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1 INTRODUCTION

Probabilistic programming is used to describe stochastic models in the form of executable computer
programs. It enables fast and natural ways of designing statistical models without ever resorting to
random variables in the mathematical sense. The so-obtained probabilistic programs [Barthe et al.
2020; Gordon et al. 2014; Holtzen et al. 2020; Kozen 1981; van de Meent et al. 2018] are typically
normal-looking programs describing posterior probability distributions. They intrinsically code
up randomized algorithms [Mitzenmacher and Upfal 2005] and are at the heart of approximate
computing [Carbin et al. 2016] as well as probabilistic machine learning [van de Meent et al. 2018,
Chapter 8]. One prominent example is Scenic [Fremont et al. 2023] – a domain-specific probabilistic

†The corresponding authors

Authors’ addresses: Lutz Klinkenberg, lutz.klinkenberg@cs.rwth-aachen.de, RWTH Aachen University, Aachen, Germany;
Christian Blumenthal, christian.blumenthal@rwth-aachen.de, RWTH Aachen University, Aachen, Germany; Mingshuai
Chen, m.chen@zju.edu.cn, Zhejiang University, Hangzhou, China; Darion Haase, darion.haase@cs.rwth-aachen.de, RWTH
Aachen University, Aachen, Germany; Joost-Pieter Katoen, katoen@cs.rwth-aachen.de, RWTH Aachen University, Aachen,
Germany.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/4-ART127
https://doi.org/10.1145/3649844

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 127. Publication date: April 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-3812-0572
HTTPS://ORCID.ORG/0009-0003-6427-0229
HTTPS://ORCID.ORG/0000-0001-9663-7441
HTTPS://ORCID.ORG/0000-0001-5664-6773
HTTPS://ORCID.ORG/0000-0002-6143-1926
https://doi.org/10.1145/3649844
https://orcid.org/0000-0002-3812-0572
https://orcid.org/0009-0003-6427-0229
https://orcid.org/0000-0001-9663-7441
https://orcid.org/0000-0001-9663-7441
https://orcid.org/0000-0001-5664-6773
https://orcid.org/0000-0002-6143-1926
https://doi.org/10.1145/3649844
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649844&domain=pdf&date_stamp=2024-04-29


127:2 L. Klinkenberg, C. Blumenthal, M. Chen, D. Haase, and J.-P. Katoen

{F ≔ 0 } [ 5/7 ] {F ≔ 1 } #

if (F = 0 ) { 2 ≔ poisson (6) }

else { 2 ≔ poisson (2) } #

observe ( 2 = 5 )

Prog. 1. The telephone operator.
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Fig. 1. The distribution ofF in Prog. 1.

programming language to describe and generate scenarios for, e.g., robotic systems, that can be used
to train convolutional neural networks; Scenic features the ability to declaratively impose (hard
and soft) constraints over the generated models by means of conditioning via posterior observations.
Moreover, a large volume of literature has been devoted to combining the strength of probabilistic
and differentiable programming in a mutually beneficial manner; see [van de Meent et al. 2018,
Chapter 8] for recent advancements in deep probabilistic programming.

Reasoning about probabilistic programs amounts to addressing various quantities like assertion-
violation probabilities [Wang et al. 2021b], preexpectations [Batz et al. 2021; Feng et al. 2023; Hark
et al. 2020], moments [Moosbrugger et al. 2022; Wang et al. 2021a], expected runtimes [Kaminski
et al. 2018], and concentrations [Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016].
Probabilistic inference is one of the most important tasks in quantitative reasoning which aims to
derive a program’s posterior distribution. In contrast to sampling-based approximate inference,
inferring the exact distribution has several benefits [Gehr et al. 2020], e.g., no loss of precision,
natural support for symbolic parameters, and efficiency on models with certain structures.
Exact probabilistic inference, however, is a notoriously difficult task [Ackerman et al. 2019;

Cooper 1990; Kaminski et al. 2019; Olmedo et al. 2018; Roth 1996]; even for Bayesian networks, it is
already PP-complete [Kwisthout 2009; Littman et al. 1998]. The challenges mainly arise from three
program constructs: (i) unbounded while-loops and/or recursion, (ii) infinite-support distributions,
and (iii) conditioning. Specifically, reasoning about probabilistic loops amounts to computing
quantitative fixed points (see [Dahlqvist et al. 2020]) that are highly intractable in practice; admitting
infinite-support distributions requires closed-form (i.e., finite) representations of program semantics;
and conditioning “reshapes” the posterior distribution as per observed events thus yielding another
layer of semantic intricacies (see [Ackerman et al. 2019; Bichsel et al. 2018; Olmedo et al. 2018]).
This paper proposes to use probability generating functions (PGFs) – a subclass of generating

functions (GFs) [Wilf 2005] – to do exact inference for discrete, loopy, infinite-state probabilistic
programs with conditioning, thus addressing challenges (i), (ii), and (iii), whilst aiming to push the
limits of automation as far as possible by leveraging the strength of existing computer algebra
systems like SymPy [Meurer et al. 2017] and GiNaC [Bauer et al. 2002; Vollinga 2006]. We extend the
PGF-based semantics by Klinkenberg et al. [2020], which enables exact quantitative reasoning for,
e.g., deciding probabilistic equivalence [Chen et al. 2022a] and proving non-almost-sure termination
[Klinkenberg et al. 2020] for certain programs without conditioning. Orthogonally, Zaiser et al.
[2023] recently employed PGFs to conduct exact Bayesian inference for conditioned probabilistic
programs with infinite-support distributions yet no loops. Note that having loops and conditioning
intertwined incurs semantic intricacies; see [Bichsel et al. 2018; Olmedo et al. 2018]. Let us illustrate
our inference method and how it addresses such semantic intricacies by means of a number of
examples of increasing complexity.

Conditioning in loop-free programs. Consider the loop-free program Prog. 1 producing an infinite-
support distribution. It describes a telephone operator who is unaware of whether today is a weekday
or weekend. The operator’s initial belief is that with probability 5/7 it is a weekday (F = 0) and thus
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Exact Bayesian Inference for Loopy Probabilistic Programs using Generating Functions 127:3

ℎ ≔ 1 #

while ( ℎ = 1 ) {

{ C ≔ C + 1 } [ 1/2 ] {ℎ ≔ 0 }

} #

observe ( C ≡ 1 (mod 2) )

Prog. 2. The odd geometric distribution.
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Fig. 2. Snippets of the distribution of C in Prog. 2.

with probability 2/7 weekend (F = 1); see Fig. 0a. Usually, on weekdays there are 6 incoming calls
per hour on average; on weekends this rate decreases to 2 calls – both rates are subject to a Poisson
distribution. The operator observes 5 calls in the last hour, and the inference task is to compute the
posterior distribution in which the initial belief is updated based on the observation. Our approach
can automatically infer the updated belief (see Fig. 0b) with Pr(F = 0) = 1215

1215+2·44
≈ 0.9175. (Detailed

calculations of the PGF semantics for Prog. 1 are given in Example 8 on page 11.)

Conditioning outside loops. Prog. 2 describes an iterative algorithm that repeatedly flips a fair coin
– while counting the number of trials (C ) – until seeing tails (ℎ = 0), and observes that this number
is odd. In fact, the while-loop produces a geometric distribution in C (cf. Fig. 1a), after which the
observe statement “blocks” all program runs where C is even and normalizes the probabilities
of the remaining runs (cf. Fig. 1b). Note that Prog. 2 features an unbounded looping behavior
(inducing an infinite-support distribution) whose exact output distribution thus cannot be inferred
by state-of-the-art inference engines, e.g., neither by (_)PSI [Gehr et al. 2016, 2020], nor by the
PGF-based approach in [Zaiser et al. 2023]. However, given a suitable loop invariant, our tool is
able to derive the posterior distribution of Prog. 2 in an automated fashion: for any input with C = 0,
the posterior is represented as the closed-form PGF

3 ·)

4 −) 2
=

∞∑

==0

−3 · 2−2−= · (−1 + (−1)=)
︸                           ︷︷                           ︸

Pr(C == ∧ℎ = 0)

· )=� 0 ,

where ),� are formal indeterminates corresponding to the program variables C and ℎ, respectively.
From this closed-form PGF, we can extract various quantitative properties of interest, e.g., the

expected value of C is E[C] =
(

m
m)

3·)
4−) 2

)
[�/0,) /1] = 5

3
, or compute concentration bounds (aka tail

bounds) such as Pr(C > 100) ≤ 5
3·100

=
1
60

à la Markov’s inequality [Dubhashi and Panconesi 2009].

Conditioning inside i.i.d. loops. As argued by Olmedo et al. [2018] and Bichsel et al. [2018], having

ℎ ≔ 1 #

while ( ℎ = 1 ) {

{ C ≔ C + 1 } [ 1/2 ] {ℎ ≔ 0 } #

observe ( ℎ = 1 )

}

Prog. 3. observe inside loop.

loops and conditioning intertwined incurs semantic intrica-
cies: Consider Prog. 3 – a variant of Prog. 2 where instead
we observe ℎ = 1 inside the while-loop. Prog. 3 features
an i.i.d. loop, i.e., the set of states reached upon the end of
different loop iterations are independent and identically dis-
tributed. This program is interesting since it conditions to a
zero-probability event, i.e., the probability of infinitely often
ignoring ℎ ≔ 0 is zero, which is important yet non-trivial to
detect in general. Assigning a meaningful semantics to Prog. 3 is delicate: Intuitively, the observe
statement prevents the while-loop from terminating since we always observe that we have taken
the left branch, and therefore never set the termination flag ℎ = 0. As a consequence, all runs that
eventually would terminate are invalid as they violate the observation criterion. The single run
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that does satisfy the criterion in turn is never able to exit the loop (cf. Section 3.4). In previous work
on using PGFs (without conditioning) [Chen et al. 2022a; Klinkenberg et al. 2020], the semantics of
non-termination is represented as subprobability distributions where the “missing” probability mass
captures the probability of divergence. Zaiser et al. [2023] circumvent such semantic intricacies by
syntactically imposing certainly terminating programs (due to the absence of loops and recursion).
In our work, we distinguish non-termination behaviors from observe violations [Bichsel et al. 2018;
Olmedo et al. 2018], which allows us to show that the while-loop in Prog. 3 is in fact equivalent to

if ( ℎ = 1 ) { observe ( false ) } else { skip }

which in turn reduces to observe ( ℎ ≠ 1 ).
For certain programs, conditioning inside loops can be treated differently. These approaches

include (1) hoisting [Olmedo et al. 2018] that removes observations completely from conditioned
probabilistic programs, which however relies on intractable fixed point computations to hoist
observe statements inside loops; (2) the pre-image transformation [Nori et al. 2014] that propagates
observations backward through the program, which however cannot hoist the observe statement
through probabilistic choices, as in Prog. 3; (3) the ad hoc solution that simply pulls the observe
statement outside the loop, which however works only for special i.i.d. loops like Prog. 3: The
observe statement in Prog. 3 can be equivalently moved downward to the outside of the loop,
but such transformation does not generalize to non-i.i.d. loops (which may have data flow across
different loop iterations) as exemplified below.

