t | t ≥
0}, we have that the set in (9) is a subset of the set in (8). Thus,
the set in (8) is dense in [0, 1]k . �

Theorem 2: Let a1 , . . . , ak be rational linear independent,
and

S = {(sin (a1t), cos (a1t), . . . , sin (ak t), cos (ak t)) | t ≥ 0}
(10)

S =

{

(α1 , β1 , . . . , αk , βk ) ∈ R2k |
k∧

i=1

α2
i + β2

i = 1

}

(11)

then S is dense in S.
Proof: a1 , . . . , ak are rational linear independent, then also

integer linear independent. By Corollary 1, we have that

D0 = {({a1t}2π , . . . , {ak t}2π ) | t ≥ 0}
is dense in D = [0, 2π]k . On the other hand, obviously,
(sin, cos) : D0 �→ S, and (sin, cos) : D �→ S, and (sin, cos) is
continuous, hence (sin, cos)(D0) is dense in (sin, cos)(D), i.e.,
S is dense in S. �

Corollary 2: Let f(α1 , β1 , . . . , αk , βk ) be a polynomial in
α1 , β1 , . . . , αk , βk . a1 , . . . , ak are real numbers that are rational
linear independent and S, S defined as (10),(11), then f(S) is
dense in f(S).

C. Problem

Given an SS of the form (4) and an initial state ξ(0) = x,
the solution of this system at time t ≥ 0 is denoted by ξ(t) =
Φ(x, t). Then, the forward reachable set Post(X) of (4) from a
given set X is defined as follows:

Post(X) = {y ∈ Rn | ∃x∃t : x ∈ X ∧ t ≥ 0 ∧ Φ(x, t) = y}.
(12)

The safety problem is: given an initial set X and an unsafe
set Y, verify whether any unsafe state in Y is not reachable by
some trajectory starting from X, i.e., whether Post(X) ∩ Y = ∅.
Let

F (X,Y) = ∃x∃y∃t : x ∈ X ∧ y ∈ Y ∧ t ≥ 0 ∧ Φ(x, t) = y.
(13)

That is, the safety problem is to verify whether the formula
F (X,Y) is true or false. If it is false then the safety property
holds, otherwise the safety property does not hold.

III. NILPOTENT

In this section, we compute the solution form of an SS of
(4) in which all the matrices A1 , . . . , Am are nilpotent and
all u1 , u2 , . . . , um are polynomials, and show the solution is
a polynomial in R[x, t] by induction on the number of blocks of
variables.

We first prove it when m = 1, i.e., the linear case.
Lemma 1: Given a linear system ξ̇ = Aξ + u(t) satisfying

A ∈ Rn1 ×n1 is a nilpotent matrix, and u(t) ∈ R[t]n1 , a given
initial point x ∈ Rn1 , the solution Φ(x, t) of the linear system
is a polynomial in R[x, t].

Proof: Clearly, in this case

Φ(x, t) = eAtx +
∫ t

0
eA(t−τ )u(τ)dτ.

Since A ∈ Rd×d is a nilpotent matrix, Ak = 0 for any k ≥ d.
Thus, eAt =

∑d−1
k=0

tk

k ! A
k . Moreover,

Φ(x, t) =
d−1∑

k=0

tk

k!
Akx +

∫ t

0

(
d−1∑

k=0

(t − τ)k

k!
Aku(τ)

)

dτ.

As A, ..., Ad−1 are all real matrices in Rn1 ×n1 , it is easy to
see that

∑d−1
k=0

tk

k ! A
kx is a polynomial vector in x and t, and

∑d−1
k=0

(t−τ )k

k ! Aku(τ) is a polynomial vector in x, t and τ . Hence

∫ t

0

(
d−1∑

k=0

(t − τ)k

k!
Aku(τ)

)

dτ

is a polynomial in x and t. Thus

d−1∑

k=0

tk

k!
Akx +

∫ t

0

(
d−1∑

k=0

(t − τ)k

k!
Aku(τ)

)

dτ

is a polynomial vector in x and t, i.e., Φ(x, t) ∈ R[x, t]n1 . �
Theorem 3: Given an SS as (4) in which all the matrices

A1 , . . . , Am are nilpotent and all u1 ,u2 , . . . ,um are polyno-
mial vectors, then for a given initial point x, the solution Φ(x, t)
is a polynomial vector in R[x, t]n , where n = n1 + · · · + nm .

Proof: Let x = (z1 , . . . , zm ) correspond to (ζ1 , . . . , ζm ) in
(4). For ζ1 , by Lemma 1, we know ζ1(t,x) ∈ R[x, t]n1 .

Now, suppose that ζ1(t,x), . . . , ζk−1(t,x) are all
polynomial vectors in R[x, t]n1 , . . . , R[x, t]nk −1 , respec-
tively, for k ≤ m. We prove that ζk ∈ R[x, t]nk . Since
uk (t, ζ1 , . . . , ζk−1) is a polynomial vector, substituting
ζ1(t,x), . . . , ζk−1(t,x) for ζ1 , . . . , ζk−1 in uk (t, ζ1 , . . . , ζk−1),
it follows uk (t, ζ1 , . . . , ζk−1) = uk (t,x) ∈ R[x, t]nk .
Thus, the subdynamical system w.r.t. ζk is reduced to
ζ̇k = Akζk + uk (t,x). By Lemma 1, this implies that
ζk (t,x) is a polynomial vector. All in all, the solution
Φ(x, t) ∈ R[x, t]n . �

Thus, (13) becomes decidable according to the decidability
of Tarski algebra [39]. That is

Theorem 4: The problem (13) is decidable.

IV. REAL EIGENVALUES

In this section, we give a decision procedure to the problem
(13) when all Ais are only with real eigenvalues and all uis are
PEF vectors in (4).
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A. Reduction to the Decision Problem of Te

In this part, we prove that the reachability problem above can
be reduced to the decision problem of Te , therefore is decidable
under the assumption of Schanuel’s conjecture according to
Strzeboński’s result in [38].

Before proving the solution of (4) in this case can be repre-
sented as PEFs, we first show some properties on PEFs.

Lemma 2: The set of PEFs is closed under add, subtract,
multiply, and integral operations.

Proof: It is easy to see that the set of PEFs is closed under
add, subtract, and multiply operations. For the integral opera-
tion, since

∫

eλtdt =
1
λ

eλt , and

∫

tneλtdt =
tn

λ
eλt − ntn−1

λ2 eλt + · · · + (−1)n

× n(n − 1) · · · 1t

λn+1 eλt

the integral of a PEF is still PEF. �
Lemma 3: Let A ∈ Rn×n has real eigenvalues only, then eAt

is a matrix with dimension n × n, and all entries of eAt arePEFs.
Proof: Let J be the Jordan normal form of A, so there exist

an invertible matrix Q such that A = QJQ−1 . Then, it fol-
lows eAt = QeJ tQ−1 . Let J = diag(J1 , J2 , . . . , Jm ), where
J1 , J2 , . . . , Jm are the corresponding Jordan blocks. Then

eAt = QeJ tQ−1 = Q

⎡

⎢
⎢
⎢
⎣

eJ1 t

eJ2 t

. . .
eJm t

⎤

⎥
⎥
⎥
⎦

Q−1 .

Without loss of generality, we just need to prove that all the
elements of eJ1 t are PEFs. Suppose that the dimension of J1 is
d × d and the diagonal entry is λ, i.e.

J1 = λI +

⎡

⎢
⎢
⎢
⎣

0 1

0
. . .
. . . 1

0

⎤

⎥
⎥
⎥
⎦

.

Denote the second summand of J1 by M , obviously Md = 0.
So, we have

eJ1 t = eλtI · eM t

= eλtI ·
(

I + tM +
t2

2
M 2 + · · · + td−1

(d − 1)!
Md−1

)

=

⎡

⎢
⎢
⎣

eλt

eλt

. . .
eλt

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎢
⎣

1 t · · · td −1

(d−1)!
1 t · · ·

. . .
1

⎤

⎥
⎥
⎥
⎦

.

Hence, all the entries of eJ1 t are PEFs, and so are all entries of
eAt . �

Theorem 5: Given an SS of (4) in which all Ais are only
with real eigenvalues and all uis are PEF vectors, and an initial
x ∈ Rn , then its solution Φ(x, t) can be represented as of the

following form

(Φ(x, t))i =
si∑

j=1

φij (x, t)eνi j t (14)

for i = 1, . . . , n, where φij (x, t) ∈ R[x, t], Ji ∈ N and νij ∈ R
for i = 1, . . . , n, j = 1, . . . , si .

Proof: Let x = (z1 , . . . , zm ) corresponding to (ζ1 , . . . , ζm )
in (4).

We proceed the proof by induction on m.
When m = 1, thus the SS (4) becomes a linear system.