Conditioning inside non-i.i.d. loops. The probabilistic loop in Prog. 4 models a discrete sampler
which keeps tossing two fair coins (ℎ1 and ℎ2) until they both turn tails. The observe statement in
this program conditions to the event that at least one of the coins yields the same outcome as in the

= ≔ 0 #

ℎ1 ≔ 1 # ℎ2 ≔ 1 # ℎ′1 ≔ 1 # ℎ′2 ≔ 1 #

while ( ¬ (ℎ1 = 0 ∧ ℎ2 = 0) ) {

ℎ1 ≔ bernoulli (1/2) #

ℎ2 ≔ bernoulli (1/2) #

observe
(
ℎ1 = ℎ′1 ∨ ℎ2 = ℎ′2

)
#

ℎ′1 ≔ ℎ1 #

ℎ′2 ≔ ℎ2 #

= ≔ = + 1

}

Prog. 4. The non-i.i.d. discrete sampler.

previous iteration, thereby imposing the global effect to “re-
set” the counter = and restart the program upon observation
violations. This way of conditioning – that induces data
dependencies across consecutive loop iterations – renders
the loop non-i.i.d. and, as a consequence, no known tactic
can be employed to pull the observation outside the loop.
However, given a suitable invariant – in the form of a condi-
tioned loop-free program that is equivalent to the loop – our
method automatically infers that the posterior distribution

is − 7·# 2

# 2+8·#−16
, where # is the formal indeterminate of the

counter = (note that ℎ1 = ℎ2 = ℎ′
1
= ℎ′

2
= 0 on termination).

Furthermore, our inference framework admits parameters
in both programs and invariants for, e.g., encoding distribu-
tions with unknown probabilities like bernoulli (?) with
? ∈ (0, 1); it is capable of determining possible valuations of these parameters such that the given
invariant is equivalent to the loop in question. The support of parameters in our approach enables
template-based invariant synthesis (see, e.g., [Batz et al. 2023]) and model repair (cf. [Češka et al.
2019]), as detailed in Section 5.

Approach. Fig. 3 sketches an overview of our inference approach: Given a prior distribution
� and a loopy probabilistic program % with conditioning (at any place), our primary goal is to
infer the posterior (sub-)distribution J%K(�) as depicted by the upper row. Here, we interpret %
as a distribution transformer J%K(·) that transforms � into J%K(�), both represented as PGFs to
encode possibly infinite-support distributions. To deal with the unbounded while-loop in % , we
provide an invariant � (?) in the form of a loop-free program parametrized by ? ∈ R, and aim to
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synthesize parameter values under which � (?) is semantically equivalent to % , i.e., they transform
every possible prior distribution into the same posterior (sub-)distribution. We show that checking
the program equivalence J� (?)K = J%K (together with parameter synthesis) is decidable – via an
extended technique of second-order PGFs – when � (?) and % are restricted to a syntactic class
of programs called cReDiP preserving closed-form PGFs. Once the equivalence is concluded, we
can simply push the prior distribution � through the loop-free program � (?) – as illustrated by
the downward path in Figure 3 – and obtain the posterior (sub-)distribution J%K(�), from which
various quantitative queries can be addressed. To tackle conditioning, a key technical ingredient
in our approach is to extend PGFs with an extra term - keeping track of observation violations,
which will eventually be normalized off to achieve the final, normalized (sub-)distribution.

Contributions. The main results of this paper are as follows.

• We present a PGF-based denotational semantics for discrete probabilistic while-programs
where conditioning can occur at any place in the program. The basic technical ingredient
is to extend PGFs with an extra term encoding the probability of violating observations as
proposed by [Bichsel et al. 2018]. The semantics can treat conditioning in the presence of
possibly diverging loops and captures conditioning on zero-probability events.

• This semantics extends the PGF-based semantics of [Chen et al. 2022a; Klinkenberg et al.
2020] for unconditioned programs and is shown to coincide with the Markov chain semantics
in [Olmedo et al. 2018]. These correspondences indicate the adequacy of our semantics.

• Our PGF-based semantics readily enables exact inference for loop-free programs. We identify
a syntactic class of almost-surely terminating programs for which exact inference for a

loopy program % with conditioning

while ( ℎ = 1 ) {

{ C ≔ C + 1 } [ 1/2 ] {ℎ ≔ 0 }

} #

observe ( C ≡ 1 (mod 2) )

~
w�

found ? = 1/2 such that
∀� ∈ PGF : J� (?)K(� ) = J%K(� )

loop-free invariant � (?) parametrized by ?

(( 1 ·) 0� 1

if ( ℎ = 1 ) {C += geom (?) # ℎ ≔ 0} else {skip} #

((
?

1−(1−? ))

observe ( C ≡ 1 (mod 2) )

(( 1
2−?

· - +
? (1−? ))

1−( (1−? )) )2
⇝

(2−? )?)

1−( (2−? )?+1)) 2

encoding observation-violation by - normalizing the (sub-)distribution

prior distribution post. (sub-)distribution

queries to
J%K(�)

normalization

? = 1/2

� = 1 ·) 0�1

︸   ︷︷   ︸
PGF

J%K(�) = 3·)
4−) 2

︸︷︷︸
PGF

· · ·

Fig. 3. A bird’s-eye perspective of our approach.
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while-loop coincides with inference for a straight-line program. Technically this is based on
proving program equivalence.

• We show that, for this class of programs, our approach can be generalized towards parameter
synthesis: Are a while-loop and a loop-free program that (both may) contain some parametric
probability terms equivalent for some values of these unknown probabilities?

• We implement our method in a tool called Prodigy; it augments existing computer algebra
systems with GFs for (semi-)automatic inference and quantitative verification of conditioned
probabilistic programs. We show that Prodigy can handle many infinite-state loopy pro-
grams and exhibits comparable performance to state-of-the-art exact inference tools over
benchmarks of loop-free programs.

Paper structure. Section 2 presents preliminaries on generating functions. Section 3 presents our
extended PGF-based denotational semantics that allows for exact quantitative reasoning about
probabilistic programs with conditioning. We dedicate Section 4 to the exact Bayesian inference for
conditioned programs with loops leveraging the notions of invariants and equivalence checking. In
Section 5, we identify the class of parametrized programs and invariants for which the problem of
parameter synthesis is shown decidable. We report the empirical evaluation of Prodigy in Section 6
and discuss the limitations of our approach in Section 7. An extensive review of related work
in probabilistic inference is given in Section 8. The paper is concluded in Section 9. Additional
background materials, elaborated proofs, and details on the examples can be found in the appendix
of the extended version [Klinkenberg et al. 2024a].

2 PRELIMINARIES ON GENERATING FUNCTIONS

Generating functions (GFs) constitute a versatile mathematical tool with extensive applications
across various fields of mathematics and beyond [Wilf 2005]. They provide a systematic and elegant
means of representing andmanipulating sequences of numbers, rendering them essential for solving
a diverse spectrum of mathematical problems in, e.g., enumerative combinatorics [Flajolet and
Sedgewick 2009] and (discrete) probability theory [Johnson et al. 2005].

Formal power series. Generating functions, at their core, are formal power series (FPSs), which
encode essential information about possibly infinite sequences of numerical values (of any type).
The underlying principle is to represent the sequence as terms within an FPS (amenable to algebraic
operations). Generating functions are classified as uni- or multivariate based upon the number of
indeterminates. A univariate generating function in formal indeterminate - takes the form

� =

∑

=∈N
0=-

= (1)

where 0= is the =-th number within the sequence. The “monomials” -= are merely position-holders
for the coefficients 0= and do not have any particular meaning. However, à la Klinkenberg et al.
[2020] and Zaiser and Ong [2023], we interpret the indeterminate- with the corresponding program
variable G and the exponent = with values of G ; in this case, 0= is the probability of G = =.

Example 1 (Geometric Distribution as an FPS). Consider a discrete random (program) variable
C which is geometrically distributed over N with parameter 1/2. The probability mass function of C is
given by %C (C = =) = 1/2=+1. We tabulate %C using a sequence (0=)=∈N = (%C (C = =))= = 1/2, 1/4, 1/8, . . ..
Encoding this sequence as a generating function in terms of FPSs via formal indeterminate) yields

1

2
+

1

4
) +

1

8
) 2 +

1

16
) 3 +

1

32
) 4 +

1

64
) 5 +

1

128
) 6 +

1

256
) 7 + · · · (2)

where we uniquely associate terms of the power series to values of the sequence, e.g., the term 1
8
) 2

encodes the information that the probability of C = 2 is 1/8.
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Table 1. GF cheat sheet. 5 , 6 and -,. are arbitrary GFs and indeterminates, resp. [Chen et al. 2022a].

Operation Effect Example

5 −1 = 1/5
multiplicative inverse of 5
(if it exists)

1
1−-.

= 1 + -. + - 2. 2 + · · ·
because (1 − -. ) (1 + -. + - 2. 2 + · · · ) = 1

5 · - shift in dimension - -
1−-.

= - + - 2. + - 3. 2 + · · ·

5 [-/0] drop terms containing - 1
1−0.

= 1

5 [-/1] projection1 on . 1
1−1.

= 1 + . + . 2 + · · ·

5 · 6
discrete convolution
(or Cauchy product)

1

(1−-. )2
= 1 + 2-. + 3- 2. 2 + · · ·

m- 5 formal derivative in - m-
1

1−-.
=

.
(1−-. )2

= . + 2-. 2 + 3- 2. 3 + · · ·

5 + 6 coefficient-wise sum 1
1−-.

+ 1

(1−-. )2
=

2−-.
(1−-. )2

= 2 + 3-. + 4- 2. 2 + · · ·

0 · 5
coefficient-wise scaling
(by scalar 0)

7

(1−-. )2
= 7 + 14-. + 21- 2. 2 + · · ·

In order to deal with multiple program variables G1, . . . , G: , the form in Eq. (1) is general-
ized to a multivariate generating function of dimension : ∈ N as � =

∑
n∈N: 0nX

n, where
X = (-1, -2, . . . , -: ) is a vector of indeterminates and Xn is the monomial -=1

1
-=2

2
· · ·-

=:
:
. Here,

the term 0nX
n encodes that (G1, G2, . . . , G: ) = (=1, =2, . . . , =: ) with probability 0n. A :-dimensional

GF � is called a probability generating function (PGF) if
∑

n∈N: 0n ≤ 1 and 0n ≥ 0 for all n ∈ N: (cf.
Eq. (2)). A PGF with

∑
n∈N: 0n < 1 represents a subprobability distribution and is called a sub-PGF.

Closed forms. The encoding as in Example 1 enables us to compress the infinite power series
into a closed form using Taylor’s theorem, that is, a finitely-represented function whose Taylor
series developed at zero coincides with the GF. For instance, the closed form of Eq. (2) is given by
) ↦→ 1/(2−) ) for all |) | < 2, as the Taylor series of 1/(2−) ) is precisely 1

2
+ 1

4
) + 1

8
) 2 + · · · . Many

important operations on infinite sequences of numbers – and their corresponding GF series – can
be simulated by manipulating the closed-form expression instead. Using algebraic operations, this
allows for computing, e.g., expected values, variances, higher-order moments, point probabilities,
and tail bounds. For instance, the formal derivative d

d)
1

2−)
=

1

(2−) )2
evaluated at ) = 1 yields the

expected value E(C) =
1

(2−1)2
= 1. Table 1 summarizes some basic operations on GFs and their

corresponding effects on the infinite sequences.
To effectively manipulate closed forms, we embed them in an algebraic structure – the (commu-

tative) ring of FPSs (R[[X]], +, ·, 0, 1). Here, R[[X]] is the set of FPSs (of fixed dimension :):

� =

∑

n∈N:
[n]�X

n

with [·]� : N
: → R, “+” (addition) and “·” (multiplication) are binary operations defined as

� +� ≜
∑

n∈N:
( [n]� + [n]� ) X

n and � ·� ≜
∑

n1,n2∈N:
( [n1]� · [n2]� ) X

n1+n2 ,

and 0, 1 ∈ R[[X]] are neutral elements w.r.t. addition and multiplication, respectively. The multi-
plication � ·� is in fact the discrete convolution of the two sequences � and � (aka, the Cauchy
product of power series). Note that � ·� is always well-defined because for all n ∈ N: there are
finitely many n1 + n2 = n in N: . Moreover, every � ∈ R[[X]] has an additive inverse −� ∈ R[[X]]

yet multiplicative inverses � −1
= 1/� need not always exist.
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Remark. Treating the closed form as a function, say ) ↦→ 1
2−)

, and computing its Taylor series
imposes – for the sake of well-definedness – the radius of convergence of the resulting series, i.e.,
|) | < 2. However, due to the underlying algebraic structure, we can safely write 1

2−)
=
∑

=∈N
1

2=+1
)=

regardless of the fact whether |) | < 2: the sequences 2 − 1) + 0) 2 + · · · and 1
2
+ 1

4
) + 1

8
) 2 + · · · are

multiplicative inverse elements to each other in R[[) ]], i.e., their product is 1. We refer interested
readers to [Chen et al. 2022b, Appendix D] for more details on convergence-related issues. ◁

In this paper, we aremainly concernedwith rational closed forms, i.e., FPSs of the form � = �� −1
=

�/� where �,� are polynomials in R[[X]] (i.e., �,� have finitely many non-zero coefficients).

3 GENERATING FUNCTION SEMANTICS

3.1 Semantics without Conditioning

Given a fixed input, the semantics of a probabilistic program is captured by its (posterior) probability
distribution over the final (terminating) program states. In [Klinkenberg et al. 2020], the domain of
discrete distributions is represented in terms of PGFs – elements from R[[X]] – and a (conditioning-
free) program is interpreted denotationally as a distribution transformer à la Kozen [Kozen 1981].
We recap this semantics for programs without conditioning by means of an example:

Example 2 (PGF Semantics without Conditioning). Consider Prog. 5 with input � = 1 · - 0�0,
representing the joint prior distribution Pr (G = 0 ∧ 2 = 0) = 1. The (( 1

(
= 1 · - 0�0

)

G ≔ 1

(( -

{ 2 ≔ 2 + 5 } [ 1/3 ] { 2 ≔ 3 }

(( 1/3 · -�5 + 2/3 · -�3

if ( 2 > 4 ) {

(( 1/3 · -�5

G ≔ G + 2

(( 1/3 · - 6�5

} else {

(( 2/3 · -�3

G−−

(( 2/3 ·�3

}

(( 1/3 · - 6�5 + 2/3 ·�3

Prog. 5. PGF semantics for an

observation-free program.

denotational PGF semantics of this program is computed in a forward
manner per the annotation style in [Kaminski 2019]. Below, we show
step-by-step how the prior distribution � is transformed into the
joint posterior distribution � ′

= 1/3 · - 6�5 + 2/3 ·�3, indicating that
Pr (G = 6 ∧ 2 = 5) = 1/3 and Pr (G = 0 ∧ 2 = 3) = 2/3. We start by
interpreting the first instruction of the program, i.e., the assignment
of 1 to variable G , which results in the intermediate distribution
1 · - 1. Then, we descend into the left and right branches of the
probabilistic choice statement. For the left branch, we interpret the
semantics of 2 ≔ 2 + 5 by multiplying the previous distribution
1 · - 1�0 with �5 which encodes the effect of increasing 2 by 5. The
right branch is handled analogously by setting 2 to 3; this is done
by first marginalizing the distribution 1 · - 1�0 by substituting 1 for
� and then multiplying the result with �3. Now, we can combine
the semantics for the two branches (left: -�5; right: -�3) via a
weighted sum 1/3 · -�5 + 2/3 · -�3 to represent the distribution after
executing the probabilistic choice. Subsequently, we evaluate the
conditional branching by recursively descending into the satisfying
branch (G ≔ G + 2) and non-satisfying branch (G −−) with their
respective filtered inputs (2 > 4: 1/3 · -�5; 2 ≤ 4: 2/3 · -�3). Finally,
we combine the two sub-results of the conditional branches and thus
obtain 1/3 ·- 6�5+2/3 ·�3. See [Klinkenberg et al. 2020] for semantics of more program constructs. ◁

The representation of a posterior distribution in terms of a generating function comes with
several benefits: (1) it naturally encodes common, infinite-support distributions like the geometric
or Poisson distribution in compact, closed-form representations; (2) it allows for compositional

1Projection is not always well-defined, e.g., 1
1−-+. [-/1] = 1

.
is ill-defined, as. is not invertible. It is, however, well-defined

whenever used in this paper; in particular, projection is well-defined for (fully simplified) rational closed forms of PGFs.
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reasoning and, in particular, in contrast to representations in terms of density or mass functions,
the effective computation of (high-order) moments; (3) tail bounds, concentration bounds, and
other properties of interest can be extracted with relative ease from a PGF; and (4) expressions
containing parameters are naturally supported.

3.2 Semantics with Conditioning

We lift the approach to discrete, loopy probabilistic programs with conditioning by extending the
PGF semantics of Klinkenberg et al. [2020] to cope with posterior observations. To define such
a semantic model, we fix : N-valued program variables G1, G2, . . . , G: . The set of program state
valuations is N: ; for each f = (f1, . . . , f: ) ∈ N

: , f8 indicates the value of G8 . We consider the pGCL
programming language [McIver and Morgan 2005] with the extended ability to specify posterior
observations via the observe statements [Gordon et al. 2014; Nori et al. 2014; Olmedo et al. 2018]:

Definition 3 (cpGCL). A program % in the conditional probabilistic guarded command language
(cpGCL) adheres to the grammar

% F skip | G ≔ � | % # % | { % } [ ? ] { % } | observe ( � ) |

if ( � ) { % } else { % } | while ( � ) { % }

where � : N: → N is an arithmetic expression, � ⊆ N: is a predicate, and ? ∈ [0, 1].2

The meaning of most cpGCL program constructs is standard. The probabilistic choice {%} [ ? ] {&}

executes % with probability ? ∈ [0, 1] and & with probability 1 − ? . The conditioning statement
observe(�) “blocks” all program runs that violate the guard � and normalizes the probabilities of
the remaining runs. For example, in Prog. 1 on page 2, the telephone operator observes 5 calls in
the last hour as indicated by observe ( 2 = 5 ). To reflect this, all program states where 2 ≠ 5 are
assigned probability zero. The program’s distribution is adjusted by normalizing the probability of
runs satisfying 2 = 5 by the total probability mass of all runs violating this condition.

To identify program runs violating the observations, we extend the domain of FPSs – and thus the
domain of PGFs – with a dedicated indeterminate - aggregating observation-violation probability:

Definition 4 (eFPS and ePGF). Let X and - be indeterminates. For any program state valuations

f ∈ N: , an extended formal power series (eFPS) is of the form3

� = [ ]�- +
∑

f∈N:
[f]�X

f with [·]� : N
: ∪ { } → R≥0 .

We refer to [ ]�- as the observation-violation term and call the set of all extended formal power
series eFPS. Let |� | ≜

∑
f∈N: [f]� denote the mass of � . � ∈ eFPS is an extended PGF (ePGF) iff

|� | ≤ 1; in this case, � encodes a (sub)probability distribution. Let ePGF be the set of all ePGFs. An
ePGF transformer is a function ePGF → ePGF.

We emphasize that |� | does not take the observe-violation probability [ ]� into account. Another
way to obtain |� | is through the substitution of indeterminates X representing program variables by
1 and the indeterminate - for the observation-violation by 0. Addition and scalar multiplication
in eFPS are to be understood coefficient-wise, that is, for any �,� ∈ eFPS,

� +� ≜ ( [ ]� + [ ]� )- +
∑

f∈N:
( [f]� + [f]� ) X

f ,

0 · � ≜
(
0[ ]�- 

)
+
∑

f∈N:
(0[f]� ) X

f for 0 ∈ R≥0 .

2We do not give an explicit syntax for � and � as it is irrelevant at this point. When dealing with automation, we present a
concrete syntax, cf. Table 3 on page 13.
3The coefficients [ · ]� range over R∞≥0 to enforce a complete lattice structure over eFPS; see details in [Klinkenberg et al.

2024a, Appx. A and B].
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Table 2. The non-normalized semantics for cpGCL programs.

% J%K(�)

skip �

G8 ≔ � [ ]�- +
∑

f [f]�-
f1
1

· · ·-
� (f )
8 · · ·-

f:
:

observe ( � ) ( [ ]� + |⟨�⟩¬� |)- + ⟨�⟩�

{ %1 } [ ? ] { %2 } ? · J%1K (�) + (1 − ?) · J%2K (�)

if ( � ) { %1 } else { %2 } [ ]�- + J%1K (⟨�⟩�) + J%2K (⟨�⟩¬�)

%1 # %2 J%2K
(
J%1K (�)

)

while ( � ) { %1 } [lfp Φ�,%1 ] (�) , where

Φ�,%1 (5 ) = _�. [ ]�- + ⟨�⟩¬� + 5
(
J%1K (⟨�⟩�)

)

Remark. eFPS is not closed under multiplication: - · - = - 2
 ∉ eFPS. This is intended, as such

monomial combinations do not have a valid interpretation in terms of probability distributions. ◁

We endow ePGFs with the following ordering relations.

Definition 5 (Orders over ePGF). For all �,� ∈ ePGF, let

� ⪯ � iff ∀f ∈ N: ∪ { }. [f]� ≤ [f]� .

This order can be lifted to ePGF transformers, that is, for all q,k ∈ (ePGF → ePGF),

q ⊑ k iff ∀� ∈ eFPS. q (� ) ⪯ k (� ) .

In fact, (ePGF, ⪯) and (ePGF → ePGF, ⊑) are l-complete partial orders (cf. [Klinkenberg et al.
2024a, Appx. B]). To evaluate Boolean guards, we use the so-called filtering function for eFPSs. The
filtering of � ∈ eFPS by predicate � is

⟨� ⟩� ≜
∑

f |=�
[f]�X

f ,

i.e., ⟨� ⟩� is the eFPS derived from � by setting [ ]� and all [f]� with f ̸ |= � to 0. In contrast to
[Klinkenberg et al. 2020], we cannot decompose � into ⟨� ⟩� + ⟨� ⟩¬� , but rather have to include the
observation-violation term separately, yielding � = ⟨� ⟩� + ⟨� ⟩¬� + [ ]�- . Further properties of
the ePGF domain are found in [Klinkenberg et al. 2024a, Appx. B].

3.3 Non-Normalized Semantics for cpGCL

Let J%K : ePGF → ePGF be a (non-normalized) distribution transformer for cpGCL program % . We
define the non-normalized semantics of % by transforming an input ePGF � to an output ePGF
J%K(�) while explicitly keeping track of the probability of violating the observations; see Table 2.
The skip statement leaves the initial distribution � unchanged, i.e., it skips an instruction.