Whence, the solution is

ζ1(t,x) = eA 1 tz1 +
∫ t

0
eA 1 (t−τ )u1(τ)dτ.

By Lemma 3, it follows that all entries in eA 1 t and eA 1 (t−τ )

are PEFs. Moreover, using Lemma 2, we have eA 1 tz1 +∫ t

0 eA 1 (t−τ )u1(τ)dτ is a PEF. Hence, ζ1(t,x) is a PEF vec-
tor.

Now, suppose that ζ1(t,x), . . . , ζk−1(t,x), k < m, are all
PEF vectors, we prove that ζk (t,x) is also a PEF vector.
Since uk (t, ζ1 , . . . , ζk−1) and ζ1 , . . . , ζk−1 are all PEF vec-
tors, substituting ζ1(t,x), . . . , ζk−1(t,x) for ζ1 , . . . , ζk−1 in
uk (t, ζ1 , . . . , ζk−1), it follows uk (t, ζ1 , . . . , ζk−1) = uk (t,x)
is a PEF vector. Thus, the sub-dynamical system w.r.t. ζk is
reduced to ζ̇k = Akζk + uk (t,x). From the basis case, this im-
plies that ζk (t,x) is a PEF vector.

In a word, the solution Φ(x, t) is a PEF vector, i.e., each of its
component is of the form (Φ(x, t))i =

∑si

j=1 φij (x, t)eνi j tfor
i = 1, . . . , n, where φij (x, t) ∈ R[x, t], Ji ∈ N, and νij ∈ R
for i = 1, . . . , n, j = 1, . . . , si . �

Example 1:

⎡

⎢
⎢
⎣

ξ̇1

ξ̇2

ξ̇3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎣

ξ1

ξ1 − ξ2 + et

−ξ3 + ξ2
1

⎤

⎥
⎦

with an initial state x = (x1 , x2 , x3) ∈ R3 , the corresponding
solution is

ξ1(t,x) = etx1

ξ2(t,x) =
(

x1

2
+

1
2

)

et −
(

x1

2
+

1
2
− x2

)

e−t

ξ3(t,x) =
x2

1

3
e2t −

(
x2

1

3
− x3

)

e−t

which are PEFs.
Since X and Y are two semialgebraic sets, there exist poly-

nomials p1(x), . . . , pJ (x) such that

X = {x ∈ Rn | p1(x) � 0, . . . , pJ1 (x) � 0}
Y = {x ∈ Rn | pJ1 +1(x) � 0, . . . , pJ (x) � 0}

where � ∈ {≥, >}. Then, (13) can be reduced to verify whether

F (X,Y) = ∃x∃y∃t : Ω (15)
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holds, where

Ω = p1(x) � 0 ∧ · · · ∧ pJ1 (x) � 0 ∧ pJ1 +1

× (y) � 0 ∧ · · · ∧ pJ (y) � 0 ∧ t ≥ 0 ∧
n∧

i=1

yi

=
si∑

j=1

φij (x, t)eνi j t .

B. Decision Procedure for Te

In this part, we give a decision procedure for Te based on
cylindrical algebraic decomposition (CAD), due to Collins [10].

The basic idea ofCAD is: Given a set S of polynomials in R[x],
CAD is used to partition Rn into connected semialgebraic sets,
called cells, such that each polynomial in S keeps constant sign
(either +, − or 0) on each cell. As CAD plays a fundamental
role in computer algebra and real algebraic geometry, in the
literature, a numerous works are done on improvement of CAD,
e.g., [6], [11], [13], [19], [22], [29]. When constraints are open
sets, GCAD [36] or openCAD [19] is enough, which partitions
the space Rn into a set of open cells instead of cells (i.e., takes
sample points from open cells only), such that on each of which
every polynomial in S keeps constant nonzero sign (either + or
−). For example, suppose f1 = y − x, f2 = y + x. The graphs
of f1 = 0 and f2 = 0 decompose R2 into 9 cells with different
dimensions: Four of which are two-dimensional (open) cells
(i.e., f1 ∼ 0 ∧ f2 ∼ 0, where ∼∈ {>,<}); four of which are
one-dimensional cells (i.e., f1 ∼ 0 ∧ f2 = 0, f1 = 0 ∧ f2 ∼ 0,
where ∼∈ {>,<}); and one of which is zero-dimensional cell
(i.e., f1 = 0 ∧ f2 = 0). Complete CAD takes at least one sample
point from each of the nine cells, while GCAD or openCAD
takes at least one sample point only from each of the four two-
dimensional (open) cells. Formally

Definition 3: For a polynomial f(x1 , ..., xn ) ∈ R[x1 , ...,
xn ], a CAD (openCAD) defined by f under the order x1 ≺
x2 ≺ · · · ≺ xn is a set of sample points in Rn obtained through
the following three phases:

Projection: Apply CAD (openCAD) projection oper-
ator on f to get a set of projection polynomials {fn =
f(x1 , ..., xn ), fn−1(x1 , ..., xn−1), . . . , f1(x1)}.

Base: Choose a rational point in each of the (open) intervals
defined by the real roots of f1 .

Lifting: Substitute each sample point in Ri−1 for
(x1 , ..., xi−1) in fi to get a univariate polynomial f ′

i(xi), and
then, as in Base phase, choose sample points for f ′

i(xi). Repeat
this process for i from 2 to n.

Using CAD (openCAD), we develop a decision procedure for
Te as follows:

Step 1: Check whether X ∩ Y = ∅, if not, it is easy to see
that (15) holds.

Step 2: Translate the problem to an openCAD solvable
problem if X and Y are open sets, otherwise
a CAD solvable problem. By (14), yi(x, t) =∑si

j=1 φij (x, t)eνi j t . So, we can replace pj (y)
with pj (y(x, t)), which is polynomial in x
and polynomial–exponential in t, abbreviated as
pj (x, t), for j = J1 + 1, . . . , J . Simply, we de-
fine pj (x, t) as pj (x), for j = 1, . . . , J1 . Thus,
F (X,Y) in (15) can be reformulated as F =
∃x∃t

∧J
j=1 pj (x, t) � 0 ∧ t ≥ 0.

Step 3: Eliminate x1 , . . . , xn one by one using CAD (open-
CAD) projection operator on

∏J
j=1 pj and obtain a

set of projection polynomials {qn (x1 , . . . , xn , t) =
∏J

j=1 pj , qn−1(x2 , . . . , xn , t)}, . . . , q0(t)}.
Step 4: Isolate the real roots of the resulted PEF q0 based

on Rolle’s theorem, which will be elaborated in the
next section.

Step 5: Lift the solution using openCAD or CAD lifting pro-
cedure corresponding to Step 2 according to the or-
der t, xn , . . . , x1 based on {q0 , . . . , qn}, and obtain
a set S of sample points.

Step 6: Check if F holds by testing if there exists α in S
such that ∧J

j=1pj (α) � 0.
In [38], Strzeboński presented another decision procedure for

Te completely based on CAD. Our decision procedure differen-
tiates from Strzeboński’s in the following points:

1) When all constraints are open sets, our method is based
onopenCAD, which requires less computation compared
to the corresponding complete CAD, as we do not need to
consider the cells that are represented as roots of equa-
tions involving PEFs, which are extremely difficult, dur-
ing the base and lifting phases in openCAD. Therefore,
as indicated later in the experiments, our decision pro-
cedure is more efficient in this case. But the two deci-
sion procedures share the same complexity in general
case.

2) In [38], an algorithm for isolating real roots of a given
PEF based on weak Fourier sequence [37] is given. It is
claimed that the algorithm is complete under the assump-
tion of Schanuel’s conjecture [34]. Whereas, in this paper,
we give another algorithm to isolate real roots of the re-
sulted PEF q0(t) based on Rolle’s theorem. We prove that
our approach is also complete under the assumption that
q0(t) does not have any multiple real roots, which can be
implied by Schanuel’s conjecture.

C. Isolating Real Roots of PEFs

In this part, we give an algorithm PEFIsolation to isolate
the finitely many real roots of a PEF.

Definition 4: Consider a PEF in t as

f(t) =
s∑

i=0

fi(t)eνi t (16)

where s ∈ N, 0 �≡ fi ∈ R[t] and νi ∈ R are pairwise differ-
ent. Real root isolation of the equation f(t) = 0 is to ob-
tain a set of intervals {Ij = (aj , bj ) | aj , bj ∈ R ∧ aj < bj , j =
1, . . . , J} such that Ii ∩ Ij = ∅ if i �= j, in each Ij there exists
only one real root of f(t), and all real roots of f(t) are contained
in
⋃J

j=1 Ij .
Given an open interval I , real root isolation of f(t) over I

can be defined similarly.
Without loss of generality, in (16), we can assume

0 = ν0 < ν1 < ν2 < · · · < νs, fi(t) �≡ 0, for i = 0, 1, . . . , s
(17)

since we can always multiply out by eν0 t for the smallest ν0
to ensure this happens. When s = 1 or every νi (0 ≤ i ≤ s)
is a positive integer, in [2], an algorithm named ISOL was
proposed to isolate all real roots of f(t). This algorithm can
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be easily extended to the case when all νi (i = 0, . . . , s) are
rationals or there exists a nonzero real number κ such that for
every 0 ≤ i ≤ s, νiκ is a rational.

1) Lower and Upper Bounds on Real Roots: Similar to
[2], we can prove the following theorem, which indicates that
there is a lower and upper bound on real roots for any given
PEF.

Theorem 6 (Upper bound): Let f(t) be a PEF of the form
(16). Then, we can obtain an upper bound C on its real roots
through the following procedure:

1) Find C1 ≥ 0, M > 0 such that for all t > C1 , |fs(t)| >
1
M .

2) Find C2 ≥ 0 and k ∈ N such that for all t > C2 and for
all 0 ≤ i < s, |fi(t)| < tk

sM .
3) Find C3 ≥ 0 such that for all t > C3 , tk < e(νs −νs−1 )t .
4) Set C = max{C1 , C2 , C3}.
Proof: Let t > C, then we have |fs(t)| > 1

M , tk <

e(νs −νs−1 )t , |fi(t)| < tk

sM , for i = 0, . . . , s − 1. Whence

|f0(t) +
s−1∑

i=1

fi(t)eνi t | ≤ |f0(t)| +
s−1∑

i=1

|fi(t)eνi t | <
tk

sM

+
s−1∑

i=1

tk

sM
eνi t

<
tk

sM
eνs−1 t +

s−1∑

i=1

tk

sM
eνs−1 t =

1
M

tkeνs−1 t <
1
M

eνs t

< |fs(t)eνs t |.

Thus, |f0(t) +
∑s−1

i=1 fi(t)eνi t | < |fs(t)eνs t |, and we have
f0(t) +

∑s−1
i=1 fi(t)eνi t + fs(t)eνs t �= 0. This implies f(t) �= 0

for any t ≥ C. So C is an upper bound on the real roots of f(t).�
In order to get a lower bound, a commonly used method is to

replace f(t) with g(t) = f(−t)eνs t . Then, by Theorem 6, there
is an upper bound B on the real roots of g(t) = 0. It is easy to
see that−B is a lower bound on the real roots of f(t) = 0. Thus,
we see that all roots of f(t) = 0 are in the interval (−B,C). In
what follows, we denote by L(f) = −B,U(f) = C, the lower
and upper bounds on the real roots of f(t), respectively.

2) Algorithm: In this part, we present our algorithm PE-
FIsolation for isolating all real roots of a given nonzero
PEF f(t) of the form (16).

Definition 5: Let f(t) be a nonzero PEF of the form (16),
then we define

coff(f) =̂ (f0 , f1 , . . . , fs)T ,nu(f) =̂ (0, ν1 , . . . , νs)T

deg(f) =̂ (deg(f0),deg(f1), . . . ,deg(fs))T

where deg(g) means the degree of g, and as a convention,
deg(0) = −1. So, (16) can be shorten as

f(t) = coff(f)T · enu(f )t

where enu(f )t = (1, eν1 t , . . . , eνs t)T , a · b stands for the inner
product of the two vectors, i.e.,

∑n
i=1 aibi .

From Definition 5, it follows

coff(f ′) = (f ′
0 , f

′
1 + ν1f1(t), . . . , f ′

s + νsfs(t))T ,nu(f ′)

= (0, ν1 , . . . , νs)T

deg(f ′) = (max{deg(f0) − 1,−1},deg(f1), . . . ,deg(fs))T

where f ′ denotes the derivative of f w.r.t. t.
In the following, we will explain the basic idea behind PE-

FIsolation through the following simple example.
Example 2: Consider f̂(t) = t + 1 + e

√
2t − (t + 2)e

√
5t .

First, in order to isolate the real roots of f̂(t) = 0, we need
to calculate the upper and lower bounds on all its real roots
according to Theorem 6.

Regarding the upper bound of f̂(t) = 0, we have: 1) C1 = 0,
M = 1, ∀t ≥ 0, |t + 2| > 1; 2) C2 = 4, k = 2, ∀t ≥ 4, |t +
1| < t2

2 , 1 < t2

2 ; 3) C3 = 12, ∀t ≥ 12, t2 < e(
√

5−√
2)t . Thus,

we obtain U(f̂) = 12.
In order to obtain the lower bound, we have to calculate the

upper bound U(g) of g(t) = f̂(−t)e
√

5t , i.e., g(t) = t − 2 +
e(

√
5−√

2)t − (t − 1)e
√

5t . Because 1) C1 = 3, M = 1, ∀t ≥ 3,
|t − 1| > 1; 2) C2 = 4, k = 2, ∀t ≥ 4, |t − 2| < t2

2 , and 1 <
t2

2 ; 3) C3 = 1, ∀t ≥ 1, and t2 < e
√

2t , we obtain the upper
bound U(g) = 4.

Therefore, the lower bound L(f̂) = −U(g) = −4 is ob-
tained. Obviously, all real roots of f̂(t) = 0 should be in the
interval (−4, 12), which implies that we just need to isolate all
real roots in (−4, 12).

From differential mean value theorem (i.e., Rolle’s theorem),
we know there must exist at last one real root of f ′(t) = 0
between every two real roots of f(t) = 0, if f(t) is continuous
differentiable. In order to obtain the real roots of f(t) = 0, we
can try to get the real roots of f ′(t) = 0 first. Likewise, in order
to obtain the real roots of f ′(t) = 0, we can try to get the real
roots of f ′′(t) = 0 first. We can repeat the above procedure until
the real solutions of the ith derivative of f(t) for some i can
be achieved. Then, we lift the real solutions of the respective
derivative in the inverse order until f(t) itself. We illuminate
the procedure by continuing the running example.

At the beginning,

S0 = f̂(t) = t + 1 + e
√

2t − (t + 2)e
√

5t

coff(S0) = (t + 1, 1,−t − 2)T

nu(S0) = (0,
√

2,
√

5)T ,deg(S0) = (1, 0, 1)T .

Then, we obtain the derivative of f̂ is

S1 = f̂ ′(t) = 1 +
√

2e
√

2t − (
√

5t + 2
√

5 + 1)e
√

5t

coff(S1) = (1,
√

2,−
√

5t − 2
√

5 − 1)T

nu(S1) = (0,
√

2,
√

5)T ,deg(S1) = (0, 0, 1)T .

Furthermore, the derivative of f̂ ′ is

f̂ ′′(t) = 0 + 2e
√

2t − (5t + 2
√

5 + 10)e
√

5t

coff(f̂ ′′) = (0, 2,−5t − 2
√

5 − 10)T

nu(f̂ ′′) = (0,
√

2,
√

5)T ,deg(f̂ ′′) = (−1, 0, 1)T .
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Clearly, f̂ ′′ and the following S2 share the same real roots:

S2 = f̂ ′′(t)e−
√

2t = 2 − (5t + 2
√

5 + 10)e(
√

5−√
2)t

(18)

coff(S2) = (0, 2,−5t − 2
√

5 − 10)T

nu(S2) = (0, 0,
√

5 −
√

2)T ,deg(S2) = (−1, 0, 1)T . (19)

Now, the derivative of S2 is

S3 = S ′
2 = 0 + 0 + he(

√
5−√

2)t , coff(S3) = (0, 0, h)T

nu(S3) = (0, 0,
√

5 −
√

2)T ,deg(S3) = (−1,−1, 1)T

where h = −(5(
√

5 −√
2)t + 15 + 10

√
5 − 2

√
10 − 10

√
2).

Obviously, S3 = 0 if and only if h = 0, while the real zeros
of h can be easily achieved by any real root isolation procedure
for polynomials [12].

Remark 1: In general, suppose Si(t) = f0(t) +
∑J

j=1 fj (t)
eνj t with 0 �≡ fj (t) ∈ R[t], 0 < ν1 < · · · < νJ , and 0 <
J ∈ N, then we define Si+1(t) = S ′

i(t) if f ′
0(t) �≡ 0;

otherwise, Si+1(t) = S ′
i(t)e

−ν1 t = (f ′
1(t) + ν1f1(t)) +

∑J
j=2

(f ′
j (t) + νj fj (t))e(νj −ν1 )t . It is obvious that Si+1 = 0 shares

the same real roots of S ′
i(t) = 0. We construct Si+1 from Si ,

for i = 0, . . .. This procedure terminates when Sk is a polyno-
mial for some k.