The assignment G8 ≔ � updates the exponent of the corresponding indeterminate -8 in every
term of the ePGF by � (f) and the observation-violation term remains unchanged. For instance,
given � = 2 · G~3 + 23 and state valuation f = (G,~) = (1, 10), G8 ≔ � updatess the term
0-. 10 to 0- 2023. 10. The semantics for observe(�) is defined in line with [Bichsel et al. 2018;
Jacobs 2021; Nori et al. 2014; Olmedo et al. 2018] as rejection sampling, i.e., if the current program
run satisfies �, it behaves like a skip statement and the posterior distribution is unchanged; If
the current run, however, violates the condition �, the run is rejected and the program restarts
from the top in a reinitialized state. Hence, observing a certain guard � just filters the prior
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distribution and accumulates the probability mass that violates the guard. For example, observing
an even dice roll observe ( G ≡2 0 ) out of a six-sided die 1

6

(
- + - 2 + - 3 + - 4 + - 5 + - 6

)
yields

1
6

(
- 2 + - 4 + - 6

)
+ 1

2
- . The probabilistic branching statement { %1 } [ ? ] { %2 } is interpreted as

the convex ?-weighted combination of the two subprograms %1 and %2. The semantics of conditional
branching if ( � ) { %1 } else { %2 } combines the semantics of %1 and %2 conditionally based on
�. Sequential composition %1 # %2 composes programs in a forward manner, i.e., we first evaluate
%1 and take the intermediate result as new input for %2. The semantics of a loop while ( � ) { %1 }

is defined as the least fixed point (lfp) of Φ�,%1 (see domain theory in [Klinkenberg et al. 2024a,
Appx. A]). Here, Φ�,%1 is known as the characteristic function – a monotonic operator mimicking
the effect of unfolding the loop. Concretely, Φ�,%1 guarantees the equivalence of while ( � ) { %1 }

and if ( � ) { %1 # while ( � ) { %1 } } else { skip }.
Note that the observe-violation term [ ]�- “passes through” all instructions but observe ( � ):

Lemma 6 (Error Term Pass-Through). For every program % and every � ∈ ePGF,

J%K(� ) = J%K
(∑

f∈N:
[f]�X

f + [ ]�- 

)
= J%K

(∑

f∈N:
[f]�X

f
)
+ [ ]�- .

This renders the semantics as a conservative extension to [Chen et al. 2022a], as for observe-free
programs on initial distributions without [ ]�- , both semantics coincide.

Recall that in Prog. 3 on page 3, all program runs which eventually would terminate violate the
observation. Since the (unnormalized) probability of non-termination is zero (as there is only a
single infinite run), the final non-normalized, conditioned ePGF semantics of this program is 1 · - .

3.4 Normalized Semantics for cpGCL

The non-normalized semantics serves as an intermediate result to achieve our normalized semantics,
which further addresses normalization of distributions.

Definition 7 (Normalization). The normalization operator norm is a partial function defined as4

norm : ePGF ⇀ ePGF, � ↦→

{
⟨� ⟩true
1−[ ]�

if [ ]� < 1 ,

undefined otherwise .

Intuitively, normalizing an ePGF amounts to “distributing” the probability mass [ ]� pertaining to
observation violations over its remaining (valid) program runs. We lift the operator and denote the
normalized semantics of % by

norm
(
J%K

)
≜ _�. norm

(
J%K(�)

)
= _�.

⟨J%K(�)⟩true
1 − [ ]J%K(� )

, provided [ ]J%K� < 1.

Remark. In contrast to the non-normalized semantics, the normalized semantics might not always
be defined: Reconsider Prog. 3 for which the non-normalized semantics is 1 · - ; normalizing

the semantics is not possible as it would lead to
⟨1·- ⟩true
1−[ ]�

=
0
0
, i.e., an undefined expression. This

phenomenon can only be caused by observe-violations but never by non-terminating behaviors.
The following two programs reveal the difference between non-termination and observe violation:
{ G ≔ 1 } [ 1/2 ] { observe ( false ) } has a normalized semantics of 1 ·- 1, whereas the normalized
semantics for { G ≔ 1 } [ 1/2 ] { diverge }5 is 1

2
· - 1. ◁

Example 8 (Telephone Operator). Reconsider Prog. 1, the loop-free program generating an
infinite-support distribution. It describes a telephone operator who lacks knowledge about whether
today is a weekday or weekend. The operator’s initial belief is that there is a probability of 5/7 of it

4norm in fact maps an ePGF to a PGF, i.e., [ ]�- is pruned away by normalization.
5diverge is syntactic sugar for while ( true ) { skip }.
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(( 1
(
= 1 ·, 0�0 + 0 · - 

)

{F ≔ 0 } [ 5/7 ] {F ≔ 1 } #

(( 5
7
, 0 + 2

7
, 1

if (F = 0 ) {

(( 5
7

2 ≔ poisson (6)

(( 5
7
4−6(1−� )

} else {

(( 2
7
,

2 ≔ poisson (2)

(( 2
7
4−2(1−� ),

} #

(( 5
7
4−6(1−� ) + 2

7
4−2(1−� ),

observe ( 2 = 5 )

(( (4860+844, )

10546
�5 + (1 − 4860+844

10546
)- 

Prog. 6. Semantics for the tel. operator.

being a weekday (F = 0) and a 2/7 probability of it being a
weekend (F = 1). Typically, on weekdays, there are an av-
erage of 6 incoming calls per hour, while on weekends, this
rate decreases to 2 calls. Both rates are governed by a Poisson
distribution. The operator has observed 5 calls in the past
hour, and the objective is to determine the updated distribu-
tion of the initial belief based on this posterior observation.
We start the computation with prior distribution (ePGF) 1,
which initializes every program variable to 0 with probabil-
ity 1. For the assignments to 2 we use the closed-form PGF
for a Poisson distribution with parameter _, which is given

by
∑

:∈N0

_:4−_

:!
�:

= 4−_
∑

:∈N0

(_� ):

:!
= 4−_4_� = 4−_ (1−� ) .

By computing the transformations forward in sequence for
each program instruction (see Prog. 6), we obtain the non-
normalized semantics:

J%K(�) =
(4860+844, )

10546
�5 + (1 − 4860+844

10546
)- .

Normalizing this yields

norm
(
J%K(�)

)
=

(12154−4 + 2, )�5

2 + 12154−4
. ◁

Notably, the semantics in Table 2 coincides with an operationally modeled semantics using
countably infinite Markov chains [Olmedo et al. 2018] – which in turn, for universally almost-surely
terminating programs6 is equivalent to the interpretation of Microsoft’s probabilistic programming
language R2 [Nori et al. 2014]. A Markov chain describing the semantics of a cpGCL program
consists of three ingredients: (1) the state space S, (2) the initial state ⟨%, f⟩, and (3) a transition
matrix P : S × S. The states are pairs of the form ⟨%, f⟩. Here, % denotes the program left to be
executed (with ↓ indicating the terminated program) and f the current state valuation. We use
the dedicated state ⟨ ⟩ for denoting that some observe violations have occurred during the run of
a program. The detailed construction of the Markov chain RfJ%K from a cpGCL program % with
initial state valuation f is given in [Klinkenberg et al. 2024a, Appx. B]. Regarding the equivalence
between the two semantics, we are interested in the reachability probability of eventually reaching
state ⟨↓, f⟩ conditioned to never visiting the observe-violation state ⟨ ⟩.

Theorem 9 (Equivalence of Semantics). For every cpGCL program % , let RfJ%K be the Markov

chain of % starting with state valuation f ∈ N: . Then, for any f ′ ∈ N: ,

PrRf J%K (♦⟨↓, f ′⟩ | ¬♦⟨ ⟩) = [f ′]norm(J%K(Xf ) ) , (3)

where the left term denotes the probability of eventually reaching the terminating state ⟨↓, f ′⟩ in
RfJ%K conditioned on avoiding the observe-failure state ⟨ ⟩.

The coincidence captured in Eq. (3) ensures the adequateness of our ePGF semantics for cpGCL
programs, which includes the case of undefined semantics, i.e., the conditional probability (LHS) is
not defined if and only if the normalized semantics (RHS) is undefined. Again, for pGCL programs
without conditioning, the conditioned semantic model is equivalent to that of [Klinkenberg et al.
2020] and thereby [Kozen 1981; McIver and Morgan 2005], since an observe-free program never
induces the violation term [ ]�- and hence, the norm operator has no effect.

6Programs that terminate with probability 1 on all inputs; see Section 4.2.
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Table 3. Syntax (le�) and the non-normalized semantics (right) of cReDiP programs.

% J%K(�)

G ≔ = � [- /0, -/1] · -= + (� −� [- /0])

G−− (� −� [-/0])- −1 +� [-/0]

G += iid (�,~) � [- /0, ./. J�K[) /- ]] + (� −� [- /0])

if ( G < = ) { %1 } else { %2 } J%1K(�G<=) + J%2K(� −�G<=), where

�G<= =
∑=−1

8=0
1
8!
(m8

-
� [- /0]) [-/0] · - 8

%1 # %2 J%2K(J%1K(�))

while ( G < = ) { %1 } (lfpΦG<=,%1 ) (�), where

ΦG<=,%1 (k ) = _� . (�−�G<=) +k (J%1K(�G<=))

observe ( false ) � [X/1, - /1] · - 

4 EXACT BAYESIAN INFERENCEWITH LOOPS

Loops significantly complicate inferring posterior distributions of probabilistic programs. Com-
puting the exact least fixed point of the characteristic function Φ�,% (see Table 2) is in general
highly intractable, and other techniques like invariant-based reasoning are used. Given the loop
while ( � ) { % }, we call an ePGF transformer � : ePGF → ePGF an invariant if Φ�,% (� ) = � , i.e., it
remains unchanged when pushed through one loop iteration.

Effectively, reasoning about loops is reduced to two challenges: (1) finding an invariant candidate
� , and (2) verifying that � is indeed a valid invariant, i.e., deciding whether Φ�,% (� ) = � . Since
the semantics of a program is also of type ePGF → ePGF, we can describe such an invariant
by means of a program. To facilitate reasoning about such loop invariant programs, we consider
a restricted set of cpGCL programs, called cReDiP. We further extend the program semantics to
second-order ePGFs (eSOPs) to enable reasoning about multiple input distributions simultaneously.
We develop an eSOP-based equivalence checking technique for cReDiP programs to reason about
loop invariants in a non-normalized semantics. This technique also enables invariant synthesis by
solving equation systems yielding parameter values satisfying the invariant condition Φ�,% (� ) = � .

4.1 Program Equivalence

Checking whether a loop-free program � is an invariant of while ( � ) { % } amounts to checking
whether Φ�,% (J�K) = J�K. Phrased in terms of generating functions, this reads

∀� ∈ ePGF. ∀f ∈ N: ∪ { }. [f]Φ�,% (J�K) (� ) = [f]J�K(� ) . (4)

Namely, we need to check the equivalence of two loop-free programs. As program equivalence is
undecidable in general, we introduce a syntactic fragment of cpGCL called cReDiP (conditional rect-
angular discrete probabilistic programs) for which equivalence of loop-free programs is decidable.

The cReDiP language. Table 3 describes the syntax and semantics of cReDiP. This fragment
contains multiple statements to update the values of program variables. Intuitively, the updates are
performed by extracting the parts of the ePGF that are affected by the update through substitution
operations. For example, G ≔ = drops the observation-violation term and marginalizes w.r.t.- (thus
effectively setting G to 0 temporarily) and then performs a shift by = in - . Finally, the unaffected
part of the ePGF is added back to complete the transformation.

A prominent difference to pGCL is the statement G += iid (�,~). Intuitively, it can be interpreted
as a bounded loop, namely loop(~){G += sample(�)} where the number of iterations is given
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by program variable ~. More specifically, G += iid (�,~) combines a series of operations: First
independently sample ~ many random variables from distribution � and second, sum up the
sampled values and increment G by that amount. For example, the program % ≔ ~ ≔ 10;G ≔

0;G += iid (bernoulli (1/2) , ~) describes a binomial distribution in - with parameters = = 10 and
? = 1/2, i.e. J%K = . 10 · (1/2 + 1/2- )10.

Moreover, we emphasize that Boolean guards in cReDiP can only be of the form G < = where
= ∈ N is a constant. We denote by �G<= the PGF � restricted to its terms with low enough order
satisfying the guard G < =. The required elements of the PGF are collected by constructing the 8-th
formal derivative (for every 0 ≤ 8 < =) w.r.t.- and extracting the constant monomials (in- ), i.e. the
coefficients of monomial - 8 in � . By nesting of if-statements, axis-aligned hyper-rectangles can
be identified, i.e., in this way we can express conjunction, disjunction and negation of guards. The
latter enables us to only consider observe(false) statements in our syntax, as we can reconstruct
the full “rectangular” expressiveness for observe statements.

The key feature of the cReDiP language is that its loop-free fragment preserves rational closed-
form ePGF representations; see Table 3 and [Chen et al. 2022a]. Hence, we can effectively compute
the semantics of a loop-free cReDiP program given one closed-form representation of the input
distribution. However, in order to decide program equivalence per Eq. (4), we need to compute the
semantics of infinitely or even uncountably many input distributions. Chen et al. [2022a] solved this
issue by introducing second-order PGFs; intuitively, these are FPS whose coefficients themselves
are PGFs. We extend this idea for programs with conditioning:

Definition 10 (Second-Order ePGF). Let U = (*1, . . . ,*: ) be a tuple of formal indeterminates, that
are pairwise distinct from X = (-1, . . . , -: ) and - of eFPS. A second-order ePGF is a generating
function of the form

� =

∑

f∈N:

�f*
f
=

∑

f∈N:

(⟨�f ⟩true + [ ]�f
- )*

f
=

∑

f∈N:

⟨�f ⟩true*
f +

∑

f∈N:

[ ]�f
- *

f ,

where �f ∈ ePGF. We denote the set of second-order ePGFs by eSOP.

(( - 1 ·* 1 + - 2 ·* 2 + - 3 ·* 3

G += iid (bernoulli (1/2) , G)

((
1

2
(- 1 + - 2) ·* 1 +

1

4
(- 2 + 2- 3 + - 4) ·* 2 +

1

8
(- 3 + 3- 4 + 3- 5 + - 6) ·* 3

observe ( G < 3 )

((
1

2
(- 1 + - 2) ·* 1 +

1

4
(- 2 + 3- ) ·*

2 +

- ·* 3

Prog. 7. A cReDiP program annotated

with eSOP semantics.

An eSOP hence represents, in a single formal power series,
multiple ePGFs as coefficients �f of different monomials Uf .
Intuitively one can interpret U as eFPS formal indeterminates
of additional program variables which do not occur in the
program and whose sole purpose is to remember the actual
program variables’ initial values. We can naturally extend
the denotational semantics described in Table 3 to eSOP, as
demonstrated by the following example.

Example 11 (eSOP Semantics of cReDiP Program). Con-
sider the cReDiP program % in Prog. 7 together with the eSOP
input generating function � = 1- 1 · * 1 + 1- 2 · * 2 + 1- 3 ·

* 3, identifying indeterminate - and meta-indeterminate*
for program variable G . This eSOP represents three Dirac
distributions, i.e., 1- 1, 1- 2, and 1- 3, where the purpose of
* is to remember the initial value of G . We now examine
the computation of J%K(�) step-by-step, starting with the
increment operation which only affects the indeterminate -
of the involved program variable G and does not affect* . To
this end, we substitute ( 1

2
+ 1

2
- ) · - for - , since � contains no initial observation-violation term.

Afterwards, to aggregate the states that violate the observation, the semantics also substitutes 1 for
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indeterminate - (and - ) and leaves the meta-indeterminates unchanged. As a result, we obtain
J%K(�) = 1/2(- 1+- 2) ·* 1+1/4(- 2+3- ) ·*

2+- ·*
3, and have computed all posterior distributions

for initial state valuations G = 1, G = 2, G = 3 in one shot. For instance, when starting with initial
distribution 1- the posterior distribution is 1/2(- 1+- 2) as indicated by the coefficient of* 1. Finally,
we note that the meta-indeterminates just “pass through” the eSOP semantics functional, i.e., it can
be seen as the point-wise lifting of the ePGF semantics. ◁

Theorem 12 (eSOP Semantics). Let % be a loop-free cReDiP program. Let � =
∑

f∈N: �fU
f ∈

eSOP. The eSOP semantics J%K : eSOP → eSOP of % can be computed by

J%K(�) =

∑

f∈N:
J%K(�f ) · U

f .

Since PGF semantics is an instance of the general framework of Kozen’s measure transformer
semantics [Klinkenberg et al. 2020; Kozen 1981], the posterior distribution of a cReDiP program %

is uniquely determined by its semantics on all possible Dirac distributions. One can thus construct
an eSOP from % that represents all possible point-mass distributions for the program variables:

Definition 13 (Equivalence-Witness eSOP). Let �̂ be an eSOP defined as

�̂ ≜ (1 − -1*1)
−1 · · · (1 − -:*: )

−1

︸                                  ︷︷                                  ︸
rational closed form

=

∑

f∈N:
XfUf

= 1 + (1X)U + (1X2)U2 + · · · ,

where the meta-indeterminates U serve the purpose of “remembering” the initial state valuations.

For the purpose of deciding program equivalence, �̂ is particularly useful, since it represents
Dirac distributions for all potential initial state valuations, with the exception of any observe-
violation probabilities. This is, however, not a problem, as such observation-violation terms can be
immediately removed from the equivalence check (by Lemma 6). As a consequence, we can use �̂
to characterize program equivalence of loop-free cReDiP programs using eSOP. This is expressed
by the following lemma.

Lemma 14 (eSOP Characterization). Let %1 and %2 be loop-free cReDiP programs with Vars(%8 ) ⊆
{G1, . . . , G: } for 8 ∈ {1, 2}. Further, consider a vector U = (*1, . . . ,*: ) of meta-indeterminates. Then,

∀� ∈ ePGF. J%1K(�) = J%2K(�) iff J%1K(�̂) = J%2K(�̂).

As we can compute J%K(�̂) for loop-free % ∈ cReDiP, the following consequence is immediate.

Corollary 15 (Decidability of Equivalence). Let %1, %2 be two loop-free cReDiP programs. Then,

∀� ∈ ePGF. J%1K(�) = J%2K(�) is decidable.

Proof. By utilizing Lemma 14, we can rephrase the problem of determining program equivalence
through the eSOP characterization J%1K(�̂) = J%2K(�̂). It is worth noting that �̂ represents a rational
closed-form eSOP �̂ =

1
1−-1*1

1
1−-2*2

· · · 1
1−-:*:

∈ R[[X,U]] . For our purposes, we can disregard

the portion of �̂ that describes the initial observe violation behavior, as it immediately cancels
out (see Lemma 6). As �̂ is in rational closed form, both J%1K(�̂) and J%2K(�̂) must also possess a
rational closed form since loop-free cReDiP semantics preserve closed forms; see Table 3 and [Chen
et al. 2022a]. Additionally, the effective computation of J%1K(�̂) = �1/�1 and J%2K(�̂) = �2/�2 is
possible because both %1 and %2 are loop-free programs.

In R[[X, - ,U]], the question of whether two formal power series represented as rational closed
forms, namely �1/�1 and �2/�2, are equal can be decided:

�1

�1

=
�2

�2

⇐⇒ �1�2 = �2�1,
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since the latter equation concerns the equivalence of two polynomials in R[X, - ,U]. Therefore,
we can compute these two polynomials and verify whether their (finite number of) non-zero
coefficients coincide. If they do, then %1 and %2 are equivalent (i.e., J%1K = J%2K), whereas if they do
not, they are not equivalent. In the case of non-equivalence, we can generate a Dirac distribution
that produces two distinct outcomes. This is achieved by taking the difference �1�2 − �2�1 and
computing the first non-zero coefficient in R[X, - ]. Then, extracting the exponent of the monomial
describes an initial state valuation f , with J%1K(f) ≠ J%2K(f). □

Remark. The proof of Corollary 15 (on decidability of equivalence) relies on the fact that the
eSOP transformer J%K(·) preserves rational closed-form eSOPs. cReDiP is a non-trivial fragment of
cpGCL for which we can show the preservation of rational closed forms for loop-free programs;
but it is not necessarily the largest class of programs that features such a property. Investigating a
more expressive fragment with decidability of equivalence is subject to future work. ◁

4.2 Invariant-Based Reasoning with Conditioning

cReDiP is a fragment of cpGCL for which the equivalence of loop-free programs is decidable. We
now exploit this result to reason about loops in cReDiP programs. The key idea is to use loop-free
cReDiP programs as potential invariant candidates. Recall the two main challenges of invariant-
based reasoning: first, find an invariant candidate, and second, verify that it is indeed an invariant,
i.e., Φ�,% (� ) = � . In the remainder of this section, we focus on verifying invariant candidates given
in the form of cReDiP programs, while deferring finding invariants to Section 5.
We first introduce the notion of lossless ePGF transformers to capture program termination:

Definition 16 (Lossless ePGF Transformers). An ePGF transformer � : ePGF → ePGF is lossless
for � ∈ ePGF if

|� (� ) | + [ ]� (� ) = |� | + [ ]� .

� is universally lossless if it is lossless for all � in ePGF.

Intuitively, a lossless ePGF transformer is a mapping that does not leak any probability mass. Since
the semantics of a program % is an ePGF transformer, J%K being (universally) lossless coincides
with % being (universally) almost-surely terminating, abbreviated as (U)AST [Bournez and Garnier
2005; Saheb-Djahromi 1978]. Given ! = while ( � ) { % }, we can approximate its least fixed point
lfp Φ�,% leveraging domain theory, in particular, Park’s lemma, namely, Φ�,% (� ) ⊑ � implies J!K ⊑ �

[Park 1969]. It enables reasoning about while-loops in terms of over-approximations and – in case
a program is UAST– also about program equivalence.

Theorem 17 (Loop Invariants). Given ! = while ( � ) { % } and a universally lossless ePGF trans-
former � : ePGF → ePGF. We have

(1) If Φ�,% (� ) ⊑ � , then norm(J!K(� )) ⪯ norm(� (� )) whenever norm(� (� )) is defined.
(2) If ! is UAST, then � is an invariant of ! if and only if

J!K = � and norm(J!K(� )) = norm(� (� )) .

Proof. For (1), we first prove that the normalization function is monotonic, whenever it is
defined. Let �,� ∈ ePGF such that norm(� ), norm(�) are defined. We have:

� ⪯ � =⇒ [ ]� ≤ [ ]� and
∑

f∈N:

[f]�X
f ⪯

∑

f∈N:

[f]�X
f

=⇒ 1 − [ ]� ≥ 1 − [ ]� and
∑

f∈N:

[f]�X
f ⪯

∑

f∈N:

[f]�X
f
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while (~ = 1 ) {

{~ ≔ 0 } [ 1/2 ] {~ ≔ 1 } #

G ≔ G + 1 #

observe ( G < 3 ) }

Prog. 8. A truncated geometric distribution generator.

if (~ = 1 ) {

G += iid (geom (1/2) , ~) #

~ ≔ 0 #

observe ( G < 3 ) }

Prog. 9. A loop-free cReDiP invariant of Prog. 8.

=⇒
1

1 − [ ]�
≤

1

1 − [ ]�
and

∑

f∈N:

[f]�X
f ⪯

∑

f∈N:

[f]�X
f

=⇒
1

1 − [ ]�
·
∑

f∈N:

[f]�X
f ⪯

1

1 − [ ]�
·
∑

f∈N:

[f]�X
f

=⇒ norm(� ) ⪯ norm(�) .

It follows that norm(Jwhile ( � ) { % }K(� )) ⪯ norm(� (� )), due to Park’s lemma.
For (2), first assume that J!K = � and norm(J!K(� )) = norm(� (� )). As � = J!K = lfpΦ�,% , � is

trivially identified as an invariant. For the other direction, assume that � is an invariant (i.e., a fixed
point). Thus, � must be at least lfp Φ�,% = Jwhile ( � ) { % }K. Moreover, because while ( � ) { % } is
UAST, it follows that
��Jwhile ( � ) { % }K(� )

��+ [ ]Jwhile( � ) { % }K(� ) = |� | + [ ]� = |� (� ) | + [ ]� (� ) for all � ∈ ePGF .