Theorem 7: Let f(t) be a PEF, f ′(t) the derivative of f(t)
w.r.t. t, I = (a, b) a nonempty open interval, and LI (f ′) =
{Ij |j = 1, . . . , J} a real root isolation of f ′ in I , in which Ij =
(aj , bj ) with a = b0 < a1 < b1 < · · · < aJ < bJ < aJ +1 = b.
Furthermore, f(t) has no real roots in any closed interval [aj , bj ],
1 ≤ j ≤ J . Then, { (bj , aj+1)|f(bj )f(aj+1) < 0, 0 ≤ j ≤ J}
is a real root isolation of f(t) in I .

Proof: Since f(t) has no real roots in any closed interval
[aj , bj ], 1 ≤ j ≤ J , all real roots of f(t) are in

⋃J
j=0(bj , aj+1)

and f(bj )f(aj+1) �= 0. Moreover, f(t) has at most one real root
in each (bj , aj+1), otherwise, there must be at least one real root
of f ′(t) = 0 on it by Rolle’s theorem, which is a contradiction
with the definition of LI (f ′). So, if f(bj )f(aj+1) < 0, then
there exists only one real root of f(t) in (bj , aj+1), otherwise
no real root of f(t) in (bj , aj+1). �

Now, let us continue the running example. As e(
√

5−√
2)t �=

0, by S3 = he(
√

5−√
2)t = 0, it follows h(t) = 0. Thus, t =

− 15+10
√

5−2
√

10−10
√

2
5(

√
5−√

2)
∈ (−5,−4). As (−5,−4) ∩ (−4, 12) =

∅, there is no real root of S3 = 0 in (−4, 12). Hence, we have
L (S3) = ∅. In addition, from (18), we have

S2(−4) = 2 + (10 − 2
√

5)e−4(
√

5−√
2) > 0

S2(12) = 2 − (70 + 2
√

5)e12(
√

5−√
2) < 0.

So, there exists only one real root of S2 in (−4, 12) by
Theorem 7. Clearly, the real root isolation of S2 in (−4, 12)
is same as that of f̂ ′′.

In order to construct L(−4,12)(S1), a real root isolation of
S1 in (−4, 12), from L(−4,12)(S2) by Theorem 7, the condi-
tion that there is no real root of S1 in [a, b] for any (a, b) in
L(−4,12)(S2) should be guaranteed. This means that we have
to refine the intervals in L(−4,12)(S2) until the condition holds.
This is achieved by Algorithm 2 below (see lines 2–13).

The following table is the bisection procedure (line 2–13) in
Algorithm 2 to refine the interval (−4, 12), in which “∃” (resp.
“¬∃”) means there exists (no) a real root in the observed interval.

Finally, a refined interval (a, b) = (−2,−1) is obtained,
which satisfies the condition of Theorem 7. Thus, (−4,−2)
and (−1, 12) are two intervals that may contain at most one
real root of S1(t) = 0. In addition, as S1(−4)S1(−2) > 0 and
S1(−1)S1(12) < 0, (−1, 12) contains a real root of S1(t) = 0,
but (−4,−2) does not by Theorem 7. Thus, we get a real
root isolation for S1(t) = 0 in (−4, 12), i.e., L(−4,12)(S1) =
{(−1, 12)}.

In order to compute L(−4,12)(S0), we repeat the

above procedure, and obtain L(−4,12)(f̂) = {(−4,−0.59375),
(−0.390625, 12)}.

Up to now, we have already explained the main idea of our
approach how to isolate real roots of a PEF by the running
example. This procedure is implemented in Algorithm 1, whose
main steps can be understood as follows:

Step 1: In line 1, compute upper and lower bounds of the
real roots of f(t).

Step 2: In line 1, construct a sequence S0(t) = f(t), S1(t),
S2(t), . . . , Sr (t), where Si is a PEF which has
the same real roots as the derivative of Si−1 , i =
1, 2, . . . , r, r ∈ N, and Sr (t) is a polynomial in t.

Step 3: Isolate all real roots of Sr (t) by calling
UPIsolating(Sr (t)) in line 1. Note that the prob-
lem of isolating real roots of a univariate polynomial
is well studied (e.g., in [12]).

Step 4: In line 1, for i = r − 1 down to 0, construct a
real root isolation of Si from that of Si+1 using
Theorem 7 by calling PEFI. Note that during this
procedure, we use I1 to record all subintervals in
which f(t) has no real roots, while I2 to record all
subintervals in which f ′(t) has no real roots. So, we
only need to construct a real root isolation of Si from
that of Si+1 on the remainder part of the considered
interval by excluding all subintervals in I1 and I2 ,
and accordingly update I1 and I2 in each iteration,
see the detail in Algorithm 2.

Theorem 8 (Correctness of PEFI): AlgorithmPEFI always
terminates correctly.

Proof: The termination of PEFI is obvious because f1(t) =
0 and f2(t) = 0 have no common real roots. Then, we prove its
correctness.

I ′
1 and I ′

2 are updated in line 5 and line 7, respectively.
Obviously, after every update, the properties of I ′

1 and I ′
2 still

hold, i.e., f1(t) has no real roots in ∪I ′
1 , f2(t) has no real roots

in ∪I ′
2 , and ∪I ′

1 ∩ ∪I ′
2 = ∅. It is also easy to see that, after

the for loop at lines 15–18, L ′ is a real root isolation of g1(t)
on (a, b) \ ∪(I ′

1 ∪ I ′
2). �

Theorem 9 (Correctness of PEFIsolation): Algorithm
PEFIsolation always terminates and returns a real root iso-
lation for a given PEF f , if f does not have multiple real roots.

Proof: Termination is immediately obtained from
Theorem 8. Then, we prove its correctness. After the for
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loop in line 2, L is a real root isolation of S0(t) = 0 (i.e.,
f(t) = 0) on (a, b) \ ∪(I1 ∪ I2). Because f ′(t) has a constant
nonzero sign in each interval of I2 , f(t) has at most one real
root in each interval of I2 and this can be decided by checking
the signs of f(t) at two endpoints of the interval. Moreover,
since there is no real root of f(t) = 0 in ∪I1 , so L2 is a real
root isolation of S0(t) in (a, b). �

3) Multiple Real Roots of PEFs: Termination of the algo-
rithm PEFIsolationwith an input PEF f rely on that f does
not have multiple real roots, which is however not obvious to
check. In this section, we deal with multiple real roots of PEF
based on Schanuel’s conjecture.

Definition 6 (Algebraic independence): A set of complex
numbers S = {a1 , . . . , an} is algebraically independent over
Q if the elements of S do not satisfy any nontrivial polynomial
equation with coefficients in Q.

Definition 7 (Transcendence degree): Let L be a field exten-
sion of Q, the transcendence degree of L over Q is defined as
the largest cardinality of an algebraically independent subset of
L over Q.

Conjecture 1 (Schanuel’s conjecture): Given any complex
numbers z1 , . . . , zn that are linearly independent over Q, the
extension field Q(z1 , . . . , zn , ez1 , . . . , ezn ) has transcendence
degree of at least n over Q.

In what follows, we handle the multiple real roots of PEF.
Let

f(t) = f0(t) + f1(t)eλ1 t + · · · + fr (t)eλr t

where f0 , . . . , fr ∈ Q[t], and λ1 , . . . , λr are different algebraic
numbers. Let a1 , . . . , an be an integer-basis of λ1 , . . . , λr . Then.
a1 , . . . , an are linearly independent over Q, and f(t) is a poly-
nomial w.r.t. t, ea1 t , . . . , ean t , denoted by f(t, ea1 t , . . . , ean t).

Since f(t, y1 , . . . , yn ) is a polynomial, by factorization we
have

f(t, y1 , . . . , yn ) = fm 1
1 (t, y1 , . . . , yn ) · · · fms

s (t, y1 , . . . , yn )

whose square free part is denoted by

f̂(t, y1 , . . . , yn ) = f1(t, y1 , . . . , yn ) · · · fs(t, y1 , . . . , yn ).

This yields a PEF f̂(t, ea1 t , . . . , ean t), denoted as the square
free part of f(t, ea1 t , . . . , ean t).

The following corollaries can be derived based on Schanuel’s
conjecture.

Corollary 3: Let a1 , . . . , an be algebraic numbers that are
linearly independent over Q. The transcendence degree of the
field extension Q(t, ea1 t , . . . , ean t) is at least n, if t �= 0.