The second equality arises from � being universally lossless. Combining these results yields

∀� ∈ ePGF.
(
Jwhile ( � ) { % }K(� ) ⪯ � (� )

and
��Jwhile ( � ) { % }K(� )

�� + [ ]Jwhile( � ) { % }K(� ) = |� (� ) | + [ ]� (� )
)

=⇒ ∀� ∈ ePGF. Jwhile ( � ) { % }K(� ) = � (� ) ⇐⇒ Jwhile ( � ) { % }K = � .

Then, norm(Jwhile ( � ) { % }K(� )) = norm(� (� )) follows for all � ∈ ePGF. □

Combining the results from this section, we can state the decidability of checking invariant
validity for loop-free cReDiP candidates.

Theorem 18. Let ! = while ( � ) { % } ∈ cReDiP be UAST with loop-free body % and � be a loop-free
cReDiP program. It is decidable whether J!K = J�K.

Proof. The correctness is an immediate consequence of Theorem 17 and Corollary 15. □

We demonstrate our invariant-based reasoning technique by Example 19.

Example 19 (Geometric Distribution Generator). Prog. 8 describes an iterative algorithm that
repeatedly flips a fair coin – while counting the number of trials – until seeing heads, and observes
that the number of trials is less than 3. Assume we want to compute the posterior distribution for
input 1 · . 1- 0 (i.e. ~ = 1 and G = 0). We first evaluate lfp Φ�,% . Using Theorem 17 (2), we perform
an equivalence check on the invariant in Prog. 9. As Prog. 8 and 9 are equivalent, we substitute
the loop-free program for the while-loop and continue. The resulting posterior distribution for
input . is J%K(. ) = 4

7
+ 2

7
- + 1

7
- 2. Since Prog. 8 is UAST, this is its precise posterior distribution.

The step-by-step computation of the equivalence check can be found in [Klinkenberg et al. 2024a,
Appx. E]. ◁

To summarize, reasoning about program equivalence using eSOPs enables exact Bayesian inference for
cReDiP programs containing loops. We remark that nested loops can be treated in a compositional
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manner: We first provide a loop-free invariant for the inner loop, prove its correctness (i.e., equiv-
alence), and then replace the inner loop by its invariant and repeat the procedure for the outer
loop. This feature of compositional reasoning is a key benefit of reusing the loop-free fragment of
cReDiP as a specification language to describe invariants.

4.3 Equivalence of Normalized Semantics

Our previous notion of equivalence J!K = J�K describes the equivalence of the non-normalized se-
mantics, i.e., the while-loop and the loop-free invariant generate exactly the same distributions and
observe-violation probabilities, which immediately entails also the equivalence of the normalized
semantics, i.e., norm(J!K) = norm(J�K), but not necessarily the reverse. In practice, however, it is
interesting to have a weaker notion of equivalence which addresses only the normalized semantics,
regardless of observation violations (as programmers may use different observation strategies to
construct programs yielding the same output distribution). This weaker notion reads as

% ∼ & iff ∀� ∈ PGF. norm(J%K(�)) = norm(J&K(�)) . (5)

We aim to capture such equivalence again using eSOPs. First, we lift the operator norm to eSOPs:

Definition 20 (Conditioning on eSOP). Let � ∈ eSOP. The function

cond : eSOP → SOP , � ↦→
∑

f∈N:
norm(�f )U

f .

is called the conditioning function.

For simplicity, we assume that ∀f ∈ N: . �f ≠ - as otherwise norm is not defined. Note that cond
often cannot be evaluated in a closed-form eSOP as there may be infinitely many ePGF coefficients
of the (non-normalized) eSOP that have different observation-violation probabilities. However, we
present a sufficient condition under which cond can be evaluated on closed-form eSOPs:

Proposition 21. Let �1, �2 ∈ ePGF, with ? ≔ [ ]�1 = [ ]�2 . Then,

cond(�1) + cond(�2) =
⟨�1⟩true + ⟨�2⟩true

1 − ?
= cond(�1 + �2) .

Intuitively, addition distributes over cond, i.e., cond behaves linearly. Generalizing this concept to
finitely many equal observe-violation properties we get the following.

Corollary 22 (Partitioning). Let ( be a finite partitioning of N: = (1⊎· · ·⊎(< with [ ]�f
= [ ]�f ′ ,

for all f, f ′ ∈ (8 , 1 ≤ 8 ≤ <. Then:

� =

∑<

8=1

∑

f∈(8
( [ ](8- + ⟨�f ⟩true)U

f ,

where [ ](8 denotes the observation-violation probability in (8 . For such � we have:

cond(�) =

∑<

8=1

∑
f∈(8 ⟨�f ⟩trueU

f

1 − [ ](8
.

Unfortunately, requiring a finite partitioning is quite restrictive. Finite partitioning is impossible
already for some loop-free programs, an example is provided in Prog. 10. Given an initial distribution
for variable ~, the program computes the sum of ~-many independent and identically distributed
Bernoulli variables with success probability 1/2. This is equivalent to sampling from a binomial
distribution with ~ trials and probability 1/2. Finally, it marginalizes the distribution by assigning ~

to zero and conditions on the event that G is less than 1, resulting in
∑∞

8=0
(2−8+(1−2−8 )- )+ 8

(1−* )
. We can

deduce that for any initial state valuation (G,~) we obtain a different observe violation probability
(1 − 2−~), hence we cannot finitely partition the state space into equal violation probability classes.
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(( (1 − -* )−1 (1 − .+ )−1

G ≔ 0#

(( (1 −* )−1 (1 − .+ )−1

G += iid (bernoulli (1/2) , ~)#

(( 2(1 −* )−1 (2 − (1 + - ).+ )−1

~ ≔ 0#

(( 2(1 −* )−1 (2 − (1 + - )+ )−1

observe ( G < 1 ) #

((
2(1 − - )

(1 −* ) (2 −+ )
+

- 

(1 −* ) (1 −+ )

((
∞∑

8=0

(
2−8 + (1 − 2−8 )- 

)
+ 8

(1 −* )

Prog. 10. Program with infinitely many observe vi-

olation probabilities.

while ( = > 0 ) {

{= ≔ = − 1 } [ @/3 ] { 2 ≔ 2 + 1 }

}

Prog. 11. =-geometric generator with success prob-

ability @/3 for 0 ≤ @ ≤ 3.

/* sums n geometric(p) samples */

2 += iid (geom (?) , =)#

/* on termination n is zero */

= ≔ 0

Prog. 12. =-geometric invariant with parameter ? .

Another challenge when considering the equivalence of normalized distributions is: Eval-
uating cond on (closed-form) eSOPs yields that cond(J%K(�̂)) = cond(J&K(�̂)). This implies
∀f ∈ N: . norm(J%K(Xf )) = norm(J&K(Xf )), i.e., equivalence on point-mass distributions. How-
ever, we do not necessarily have the precise equivalence as per Eq. (5), because the norm operator
used to define cond is a non-linear function7 and thus the point-mass distributions cannot be
combined in a sensible way. However, in many use cases we are only interested in the behavior of
a specific initial state valuation where such a result on point-mass equivalence can still be useful.

5 FINDING INVARIANTS USING PARAMETER SYNTHESIS

In contrast to the previous section which aims at validating a given invariant, in this section, we
address the problem of finding such invariants. For related problems, e.g., finding invariants in terms
of weakest preexpectations, there exist sound and complete synthesis algorithms for subclasses
of loops and properties that can be verified by piecewise linear templates [Batz et al. 2023]. We
adopt the idea of template-based invariant synthesis and leverage the power of eSOPs to achieve
decidability results for a subclass of invariant candidates. Our templates are described by parametric
loop-free cReDiP programs, e.g., �? = { G ≔ 1 } [ ? ] { G ≔ 0 }whichmodels a Bernoulli distribution
with symbolic parameter ? . We believe that (1) using programs as templates is (in particular in
the probabilistic case) intuitively easier than using first-order logic as typically used to express
invariants, and (2) finding suitable templates can be encoded as a program synthesis problem whose
hardness may be precisely quantified. Recall the invariant synthesis problem: Given a while-loop
! = while ( � ) { % }, find a loop-free cReDiP program � such that Φ�,% (J�K) = J�K. Sometimes, the
general shape of an invariant template )p (with a vector p of parameters) is derivable from !, but
finding a valid parameter valuation may be involved. We illustrate the idea by Example 23.

Example 23 (=-Geometric Parameter Synthesis). Prog. 11 (with loop body % ) is a variant of
Prog. 2, where instead of requiring one success (setting ℎ = 0), we need = successes to terminate.
Furthermore, the individual success probability is @

3
, where @ is a symbolic parameter. It seems

7For the non-normalized semantics, general equivalence J%K = J&K follows from the linearity of the transformer.
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natural that this program encodes the =-fold geometric distribution8 with individual success
probability @

3
. This suggests to formulate the invariant template &? given in Prog. 12, where 2 is a

sum of = geometric distributions with an unknown parameter ? . Using Theorem 17, we can derive
the equivalence of Prog. 11 and Prog. 12 and obtain an equation in ? and @:

Φ�,% (J&?K) (�̂) = −
(−3 + @�* + 3� − 3?� − @* + 3?* − 3?�* )

3(−1 +�+ ) (−1 +� − ?� + ?* )

J&?K(�̂) = −
(−1 +� − ?�)

(−1 +�+ ) (−1 +� − ?� + ?* )

Then Φ�,% (J&?K) (�̂) = J&?K(�̂) iff ? =
@

3
.

The formal variable � corresponds to program variable 2 , while* and + are meta-indeterminates
corresponding to the variables = and 2 . This result tells us, that for ? =

@

3
our parametrized invariant

program is an invariant of Prog. 11. ◁

This approach works in general as the following theorem describes:

Theorem 24 (Decidability of Parameter Synthesis). Let, be a cReDiP while loop and �p be a
parametrized loop-free cReDiP program. The problem whether there exist parameter values d such
that the instantiated template �d is an invariant, i.e.,

∃ p ∈ R; . J, K = J�pK is decidable.

Proof. Similar to Corollary 15. For full details, see [Klinkenberg et al. 2024a, Appx. D]. □

Note that in this formulation, parameters may depend on other parameters, but are always indepen-
dent of all program variables and second-order indeterminates. Unfortunately, not every parametric
invariant can be expressed by a loop-free cReDiP program as illustrated by the following example.

Example 25 (Hypergeometric Invariant). Prog. 13 encodes a biased 2-dimensional bounded
random walk. In each turn, it decrements one of the variables with equal probability 1/2 until either

while ( = > 0 ∧< > 0 ) {

{< ≔ < − 1 } [ 1/2 ] {= ≔ = − 1 }

}

Prog. 13. Dependent negative binomial

variables.

the value of< or = arrives at 0. For any fixed program state
valuation (0, 0) ≠ (<,=) ∈ N2, the number of loop iterations
is bounded by = + < − 1. We are interested in the exact
posterior distribution for arbitrary input distributions. Due
to its finite nature for any particular input distribution with
finite support, we can analyze this program automatically
using Prodigy by unfolding the loop< + = − 1 times. For
instance, the resulting distribution for an initial Dirac distribution describing the state valuation

(0, 1), is J%K("0#1) =
∑0

8=1
"8

20+1−8
·
(0+1−8−1

1−1

)
+
∑1

8=1
# 8

20+1−8
·
(0+1−8−1

0−1

)
. Using the simplification

function in Mathematica [Inc. 2023], we derive the closed form,

� (0, 1) = 21−0−1"

(
−2 + 0 + 1

−1 + 1

)
2�1 (1, 1−0, 2−0−1, 2")+21−0−1#

(
−2 + 0 + 1

−1 + 0

)
2�1 (1, 1−1, 2−0−1, 2# ).

Here 2�1 denotes the hypergeometric function9. It shows that the distribution is in some sense linked
to the hypergeometric distribution, indicated by the 2�1 terms. Even though that function is quite
complex, taking derivatives in " or # respectively is straightforward, i.e., m

mG 2�1 (?1, ?2, ?3;G) =
?1?2
2 2�1 (?1 + 1, ?2 + 1, ?3 + 1;"). Thus, extracting many properties of interest can still be computed

8Sometimes also called negative binomial distribution.
9More about this closed form and algorithms to compute closed forms alike can be found in [Petkovsek et al. 1996].
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Prodigy

exact inference engine

distribution interface

GiNaC SymPy

parser equivalence
checker

prior dist. �

cpGCL program %
+

queries
+

invariant �

post. dist. J%K(�)
+

answer to queries

J%K ≠ J�K
+

counterexample

✗

✓

Fig. 4. A sketch of the Prodigy workflow.

exactly using the closed-form expression. It is unknown (to us) whether some loop-free cReDiP
invariant program generates this closed-form distribution. However, the GF semantics enables us to
prove that the precise semantics of Prog. 13 is captured by checking ∀0, 1 ∈ N. (0, 1) ≠ (0, 0) =⇒

� (0, 1) = Φ�,% (� ) (0, 1), combined with the fact that it universally certainly terminates.

6 EMPIRICAL EVALUATION OF PRODIGY

We have implemented our approach in Python as an extension to Prodigy10[Chen et al. 2022a]
– Probability Distributions via GeneratingfunctionologY. The current implementation consists
of about 6,000 LOC. The two new features are the implementation of the observe semantics
and normalization, as well as a parameter-synthesis approach for finding suitable parameters of
distributions to satisfy the invariant condition.

6.1 Implementation of Prodigy

Prodigy implements exact inference for cpGCL programs; its high-level structure is depicted
in Figure 4. Given a cpGCL program % (optionally with queries to the output distribution, e.g.,
expected values, tail bounds and moments) together with a prior distribution� , Prodigy parses
the program, performs PGF-based distribution transformations (via the inference engine), and
finally outputs the posterior distribution J%K(�) (plus answers to the queries, if any). For the
distribution transformation, Prodigy implements an internal interface acting as an abstract datatype
for probability distributions in the form of formal power series. Such an abstraction allows for an
easy integration of alternative distribution representations (not necessarily related to generating
functions) and various computer algebra systems (CAS) in the backend. Prodigy currently supports
SymPy [Meurer et al. 2017] and GiNaC [Bauer et al. 2002; Vollinga 2006]. When (UAST) loops
! = while ( � ) { % ′ } are encountered, Prodigy asks for a user-provided invariant � and then
performs the equivalence check such that it can either infer the output distribution or conclude that
J!K ≠ J�K while providing counterexamples f such that Φ�,% ′ (J�K) (f) ≠ J�K(f). In the absence of
an invariant, Prodigy is capable of computing under-approximations of the posterior distribution
by unfolding the loop up to a specified accuracy or number of loop unrollings.

6.2 Benchmarks

We collected a set of 37 benchmarks, 16 of them related to inferring distributions for loopy programs.
This set consists of examples provided by _-PSI [Gehr et al. 2020], Genfer [Zaiser et al. 2023], and
Prodigy. All experiments were evaluated on MacOS Sonoma 14.0 with a 2,4 GHz Quad-Core Intel

10https://github.com/LKlinke/Prodigy
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Table 4. Benchmarks of loop-free programs; timings are in seconds.

Program ∞ ?
Prodigy _PSI

Genfer
SymPy GiNaC symbolic dp

burgler_alarm 1.988 0.012 0.055 0.008 0.002

caesar • 8.377 0.025 1.152 0.051 —
digitRecognition Err.13 34.685 96.283 2.818 0.137

dnd_handicap 7.760 0.032 0.094 0.039 0.006

evidence1 0.348 0.002 0.011 0.002 <0.001

evidence2 0.413 0.003 0.014 0.002 0.001

function 0.338 0.002 0.001 <0.001 0.003
fuzzy_or 67.048 0.227 8.779 4.797 0.025

grass 6.706 0.021 0.481 0.089 0.006

infer_geom_mix • 13.723 0.031 0.199 0.003 0.139
lin_regression_unbiased 6.700 0.014 0.056 0.016 0.918
lucky_throw Err.14 1.560 TO 1.565 0.455

max 0.618 0.005 0.020 0.003 0.001

monty_hall 2.927 0.033 0.063 0.004 0.006
monty_hall_nested 15.694 0.140 0.525 0.017 0.025

murder_mystery • 0.615 0.004 0.020 0.003 —
pi 90.931 0.094 TO 0.103 —
piranha 0.379 0.003 0.011 0.002 <0.001

telephone_operator • 1.249 0.006 0.058∗ Err.15 0.006
telephone_operator_param • • 5.880 0.017 0.108∗ 0.007 —
twocoins 0.493 0.004 0.011 0.002 <0.001

Core i5 and 16GB RAM. For each benchmark, we run Prodigy with both CAS backends, i.e., SymPy
and GiNaC. For loop-free benchmarks, Prodigy is compared against _-PSI11 and Genfer12 – the
two closest tools (among those in Section 8). As Prodigy is an exact inference engine, all tools are
run using exact arithmetic. The initial prior distribution is 1which means all variables are initialized
to 0 with probability 1 and no observe-violations have occurred. All timings are averaged over 20
iterations per benchmark and we measured the time used for performing inference (computing the
posterior distribution). The experiments aim to answer questions in terms of (1) Effectiveness: Can
Prodigy effectively do exact inference on the selected benchmarks, including equivalence checking
and invariant synthesis for programs with loops? (2) Efficiency: How does Prodigy compare to the
most related tools? How do the CAS backends SymPy and GiNaC compare to each other?

6.3 Experimental Results

General observations. Tables 4 and 5 summarize our experimental results. Our approach is capable
of computing posterior distributions for a variety of programs in less than 0.1 seconds. For loop-free
benchmarks, exact Bayesian inference based on generating functions (Genfer, Prodigy) performs
better than _-PSI on discrete probabilistic programs with Genfer being the fastest in most instances.
Regarding the timings for Prodigy only, the GiNaC backend is generally about two orders of
magnitude faster. Prodigy is the only tool that is able to deal with unbounded loopy programs.

11We used the commit 9db68ba9581b7a1211f1514e44e7927af24bd398.
12We used the commit 5911de13f16bc3c28703f1631c5c4847f9ebac9a.
13Exceeding SymPy internal limits for parsing.
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Results for loop-free programs. Whereas our focus is on programs featuring unbounded loops, we
compared Prodigy to _-PSI and Genfer for loop-free benchmarks. Table 4 lists the results. The
column Program lists the benchmarks. The next column (∞) marks the occurrence of samplings
from infinite-support distributions in the benchmark. Column ? indicates the presence of symbolic
parameters. Finally, columns SymPy, GiNaC, symbolic, dp and genfer list run-times in seconds for
the individual backends of Prodigy, _-PSI, and the tool genfer respectively. Here, dp represents
the dynamic programming backend of _-PSI invoked by using the option --dp, and Genfer using
exact arithmetic (--rational). The timing in boldface marks the fastest variant. The acronym TO
stands for time-out, i.e., did not terminate within the time limit of 90 seconds. Entries consisting
of “—” indicate the lack of support for this benchmark instance. Timings marked with ∗ refer to
results by _-PSI which contain integral expressions that we like to avoid, however _-PSI is still able
to compute all moments exactly.

Our experiments show that Genfer can be up to two orders of magnitude faster. We emphasize
that PSI and Genfer are symbolic engines tailored to solving loop-free inference tasks. Despite
this, it turns out that we oftentimes are on par. For the digitRecognition example (the most
prominent outlier), the speedup of Genfer mostly originates from an optimization in computing
the observe-violation probabilities. For loop-free programs, where termination is inherent by
design, the necessity to precisely track observe-violation probabilities is avoided.Consequently,
the observation-violation probability can be computed as the “missing” probability mass in the
final distribution. While this methodology is effective in loop-free scenarios, it does not apply to
loopy programs and hence was not implemented in Prodigy.
Zaiser and Ong [2023] see automatic differentiation as the key ingredient enabling the fast

results of Genfer. Automatic differentiation in the sense of computing =-th derivatives at specific
points is done by both Genfer and Prodigy. Whereas Zaiser and Ong [2023] employ a custom
implementation, we rely on well-established implementations from SymPy and GiNaC. In fact,
the actual differentiation implementation can be exchanged freely. Prodigy’s support for loops
and parameter synthesis seamlessly integrate with any differentiation method while maintaining
the functionality and capitalizing on potential speed enhancements. Moreover, Genfer is unable
to deal with non-linear observations as in the pi benchmark. The same holds for instances with
symbolic parameters. Prodigy outperforms the symbolic engine of _-PSI on almost every instance
whilst Prodigy has a comparable performance to the dynamic programming strategy of _-PSI.

Results for loopy programs. Table 5 depicts the empirical results for loopy programs. The column
Program lists the benchmarks. The columns SymPy and GiNaC report their run-times in seconds
when used as backend of Prodigy. The timing in boldface marks the fastest variant. As these
benchmarks all include loops, they are not supported by _-PSI and Genfer.

Recall that reasoning about loops involves an equivalence check against a user-specified invariant
program. Finding the right invariant (if it exists in the loop-free cReDiP fragment) is intricate. We
support the user in discovering such invariants by allowing symbolic parameters for distributions,
e.g., one can write geom (?) where ? is a symbolic parameter. For benchmarks subject to parameter
synthesis, we also provide the anticipated parameter constraints (or values) inferred automatically
by Prodigy. Whenever this is the case, we point out that for the GiNaC timings, discharging
the resulting equation systems is achieved using SymPy solvers, which is due to the missing
functionality of GiNaC to solve these equation systems. Overall, GiNaC is faster than SymPy by
about two orders of magnitude, as is similar to the loop-free benchmarks.

14Reached maximum recursion limit
15The --dp strategy produces ? (G,3 ) = 0 which is an incorrect result.
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Table 5. Exact inference results for loopy probabilistic programs (those with parameter synthesis are marked

by _param); timings are given in seconds.