Proof: Since a1 , . . . , an are linearly independent over Q
and t �= 0, a1t, . . . , an t are linearly independent over Q. By
Schanuel’s conjecture, the transcendence degree of the field ex-
tension

Q(a1t, . . . , an t, ea1 t , . . . , ean t)

is at least n. Besides, a1 , . . . , an are algebraic num-
bers, thus Q(t) = Q(a1t, . . . , an t), i.e., Q(a1t, . . . , an t, ea1 t ,
. . . , ean t) = Q(t, ea1 t , . . . , ean t). Therefore, the transcendence
degree of the field extension Q(t, ea1 t , . . . , ean t) is at least n.�
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Corollary 4: Let f(t, ea1 t , . . . , ean t) be a PEF w.r.t. t, and
thus a polynomial w.r.t. t, ea1 t , . . . , ean t , where a1 , . . . , an are
linearly independent. Suppose f(t, y1 , . . . , yn ) is square free,
then f(t, ea1 t , . . . , ean t) has no multiple real root except 0.

Proof: Since f(t, y1 , . . . , yn ) is square free, we may write

f(t, y1 , . . . , yn ) = f1(t, y1 , . . . , yn ) · · · fm (t, y1 , . . . , yn )

where for any 1 ≤ i, j ≤ m, i �= j, fi(t, y1 , . . . , yn ) is irre-
ducible and fi(t, y1 , . . . , yn ) and fj (t, y1 , . . . , yn ) are coprime.

We first prove, by contradiction, that fi(t, ea1 t , . . . , ean t)
and fj (t, ea1 t , . . . , ean t) have no nonzero common real root.
Suppose t0 �= 0 is a common real root of fi(t, ea1 t , . . . , ean t)
and fj (t, ea1 t , . . . , ean t). By Corollary 3, we have that the
transcendence degree of Q(t0 , ea1 t0 , . . . , ean t0 ) is at least n.
Then, there must exist n elements in {t0 , ea1 t0 , . . . , ean t0 }
that are algebraically independent. Without loss of general-
ity, let {t0 , ea1 t0 , . . . , ean −1 t0 } be the n elements that are al-
gebraically independent. Besides, let g(t, y1 , . . . , yn−1) be the
resultant of fi(t, y1 , . . . , yn ) and fj (t, y1 , . . . , yn ) w.r.t. yn ,
then (t0 , ea1 t0 , . . . , ean −1 t0 ) is a real root of g(t, y1 , . . . , yn−1).
Further since fi(t, y1 , . . . , yn ) and fj (t, y1 , . . . , yn ) are co-
prime, g(t, y1 , . . . , yn−1) is nontrivial polynomial, indicating
that (t0 , ea1 t0 , . . . , ean −1 t0 ) is a real root of some nontrivial
polynomial. This contradicts that {t0 , ea1 t0 , . . . , ean −1 t0 } are
algebraically independent. Consequently, fi(t, ea1 t , . . . , ean t)
and fj (t, ea1 t , . . . , ean t) have no nonzero common real root.

Next, we prove that fi(t, ea1 t , . . . , ean t) has no multiple real
root. Suppose

fi(t, ea1 t , . . . , ean t) = h0(t) +
s∑

j=1

hj (t)(ea1 t)bj 1 · · · (ean t)bj n

where h0(t), . . . , hn (t) are nontrivial polynomials, bjk ∈ N,
1 ≤ j ≤ s, and 1 ≤ k ≤ n. Then, we have

f ′
i(t, e

a1 t , . . . , ean t) = h′
0(t) +

s∑

j=1

(h′
j (t) + (a1bj1 + · · ·

+ anbjn )hj (t))(ea1 t)bj 1 · · · (ean t)bj n .

Moreover

fi(t, y1 , . . . , yn ) = h0(t) +
s∑

j=1

hj (t)y
bj 1
1 · · · ybj n

n

f ′
i(t, e

a1 t , . . . , ean t) = h′
0(t) +

s∑

j=1

(h′
j (t) + (a1bj1 + · · ·

+ anbjn )hj (t))y
bj 1
1 · · · ybj n

n .

Consider the degree and h0(t) to be nontrivial, it is evident to see
that fi(t, y1 , . . . , yn ) � f ′

i(t, y1 , . . . , yn ). Then, fi(t, y1 , . . . , yn )
and f ′

i(t, y1 , . . . , yn ) are coprime, since fi(t, y1 , . . . , yn ) is ir-
reducible. For the same reason as above, fi(t, ea1 t , . . . , ean t)
and f ′

i(t, e
a1 t , . . . , ean t) have no common real root. Therefore,

fi(t, ea1 t , . . . , ean t) has no multiple real root. �
4) Complexity analysis of PEFIsolation: Here, we give

a rough complexity analysis of PEFIsolation. Suppose
f(t) = f0(t) + f1(t)eν1 t + · · · + fs(t)eνs t , L(f) and U(f)
are, respectively, a lower bound and an upper bound on
real roots of f(t), deg(f) = (d0 , d1 , . . . , ds). PEFIsola-
tion computes all real roots for a PEF chain f(t) = 0,
f ′(t) = 0, f ′′(t) = 0, . . ., totally, d0 + · · · + ds−1 + s + 1 such

PEFs at most, with the corresponding degree. The last ele-
ment in the chain is a polynomial with degree ds , so it has
at most ds real roots. Clearly, for each function in the chain,
the number of intervals in its real root isolation is at most
d0 + d1 + · · · + ds + s + 1. In addition, suppose the lower
bound on the distances between real roots of Si and those of
Si+1 is δ, then the while loop (line 3–13) in Algorithm IV-D2
always terminates after the length of an interval is less than
δ. Since the length of every interval is less than or equal to
U(f) − L(f), the while loop must terminate in log2

U (f )−L(f )
δ

steps. In a summary, the complexity of PEFIsolation is
about O((

∑s
i=0 di + s + 1)2 log2

U (f )−L(f )
δ ).

V. PURELY IMAGINARY EIGENVALUES

In this section, we give a decision procedure for the purely
imaginary case described in Section II-C.

A. Solution Form

Theorem 10: Given an SS as (4) as described above, for any
initial point x ∈ Rn , the solution Φ(x, t) is of the following
form

(Φ(x, t))i =
Ki∑

k=1

zc
ik (x) cos (γik t) + zs

ik (x) sin (γik t) (20)

for i = 1, . . . , n, where zc
ik (x), zs

ik (x) ∈ R[x] and γik ∈ R.
Proof: Similar to Theorem 5.
Example 3: Let

⎡

⎢
⎢
⎢
⎢
⎣

ξ̇1

ξ̇2

ξ̇3

ξ̇4

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

−ξ2

ξ1

2ξ3 + 2ξ4 − ξ2
1

−3ξ3 − 2ξ4 + ξ1ξ2

⎤

⎥
⎥
⎥
⎦

(21)

an initial state x = (x1 , x2 , x3 , x4) ∈ R4 , then, the solution is

ξ1(t,x) = x1 cos (t) − x2 sin (t)

ξ2(t,x) = x1 sin (t) + x2 cos (t)

ξ3(t,x) =
√

2
2

(x2
1 + 2x1x2 − 2x2

2 + 2c + 2d) sin (
√

2t)

+ (2x1x2 + x2
2 + c) cos (

√
2t)

+
1
2
(x2

1 − 4x1x2 − x2
2) cos (2t)

− (x2
1 + x1x2 − x2

2) sin (2t) − x2
1 + x2

2

2

ξ4(t,x) =
1
2
(x2

1 − 2x1x2 − 4x2
2 + 2x4) cos (

√
2t)

−
√

2
2

(x2
1 + 4x1x2 − x2

2 + 3x3 + 2x4) sin (
√

2t)

+
1
4
(−5x2

1 + 5x2
2 + 4x1x2) cos (2t)

− 1
2
(x2

1 − x2
2 + 5x1x2) sin (2t) +

3
4
(x2

1 + x2
2)

which is a TMF vector.
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As X and Y are two open semialgebraic sets, there exist some
polynomial p1(x), . . . , pJ (x) such that

X = {x ∈ Rn | p1(x) > 0, . . . , pJ1 (x) > 0}
Y = {x ∈ Rn | pJ1 +1(x) > 0, . . . , pJ (x) > 0}.

Thus, the problem (13) can be further reduced to

F (X,Y) = ∃x∃y∃t : Ω (22)

where

Ω = p1(x) > 0, . . . , pJ1 (x) ∧ pJ1 +1(y) > 0, . . . , pJ (y) > 0

∧ t ≥ 0 ∧
n∧

i=1

yi =
Ki∑

k=1

zc
ik (x) cos (γik t) + zs

ik (x) sin (γik t).

(23)

B. Reduction to Decision Problem of Tarksi’s Algebra

In this part, we show the problem (22) can be reduced to
the decision problem of Tarski’s algebra [39]. There have been
many tools available for the decision procedure, e.g., [6], [11],
[13], [19], [22], [29], [36], all of which are based on CAD [10].

From now on, we will focus on how to reduce (23) to Tarski’s
algebra equivalently.