Program SymPy GiNaC

dep_bern 13.354 0.457

endless_conditioning 1.148 0.012

geometric 3.757 0.031

ky_die 21.562 0.209

n_geometric 3.050 0.038

random_walk 3.439 0.047

trivial_iid 6.444 0.075

bit_flip_conditioning 31.030 0.322

dueling_cowboys_param 6.147 for any ?, @ 0.065 for any ?, @
geometric_param 4.888 ? =

1
3

0.262 ? =
1
3

ky_die_param 36.619 ? =
2
3
, @ =

1
2

1.298 ? =
2
3
, @ =

1
2

negative_binomial_param 2.814 for any ? 0.047 for any ?
n_geometric_param 5.365 ? =

@

3
0.133 ? =

@

3

random_walk_param 5.114 ? =
1
2

0.274 ? =
1
2

bit_flip_cond_param 58.599 ? =
13
28
, @ =

3
7
, A = 2

7
0.887 ? =

13
28
, @ =

3
7
, A = 2

7

brp_obs_param TO 77.732 ? = 10−10

It is also worth noting that Prodigy is potentially applicable to practical randomized algorithms
beyond toy programs like random walks. These applications include loop-free benchmarks such as
digitRecognition for recognizing written digits based on observed data samples, as well as the
unbounded loopy program modeling the bounded retransmission protocol (brp_obs_param):

Example 26 (Bounded Retransmission Protocol). Prog. 14 describes a conditioned variant of
the bounded retransmission protocol (BRP) [Batz et al. 2023; D’Argenio et al. 2001] which attempts
to transmit B packets over a lossy channel. Each individual packet gets lost with probability 1%.
The transmission is successful, if no packet needs more than 4 resends. Further, we observe that all
but the last 9 packets are received successfully without any additional resends. Fig. 5 illustrates
the protocol as a Markov chain. Note that the number of packets to be sent is parametrized by the
(possibly infinite-support) initial distribution of B and 5 , modeling an infinite family of finite-state
Markov chains. This renders techniques like probabilistic model checking [Katoen 2016] infeasible.
Provided with a suitable invariant (cf. [Klinkenberg et al. 2024a, Appx. E]) with parameter ?

in the probabilities, Prodigy infers that, with ? = 10−10, Prog. 14 is equivalent to this invariant,
thereby yielding the exact output distribution (for any initial distribution of B with rational closed
form) in the form of a PGF. From this PGF, we can derive, e.g., with input B ∼ geom (1/2), the
transmission-failure probability of BRP, i.e., the probability that Prog. 14 terminates with 5 > 4 is
around 9.9789 × 10−11 (see [Klinkenberg et al. 2024a, Appx. E]).
From a syntactic point of view, the BRP may seem intricate. Yet semantically, it represents the

structure of the original program’s underlying Markov chain (Fig. 5) in a straightforward manner.
For all but the last 9 packets, no transmission attempt is allowed to fail. If starting with at most 9
packets to send in total, the initial state might already indicate some failed attempts for the first
packet to transmit. In this case, the first packet sent has less than 5 retries to successfully complete
the transmission. Afterwards, for each of the remaining packets, transmission either fails with
some probability ? or is successful and continues with the next packet.
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while ( B > 0 ∧ 5 ≤ 4 ) {

/* packet loss */

{observe ( B ≤ 9 ) # 5 ≔ 5 + 1}

[1/100]

/* packet received */

{5 ≔ 0 # B ≔ B − 1}

}

Prog. 14. A conditioned variant of BRP.

(0, 0) (1, 0) (2, 0) . . . (9, 0)

(1, 1) (2, 1) (9, 1)

...

(1, 5)

...

(2, 5)

...

(9, 5)

(10, 0) . . . (B−1, 0)

(B, 5 )

1
99% 99% 99% 99%

99% 99% 99%

1 1 1

1% 1% 1%

1% 1% 1%

1% 1% 1%

1%

99%1%

99%99%

1%

99%

Fig. 5. The Markov chain illustrating Prog. 14.

7 LIMITATIONS OF EXACT INFERENCE USING EFPS

We discuss some limitations of the presented inference approach considering guard evaluations,
non-rational probabilities and scalability. Prog. 16 models a variant of the famous Collatz algo-
rithm [Andrei and Masalagiu 1998]. The Collatz conjecture states that for all positive integers<
there exists = ∈ N such that for the Collatz function � (<) ≔ =/2 for = ≡ (0 mod 2) and 3= + 1

otherwise; the =-th fold iteration of the function is �= (<) = 1. We have adapted the program
syntax slightly and make use of the loop statement to represent the =-fold repetition of a code
block. The program basically behaves as the usual Collatz function with the only exception that
in the case where a number is divisible by two, we have a small chance not dividing G by 2 but
instead executing the else branch. Note that the instruction G ≡2 0(mod 2) still preserves rational

closed forms as we can compute its semantics by � (X)+� (−X)
2

. When analyzing the run-times of
our tool on this program we observe surprising results: for (= = 1) we obtain a result in 0.010631
seconds; (= = 2) is computed in 0.049891 seconds and for (= = 3) it suddenly increases to 88.689832
seconds. We think that this phenomenon arises from the fact that evaluating expressions like
G ≡ 0 (mod 2) repeatedly, gets increasingly difficult as it is implemented in Prodigy by means of
arithmetic progressions.
Another challenge is guard evaluation, i.e., filtering out the corresponding terms of a formal

power series such as ⟨� ⟩� for if-statements. In case we are interested in the relation between
two variables (like G = ~) when both have marginal distributions with infinite support, Prodigy
cannot compute the result. As an approximation heuristic it computes under-approximations of
the exact posterior distribution. Note that if either G or ~ has a finite-support marginal distribution,
the posterior is computed by enumeration. An interesting example why one cannot even strive
for such a potential closed-form operation preserving rational closed forms is Prog. 15. For this
program, its variable A evaluates to 1 with non-rational, not even algebraic probability 1/c after
termination [Flajolet et al. 2011] – thus beyond cReDiP capabilities. An interesting open question
is to determine what syntactic restrictions exactly capture rational closed forms.
As a final observation we emphasize that Prodigy’s performance is proportional to the size of

constants in the programs. Assume, e.g., a guard G > =, where = is a constant. For larger =, the
closed-form operation of computing the =-th formal derivative takes an increasing amount of time.

8 RELATED WORK

We review a non-exhaustive list of related work in probabilistic inference, ranging from invariant-
based verification techniques to inference techniques based on sampling and symbolic methods.

Invariant-based verification. As a means to avoid intractable fixed point computations, the
correctness of loopy probabilistic programs can often be established by inferring specific (inductive)
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G ≔ geom (1/4) #

~ ≔ geom (1/4) #

C ≔ G + ~#

{ C ≔ C + 1 } [ 5/9 ] { skip } #

A ≔ 1#

loop(3){

B ≔ iid (bernoulli (1/2) , 2C) #

if ( B ≠ C ) {A ≔ 0}

}

Prog. 15. Non-algebraic probabilities.

G ≔ geom (1/2) #

loop(=){

if ( G ≡ 0 (mod 2) ) {

{ G ≔ 3 ∗ G + 1 } [ 1/10 ]

{ G ≔ 1/2 ∗ G }

} else {

G ≔ 3 ∗ G + 1

}

}

Prog. 16. Probabilistic Collatz program.

bounds on expectations, called quantitative loop invariants [McIver and Morgan 2005]. There are a
variety of results on synthesizing quantitative invariants, including (semi-)automated techniques
based on martingales [Barthe et al. 2016; Chakarov and Sankaranarayanan 2013, 2014; Chatterjee
et al. 2020, 2017; Takisaka et al. 2021], recurrence solving [Bartocci et al. 2019, 2020b], invariant
learning [Bao et al. 2022], and constraint solving [Chen et al. 2015; Feng et al. 2017; Gretz et al. 2013;
Katoen et al. 2010], particularly via satisfiability modulo theories (SMT) [Batz et al. 2023, 2021, 2020].

Alternative state-of-the-art verification approaches include bounded model checking [Jansen et al.
2016] for verifying probabilistic programs with nondeterminism and conditioning as well as various
forms of value iteration [Baier et al. 2017; Hartmanns and Kaminski 2020; Quatmann and Katoen
2018] for determining reachability probabilities in finite Markov models.

Sampling-based inference. Most existing probabilistic programming languages implement
sampling-based inference algorithms rooted in the principles of Monte Carlo [Metropolis and Ulam
1949], thereby yielding numerical approximations of the exact results, see, e.g., [Gram-Hansen 2021].
Such languages include Anglican [Wood et al. 2014], BLOG [Milch et al. 2005], BUGS [Spiegelhalter
et al. 1995], Infer.NET [Minka et al. 2018], R2 [Nori et al. 2014], Stan [Stan Development Team
2022], etc. In contrast, we are concerned with inference techniques that produce exact results.

Symbolic inference. In response to the aforementioned challenges (i) and (ii) in exact prob-
abilistic inference, Klinkenberg et al. [2020] proposed a program semantics based on probability
generating functions. This PGF-based semantics allows for exact quantitative reasoning for, e.g.,
deciding probabilistic equivalence [Chen et al. 2022a] and proving non-almost-sure termination
[Klinkenberg et al. 2020] for certain probabilistic programs without conditioning.
Extensions of PGF-based approaches to programs with conditioning have been initiated in

[Klinkenberg et al. 2023; Zaiser et al. 2023]; the latter suggested the use of automatic differentiation
in the evaluation of PGFs, but the paper addresses loop-free programs only. Combining conditioning
and possibly non-terminating behaviors (introduced through loops) substantially complicates the
computation of final probability distributions and normalization constants. Another difference is
that Zaiser et al. provide truncated posterior distributions together with the first four centralized
moments. We, in contrast, develop a symbolic representation of the full posterior distribution.

As an alternative to PGFs, many probabilistic systems employ probability density function (PDF)
representations of distributions, e.g., (_)PSI [Gehr et al. 2016, 2020], AQUA [Huang et al. 2021] and
Hakaru [Narayanan et al. 2016], as well as the density compiler in [Bhat et al. 2012, 2017]. These
systems are dedicated to inference for programs encoding joint (discrete-)continuous distributions
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with conditioning. Reasoning about the underlying PDF representations, however, amounts to
resolving complex integral expressions in order to answer inference queries. Furthermore, (_)PSI
admits only bounded looping behaviors. Dice [Holtzen et al. 2020] employs weighted model counting
to enable potentially scalable exact inference for discrete probabilistic programs, yet is also confined
to statically bounded loops. Stein and Staton [2021] proposed a denotational semantics based on
Markov categories for continuous probabilistic programs with exact conditioning and bounded
looping behaviors. A similar direction is taken by Bichsel et al. [2018]. They investigate the
connections between observe-violations, non-termination, and errors raised by, e.g., division by
zero; their semantics is based on Markov kernels. A recently proposed language PERPL [Chiang
et al. 2023] compiles probabilistic programs with unbounded recursion into systems of polynomial
equations and solves them directly for least fixed points using numerical methods. A related
approach by Stuhlmüller and Goodman [2012] uses dynamic programming techniques transforming
probabilistic programs with unbounded recursion into factored sum-product networks, i.e., a
particular way of representing an equation system. However, this technique cannot handle infinite-
support distributions. The tool Mora [Bartocci et al. 2020a,b] supports exact inference for various
types of Bayesian networks, but relies on a restricted form of intermediate representation known
as prob-solvable loops, whose behaviors can be expressed by a system of C-finite recurrences
admitting closed-form solutions.
Finally, we refer interested readers to [Sheldon et al. 2018; Winner and Sheldon 2016; Winner

et al. 2017] for a related line of research from the machine learning community, which exploits
PGF-based exact inference – not for probabilistic programs – but for dedicated types of graphical
models with latent count variables.

9 CONCLUSION

We have presented an exact Bayesian inference approach for probabilistic programs with (possibly
unbounded) loops and conditioning. The core of this approach is a denotational semantics that
symbolically encodes distributions as probability generating functions. We showed how our PGF-
based exact inference facilitates (semi-)automated inference, equivalence checking, and invariant
synthesis of probabilistic programs. Our implementation in Prodigy shows promise: It can do
exact inference for various infinite-state loopy programs and exhibits comparable performance to
state-of-the-art exact inference tools over loop-free benchmarks.

The possibility to incorporate symbolic parameters in GF representations can enable the applica-
tion of well-established optimization methods, e.g., maximum-likelihood estimations and parameter
fitting, to probabilistic inference. Characterizing the family of programs and invariants which admit
a potentially complete eSOP-based synthesis approach would be of particular interest. Additionally,
future research directions include extending exact inference to continuous distributions by utilizing
characteristic functions as the continuous counterpart to PGFs. Furthermore, there is an intriguing
connection to be explored between quantitative reasoning about loops and the positivity problem
of recurrence sequences [Ouaknine and Worrell 2014], which is induced by loop unfolding.
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