For (23), let Γ = {γik | 1 ≤ k ≤ Ki, 1 ≤ i ≤ n}, i.e., the set
of all reals appearing in some trigonometric expression in (23),
and Δ = {δ1 , . . . , δN } be an integer-basis of Γ, i.e., for any
γ ∈ Γ, γ can be written as a linear combination of Δ with
integer coefficients.

In addition, obviously, cos (γt) and sin (γt) both are polyno-
mials in sin (δ1t), cos (δ1t), . . . , sin (δN t), cos (δN t), for 1 ≤
k ≤ Ki, 1 ≤ i ≤ n, that is

cos(γik t) = fc
ik (sin(δ1t), cos(δ1t), . . . , sin(δN t), cos(δN t))

(24)

sin(γik t) = fs
ik (sin(δ1t), cos(δ1t), . . . , sin(δN t), cos(δN t))

(25)

where fc
ik , fS

ik are polynomials in their arguments. Denote the
following formula by Ξ, i.e.

Ξ =̂ x ∈ X ∧ y ∈ Y ∧
N∧

j=1

u2
j + v2

j = 1∧

n∧

i=1

yi =
Ki∑

k=1

(
zc

ik (x)fc
ik (u1 , v1 , . . . , uN , vN )

+zs
ik (x)fs

ik (u1 , v1 , . . . , uN , vN )

)

.

Theorem 11: Suppose X,Y both are open semialgebraic
sets, Γ is defined as above, which is a set of real numbers,
Δ is an integer-basis of Γ, fc

ik and fs
ik are defined as (24), (25),

and Ω and Ξ are two formulas defined as above, then

∃x∃y∃t : Ω ⇔ ∃x∃y∃N
j=1uj∃N

j=1vj : Ξ. (26)

Proof: It is obviously that

∃x∃y∃t : Ω ⇒ ∃x∃y∃N
j=1uj∃N

j=1vj : Ξ (27)

since if there exist x,y, t satisfying Ω, let uj = sin (δj t), vj =
cos(δj t), then Ξ is satisfied. So, we just need to prove that

∃x∃y∃N
j=1uj∃N

j=1vj : Ξ ⇒ ∃x∃y∃t : Ω. (28)

Let

S = {(sin (δ1t), cos (δ1t), . . . , sin (δN t), cos (δN t)) | t ≥ 0}

S =

{

(u1 , v1 , . . . , uN , vN ) ∈ R2N |
N∧

i=1

u2
i + v2

i = 1

}

.

From Theorem 2, it follows that S is dense in S. Denote w =
(u1 , v1 , . . . , uN , vN ). Let x′,y′, u′

1 , . . . , u
′
N , v′

1 , . . . , v
′
N satisfy

Ξ, i.e.

x′ ∈ X ∧ y′ ∈ Y ∧ w′ ∈ S∧
n∧

i=1

y′
i =

Ki∑

k=1

zc
ik (x′)fc

ik (w′) + zs
ik (x′)fs

ik (w′)

where w′ = (u′
1 , v

′
1 , . . . , u

′
N , v′

N ). Since Y is an open set, y′ ∈
Y, there exists an open ball Bε(y′) ⊂ Y, where Bε(y′) is the
ball with center y′ and radius ε > 0. Moreover

yi =
Ki∑

k=1

zc
ik (x′)fc

ik (w) + zs
ik (x′)fs

ik (w)

is a continuous function on w (denote by y = y(w)). Thus,
there must exist an open ball Bσ (w′) such that y(Bσ (w′)) ⊂
Bε(y′) ⊂ Y, where σ > 0. Besides, as w′ ∈ S and S is dense
in S, there must exist w0 ∈ Bσ (w′), i.e., there exists t0 > 0
with (a1t0 , . . . , aN t0) ∈ Bσ (w′) and y0 = y(w0) ∈ Bε(y′) ⊂
Y. Hence, x′,y0 , t0 satisfy Ω. �

From the decidability of Tarski’s algebra [39], an immediate
result of Theorem 11 is

Theorem 12: The problem described in (22) is decidable.
Example 4: Continue to consider Example 3. Let the initial

set X and unsafe set Y defined as following:

X={(x1 , x2 , x3 , x4) | −1 < x1 < 1 ∧ x2 =0 ∧ x2
3 + x2

4 < 1}
Y = {(y1 , y2 , y3 , y4) | y3 + y4 > 4}

we want to check whether this system is safe or not. In order to
use Theorem 11, we first introduce some new variables as

α1 = sin (t), β1 = cos (t), α2 = sin (
√

2t), q = cos(
√

2t).

Then, the solution of (21) is

ξ1(t,x) = x1β1 − x2α1

ξ2(t,x) = x1α1 + x2β1

ξ3(t,x) =
√

2
2

(x2
1 + 2x1x2 − 2x2

2 + 2c + 2d)α2

+ (2x1x2 + x2
2 + c)β2



2014 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 7, JULY 2018

+
1
2
(x2

1 − 4x1x2 − x2
2)(β

2
1 − α2

1)

− 2(x2
1 + x1x2 − x2

2)α1β1 − x2
1 + x2

2

2

ξ4(t,x) =
1
2
(x2

1 − 2x1x2 − 4x2
2 + 2x4)β2

−
√

2
2

(x2
1 + 4x1x2 − x2

2 + 3x3 + 2x4)α2

+
1
4
(−5x2

1 + 5x2
2 + 4x1x2)(β2

1 − α2
1)

− (x2
1 − x2

2 + 5x1x2)α1β1 +
3
4
(x2

1 + x2
2).

By Theorem 11, we just need to check whether

F := −1 < x1 < 1 ∧ x2
3 + x2

4 < 1 ∧ α2
1 + β2

1 = 1∧

α2
2 + β2

2 =1 ∧
(

1
4 (3α2

1 − 3β2
1 − 4α1β1 + 1)x2

1

+1
2 (x2

1 + 2x3 + 2x4)β2 −
√

2
2 x3α2

)

>4

is satisfiable or not. It is easy to prove that there does not exist
any x1 , x2 , x3 , x4 , α1 , α2 , β1 , β2 ∈ R such that the above
formula holds. Thus, the system is safe.

Remark 2: Note that the openness of the initial set X and
the unsafe set Y plays a very important role in our approach.
Otherwise, there may be some point on the boundary of X or Y ,
which cannot be contained by any ball contained correspond-
ingly in X or Y . But in case either of them is not open, we can
resort to the below approach to approximate the reachable set.

VI. ABSTRACTION OF SOLVABLE DYNAMICAL SYSTEMS

In this section, we present an approach to approximate the
reachable sets of the general solvable dynamical systems SS (4)
by abstracting to the case only with real eigenvalues as discussed
in Section IV.

A. Solution Form of the General Case

Given an SS of (4), we will show that its solution is a PETF
vector. Namely,

Theorem 13: Given an SS as (4) and an initial point x ∈ Rn ,
then its solution Φ(x, t) can be represented by the following
form

(Φ(x, t))i =
Ki∑

k=1

eαi k t(zc
ik (x) cos (γik t) + zs

ik (x) sin (γik t))

(29)
for i = 1, . . . , n, where zc

ik (x), zs
ik (x) ∈ R[x] and αik , γik ∈

R.
Proof: Similar to Theorem 5. �

B. Approximation of Reachable Sets by Abstraction

Using the solution form above, the reachability of Y from X ,
i.e., the safety problem, can be formally described as

∃x∃y∃t : Ω, where the quantifier free part Ω is defined by

Ω =̂ x ∈ X ∧ y ∈ Y ∧ t ≥ 0∧
n∧

i=1

yi =
Ki∑

k=1

eαi k t(zc
ik (x) cos (γik t) + zs

ik (x) sin (γik t)).

The reachability problem of this form is generally undecid-
able due to the TMFs in the formula. However, if there are no
such functions it becomes decidable, and a decision procedure
has been proposed in [16]. This fact hints us to eliminate the
TMFs by overapproximation of the reachable set, which is anal-
ogous to the technique used in Section V. Let

Ξ =̂ x ∈ X ∧ y ∈ Y ∧ t ≥ 0 ∧
N∧

j=1

u2
j + v2

j = 1∧

n∧

i=1

yi =
Ki∑

k=1

eαi k t

(
zc

ik (x)fc
ik (u1 , v1 , . . . , uN , vN )

+zs
ik (x)fs

ik (u1 , v1 , . . . , uN , vN )

)

.

Then, it follows immediately that
Theorem 14: ∃x∃y∃t : Ω ⇒ ∃x∃y∃t∃N

j=1uj∃N
j=1vj : Ξ.

Hence, we can conclude, by Theorem 14, the system to be
verified is safe, i.e., Y is not reachable from X , as long as we
can prove ∃x∃y∃t∃N

j=1uj∃N
j=1vj : Ξ does not hold.

VII. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have discussed the reachability problem for four cases:
nilpotent, real, purely imaginary, and general case. For the nilpo-
tent and purely imaginary case, the reachability problem can be
reduced to a quantifier elimination problem in Tarski’s algebra
by introducing some new variables. Therefore, it is easy to ob-
tain the decidability since the quantifier elimination of Tarski’s
algebra is decidable. We implement a tool to decide the reach-
ability problem for the real case. And then using such tool to
obtain an incomplete method for the general case.

A. Part 1: Only With Real Eigenvalues

We have implemented the proposed approach for the case only
with real eigenvalues described in Section IV in Mathematica
as a prototype, called LinR,2 which takes an SS reachability
problem as input, and gives either False if the problem is not
satisfiable, or True otherwise associated with some valid sample
points. In the following, we report some experimental results
with LinR.

Example 6: Adopted from Example 3 in [16].
Example 7 (Adapted from [1]): Consider a vessel of water

containing a radioactive isotope, to be used as a tracer for the
food chain, which consists of aquatic plankton varieties phyto-
plankton A and zooplankton B. Let ξ1(t) be the isotope con-
centration in the water, ξ2(t) the isotope concentration in A and
ξ3(t) the isotope concentration in B. The dynamics of the vessel
is modeled as ξ̇ = Aξ, where

A =

[−3 6 5
2 −12 0
1 6 −5

]

.

2Both the tool and the case studies in this section can be found at
http://lcs.ios.ac.cn/∼chenms/tools/LinR.tar.bz2.
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The initial radioactive isotope concentrations ξ1(0) = x1 >
0, ξ2(0) = 0, ξ3(0) = 0.

The safety property of our concern is whether ∀t > 0 ξ1(t) ≥
ξ2(t) + ξ3(t). To this end, we consider a more general prob-
lem: For which n1 , n2 ∈ N s.t. F (n1 , n2) = ∃x1 > 0 ∃t >
0 ξ1(t) < n1ξ2(t) + n2ξ3(t) holds.

It is easy to see that the matrix A is diagonalizable with
eigenvalues 0,−10 +

√
6,−10 −√

6. When (n1 , n2) = (1, 1),
using the method in Section IV-C, we obtain two sample points
for (x1 , t), i.e., (−0.1, 1), (0.1, 1). But none of them satisfies
F (1, 1), which simply implies the safety property holds. When
(n1 , n2) = (2, 2), similarly, we obtain four sample points for
(x1 , t), i.e., (−0.1, 0), (0.1, 0), (−0.1, 1), (0.1, 1), in which
(0.1, 1) satisfies F (2, 2). It can be proved that ξi(t) ≥ 0 for any
t > 0 and i = 1, 2, 3. So, it is clear that, if F (n1 , n2) holds,
F (m1 ,m2) holds for m1 ≥ n1 and m2 ≥ n2 . Then, by check-
ing some pairs of (n1 , n2) ∈ N × N in a similar way as above,
we conclude that all pairs (n1 , n2) ∈ N × N satisfy F (n1 , n2),
except for the pairs {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2),
(2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (5, 0)}.

Example 8 ([Adapted from [1]): Consider a typical home
with attic, basement, and insulated main floor. Let
x3(t), x2(t), x1(t) be the temperature in the attic, main living
area, and basement, respectively, and t is the time in hours. As-
sume it is winter time, the outside temperature is nearly 35 ◦F ,
and the basement earth temperature is nearly 45◦F . Suppose a
small electric heater is turned on, and it provides 20 ◦F rise per
hour. We want to verify that the temperature in main living area
will never reach too high (maybe 70 ◦F ). Analyze the changing
temperatures in the three levels using Newton’s cooling law and
given the value of the cooling constants, we obtain the model as
follows:

ẋ1 =
1
2
(45 − x1) +

1
2
(x2 − x1)

ẋ2 =
1
2
(x1 − x2) +

1
4
(35 − x2) +

1
4
(x3 − x2) + 20

ẋ3 =
1
4
(x2 − x3) +

3
4
(35 − x3)

with the initial set X = {(x1 , x2 , x3)T | 1 − (x1 − 45)2 −
(x2 − 35)2 − (x3 − 35)2 > 0} and the unsafe set Y =
{(y1 , y2 , y3)T | y2 − 70 > 0}. The safety property we are con-
cerning is to check if some state in Y is reachable from X, which
holds by using LinR.

Example 9: Consider a nonlinear SS as follows

ξ̇1 = −ξ1 + 2ξ2

ξ̇2 = ξ1 − ξ2

ξ̇3 = −ξ3 + ξ1ξ2

with the initial set X = {(x1 , x2 , x3)T | −x1 + x2 − x3 + 2 <
0} and the unsafe set Y = {(y1 , y2 , y3)T | −y1 + y2 − y3 −
2 > 0}. For an initial point x = (x1 , x2 , x3), the solution is

ξ1(t, x)=

(
1
2
a+

√
2

2
b

)

e(
√

2−1)t−
(

−1
2
a+

√
2

2
b

)

e−(
√

2+1)t

ξ2(t, x)=

(√
2

4
a+

1
2
b

)

e(
√

2−1)t +

(

−
√

2
4

a +
1
2
b

)

e−(
√

2+1)t

ξ3(t, x) = e−t

(
e(2

√
2−1)t

2
√

2 − 1

(√
2

8
x2

1 +
√

2
4

x2
2 +

1
2
x1x2

)

+
e−(2

√
2+1)t

2
√

2 + 1

(√
2

8
x2

1 +
√

2
4

x2
2 −

1
2
x1x2

)

+ c − 1
8

√
2x2

1

2
√

2 − 1
− 1

4

√
2x2

2

2
√

2 − 1
− 1

2
x1x2

2
√

2 − 1

+
1
8

√
2x2

1

−2
√

2 − 1
+

1
4

√
2x2

2

−2
√

2 − 1
− 1

2
x1x2

−2
√

2 − 1

)

.

The safety property we are concerning is to check if some state
in Y is reachable from X, i.e., check whether the following
formula is true of not:

∃x1∃x2∃x3∃t : − x1 + x2 − x3 + 2 < 0 ∧ t ≥ 0

∧ −ξ1 + ξ2 − ξ3 − 2 > 0.

Using our tool, a point (x1 , x2 , x3 , t) = (−36.1203, 20.7631,
59.1, 1) can be found that satisfy the above formula, which
means that the system will reach Y from the initial point
(−36.1203, 20.7631, 59.1) ∈ X at time t = 1. Thus, it is un-
safe.

The above four examples are verified by LinR. Both the time
and memory costs on a 64-bit Linux computer with a 2.93GHz
Intel Core-i7 processor and 4GB of RAM are shown in Table I.
Besides, we have also compared on the same platform with the
performance of Strzeboński’s approach (i.e., CT1D) [38], as
well as verification tools dReach [25], HSolver [33], and Flow*
[7] on these examples. Note that both dReach and Flow* cannot
handle unbounded model checking, and even for BMC, they
are less efficient than our tool in many cases (see Examples 6,
7, and 9).3 In particular, Flow* accepts only rectangular ini-
tial set, i.e., each variable needs to be specified within a closed
interval and polynomial constraints are not allowed, and thus
we tried different cube to approximate the spherical initial set
in Example 6, while none of them can derive a desired result
(unsafe). As for HSolver, due to the rejection of “sqrt,” we sim-
plify the original model by replacing all the irrational numbers
with their approximate decimals, however, 2 of the 3 examples
still cannot be answered by HSolver in reasonable time and
memory.

Remark 4: In the above examples, all constraints are open
sets. Actually, more general initial and unsafe sets, i.e., when
either Pre(X) or Post(X) is not open semialgebraic, can be
coped with in our approach also, as we have implemented CAD
in the algorithms. For the [27, Example 3.4], where A is diag-
onalizable with rational eigenvalues and Pre(X) and Post(X)
are both closed sets, it takes 57 ms using Lafferriere et al.’s
approach based on quantifier elimination by QEPCAD [11]. In
contrast, LinR takes 39 ms, and CT1D takes 33 ms. In brief,
our approach shares nearly same complexity as Strzeboński’s in
general case, but is still better than other approaches, see Table II
(QEPCAD stands for Lafferriere et al.’s approach).

Remark 5: It is worth clarifying the aim of the comparison
done in this section, though we recognize that the comparisons

3Here, we set the time bounds 2s, 2s, 5s, and 2s resp. for Examples 6, 7, 8,
and 9 when using dReach and Flow*.
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TABLE I
EVALUATION RESULTS OF DIFFERENT METHODS

LDS Time (s) Memory (kb)

LinR CT1D dReach HSolver Flow* LinR CT1D dReach HSolver Flow*

Example 6 1.35 × 37.36 – – 112 × 3812 – –
Example 7 0.03 0.20 0.71 – – 131 2018 3816 – –
Example 8 1.68 × 0.05 0.72 16.50 166 × 3812 1 076 932 113 492
Example 9 17.56 × 22.48 – – 580 × 3820 – –

× : The verification fails by nontermination within reasonable amount of time (10 hours).
– : The verification fails because of giving an answer as “safety unknown.”

TABLE II
TIME CONSUMPTION (IN MILLISECONDS) ON EXAMPLE 3.4 FROM [27]

LinR CT1D QEPCAD dReach HSolver Flow*

39 33 57 110 – –

with dReach, Flow*, and HSolver are not essentially fair in gen-
eral, due to distinction of their scopes. A more reasonable way
of doing the comparison might be with several state-of-the-art
tools for quantifier elimination, e.g., REDLOG [14], QEPCAD, and
SyNRAC [24]. However, these implementations are not capable
of dealing with the examples listed in Table I, as we are con-
sidering more general classes of systems featuring decidability
results. For instance, SyNRAC performs quantifier elimination
only over polynomial formulas, yet not available for constraints
involving transcendental functions. While, CT1D, a general-
ized CAD implementation of Mathematica’s Reduce command,
is theoretically competent in solving those examples, and thus
is listed as one of the candidates in Table I.

Aiming at an extensive evaluation of our algorithms, espe-
cially for the efficiency, we resort to the verification community
by performing comparisons with tools therein for reachability
computation. Whereas unfortunately, neither dReach, Flow*,
HSolver, nor SpaceEx [15] is fully compatible with our exam-
ples, and therefore, some simplifications or approximations over
the examples are conducted before triggering those tools. For
instance, we feed dReach and Flow* with a time bound, re-
spectively, for each example, as they cannot handle unbounded
verification; we replace the unbounded initial set with a small
compact one in Examples 7 and 9 when evaluating HSolver,
dReach, and Flow*, due to their intractability of unbounded
initial set; while a rectangular approximation of the initial set
is always needed for Flow* if the variables are not originally
specified within closed intervals.

Particularly, for systems considered in this paper, if no sim-
plification or approximation techniques are involved, one could
get an immediate overview of the advantages of our approach
through Table III.

B. Part 2: Abstraction of Solvable Dynamical Systems

To demonstrate the effectiveness of our technique that uses
abstraction for general solvable dynamical systems with com-
plex eigenvalues, we have extended our tool called LinR [16]
in Mathematica, which has been demonstrated more efficient

TABLE III
FEATURES SUPPORTED BY DIFFERENT TOOLS

Features LinR HSolver dReach Flow* SpaceEx

Unbounded time
verification

√ √
– –

√#

Unbounded initial set
√

– – – –
Nonlinear semialgebraic
initial set

√ √ √
– –

Nonlinear SSs
√ √ √ √

–

√# : Based on existence of fixed-points of the reachable states.

than existing approaches based on approximation and numeric
computation in general, e.g., HSolver, dReach, FLOW*, etc.
For systems with real or purely imaginary eigenvalues, the tool
produces an exact result in finite time declaring the system
“SAFE” or “UNSAFE;” while for systems with complex
eigenvalues where overapproximation is used, the algorithm is
guaranteed to terminate in a finite number of steps, either by
finding a real counterexample (sample point) in the concrete
system and declaring the system “UNSAFE,” or by claiming
the system “SAFE” when the abstracted system is safe, i.e.,
no counterexample is detected, or returning an “UNKNOWN”
answer when the abstracted system is unsafe but the concrete
system is safe, where only spurious counterexamples can
be derived. In what follows, we illustrate our approach by a
practical proportional-integral-derivative (PID) controller.

Consider a PID controller (taken from [31]), which is used to
control a simple mass, spring, and damper problem. The mod-
eling equation of the mass, spring, and damper system (plant)
is

Mẍ + bẋ + kx = F

where M = 1 kg, b = 10 N·s/m, k = 20 N/m are given param-
eters of the plant, and F is the controllable force. Suppose the
goal is to control the plant to reach a steady state where x = 1
with some requirements on the overshoot and rise time. Let
r(t) denote the desired trajectory for reaching the steady state
x = 1, which follows as a step function: r(t) = 0 for t < 0 and
r(t) = 1 for t > 0.

Given a PID controller, the model describing the composed
plant and controller is

Mẍ + bẋ + kx = Kd( ˙r − x) + Kp(r − x) + Ki

∫

(r − x)
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where Kd , Kp , and Ki are parameters indicating gains of the
derivative, proportional, and integral, respectively, while r − x
is the error in tracking the desired trajectory r.

We consider the case of using a PI controller, i.e., Kd = 0, and
choose Kp = 350 and Ki = 300. We will prove the following
property of the system using our approach:

G(t > 0.5 ⇒ x ≥ 0.9 ∧ x ≤ 1.1). (30)

Note that this case has been studied in [31] but unfortunately it
cannot be proved by the method proposed there.

Let x = [
∫

x, x, ẋ, t]T , then ẋ = Ax + u, where

A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0

−300 −370 −10 300
0 0 0 0

⎤

⎥
⎥
⎦

and u = [0, 0, 350, 1]T . The initial value is x(0) = [0, 0, 0, 0]
and unsafe set is Y = {x | t > 0.5 ∧ (x < 0.9 ∨ x > 1.1)}.
Now, the problem has been written in the form of reachabil-
ity of an LDS. The eigenvalues of A are 0, λ0 , λ1 , and λ2 ,
where λi (i = 0, 1, 2) are roots of the characteristic equation
f(λ) = λ3 + 10λ2 + 370λ + 300. Solving the LDS, we get

x = 1 + c0λ0eλ0 t + c1λ1eλ1 t + c2λ2eλ2 t

where
⎡

⎣
c0

c1

c2

⎤

⎦ =

⎡

⎣
1 1 1
λ0 λ1 λ2

λ2
0 λ2

1 λ2
2

⎤

⎦

−1 ⎡

⎣
1/15
−1
0

⎤

⎦ .

Observe that f(λ) has only one real root, denoted by λ0 , and
by λ1 and λ2 the other two conjugate complex roots. Let λ1,2 =
α ± βi, then the solution can be rewritten as

x = 1 + c0λ0eλ0 t + 2eαt(Re(c1λ1) cos (βt)

− Im(c1λ1) sin (βt)).

Now by abstraction, we put u = cos (βt), v = cos (βt) and
require that u2 + v2 = 1. Then, the reachability of Y becomes

∃u∃v∃t : u2 + v2 = 1 ∧ t > 0.5∧
(φ(u, v, t) < −0.1 ∨ φ(u, v, t) > 0.1) (31)

where φ(u, v, t) = c0λ0eλ0 t + 2(Re(c1λ1)u − Im(c1λ1)v)eαt .
Then, using the method proposed in [16], we prove that 1)
φ(u, v, t) > 0.1 is invalid, and thus x ≤ 1.1 in (30) is ver-
ified; and 2) the interval (0.5, T ] covers all t that make
φ(u, v, t) < −0.1 satisfiable in (31). Here, T is the unique root
of |c0λ0 |eλ0 t + 2|c1λ1 |eαt − 0.1, which can be approximated
by real root isolation with arbitrary precision. We adopt 0.6 as
an overapproximation of T here (see Fig. 1).

Using our method it has been shown that Y can only be
reached when t is in (0.5, 0.6]. Moreover, it can be checked by
bounded model checking or simulation based verification [18],
[23] that even for t ∈ (0.5, 0.6] Y cannot be reached. Therefore,
we have proved the property (30) for the given system.

VIII. CONCLUSION

In this paper, we extended our previous approaches on reach-
ability analysis for linear vector fields given in [16] and [17] to
solvable nonlinear vector fields. To this end, we first identified

Fig. 1. Overapproximation (the “broom”) of the trajectory of x (the
curve) starting from 0. Here, the two horizontal dashed lines specify
the boundaries of the safe set, while T indicates a point in time, after
which the behavior of the overapproximated system stays within the safe
region.

three families of solvable nonlinear vector fields, i.e., the cases
when the matrices in (4) are, respectively, nilpotent, only with
real eigenvalues and only with pure imaginary eigenvalues, and
proved their reachability problems are decidable. In addition,
we presented an approach on how to abstract the reachability
problem of general solvable dynamical systems (4) to the deci-
sion problem of Te . A prototypical tool has been implemented,
and experimental results indicate our approach is efficient.

As a future work, it could be interesting to investigate whether
the reachable set computation of general nonlinear vector fields,
even nonpolynomial vector fields can be abstracted to that of
solvable ones, further to that of linear ones, by exploiting our
previous work in [28].
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