
99

Lower Bounds for Possibly Divergent Probabilistic Programs

SHENGHUA FENG, SKLCS, Institute of Software, CAS, University of Chinese Academy of Sciences, China

MINGSHUAI CHEN†, Zhejiang University, China
HAN SU, SKLCS, Institute of Software, CAS, University of Chinese Academy of Sciences, China

BENJAMIN LUCIEN KAMINSKI, Saarland University, Saarland Informatics Campus, Germany and Uni-

versity College London, United Kingdom

JOOST-PIETER KATOEN, RWTH Aachen University, Germany

NAIJUN ZHAN, SKLCS, Institute of Software, CAS, University of Chinese Academy of Sciences, China

We present a new proof rule for verifying lower bounds on quantities of probabilistic programs. Our proof
rule is not con�ned to almost-surely terminating programs – as is the case for existing rules – and can be
used to establish non-trivial lower bounds on, e.g., termination probabilities and expected values, for possibly
divergent probabilistic loops, e.g., the well-known three-dimensional random walk on a lattice.

CCS Concepts: • Theory of computation → Program reasoning; • Mathematics of computing →
Probabilistic algorithms; Stochastic processes.

Additional Key Words and Phrases: probabilistic programs, quantitative veri�cation, weakest preexpectations,
lower bounds, almost-sure termination, uniform integrability

ACM Reference Format:

Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan.
2023. Lower Bounds for Possibly Divergent Probabilistic Programs. Proc. ACM Program. Lang. 7, OOPSLA1,
Article 99 (April 2023), 31 pages. https://doi.org/10.1145/3586051

1 INTRODUCTION

Probabilistic programs [Gordon et al. 2014; Kozen 1981; Saheb-Djahromi 1978; van de Meent et al.
2018] extend deterministic programs with stochastic behaviors, e.g., random sampling, probabilistic
choice, and conditioning (via posterior observations). Probabilistic programs have witnessed numer-
ous applications in various domains: They steer autonomous robots and self-driving cars [Evans et al.
2017; Shamsi et al. 2020], are key to describe security [Barthe et al. 2013] and quantum [Ying 2011]
mechanisms, intrinsically code up randomized algorithms for solving NP-hard or even determinis-
tically unsolvable problems (in, e.g., distributed computing [Aspnes and Herlihy 1990; Schneider
1993]), and are at the heart of modern machine learning and approximate computing [Carbin et al.
2016]. See [Barthe et al. 2020] for recent advancements in probabilistic programming.

†The corresponding author

Authors’ addresses: Shenghua Feng, SKLCS, Institute of Software, CAS, University of Chinese Academy of Sciences,
Beijing, China, fengsh@ios.ac.cn; Mingshuai Chen, Zhejiang University, Hangzhou, China, m.chen@zju.edu.cn; Han Su,
SKLCS, Institute of Software, CAS, University of Chinese Academy of Sciences, Beijing, China, suhan@ios.ac.cn; Benjamin
Lucien Kaminski, b.kaminski@ucl.ac.uk, Saarland University, Saarland Informatics Campus, Saarbrücken, Germany and
University College London, London, United Kingdom; Joost-Pieter Katoen, RWTH Aachen University, Aachen, Germany,
katoen@cs.rwth-aachen.de; Naijun Zhan, SKLCS, Institute of Software, CAS, University of Chinese Academy of Sciences,
Beijing, China, znj@ios.ac.cn.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/4-ART99
https://doi.org/10.1145/3586051

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-5352-4954
HTTPS://ORCID.ORG/0000-0001-9663-7441
HTTPS://ORCID.ORG/0000-0003-4260-8340
HTTPS://ORCID.ORG/0000-0001-5185-2324
HTTPS://ORCID.ORG/0000-0002-6143-1926
HTTPS://ORCID.ORG/0000-0003-3298-3817
https://doi.org/10.1145/3586051
https://orcid.org/0000-0002-5352-4954
https://orcid.org/0000-0001-9663-7441
https://orcid.org/0000-0003-4260-8340
https://orcid.org/0000-0001-5185-2324
https://orcid.org/0000-0001-5185-2324
https://orcid.org/0000-0002-6143-1926
https://orcid.org/0000-0003-3298-3817
https://doi.org/10.1145/3586051
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3586051&domain=pdf&date_stamp=2023-04-06

99:2 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

Probabilistic programs, though typically relatively small in size, are hard to grasp: The crux
of probabilistic programming is to treat normal-looking programs as if they were probability
distributions [Hicks 2014; Saheb-Djahromi 1978]. Such a lift from deterministic program states to
possibly in�nite-support distributions (over states) renders the veri�cation problem of probabilistic
programs notoriously hard [Kaminski et al. 2019]. In particular, given a random variable 5 (mapping
program states to numbers), a key veri�cation task is to reason about the expected value of 5 after
termination of a program � on input f . If 5 is the indicator function of an event �, then this
expected value is the probability that � occurs upon termination of � . In case of a potentially
unbounded loopy program � , the expected value of 5 is often characterized as the least �xed point
of some monotonic operator capturing the semantics of � w.r.t. 5 . Computing the exact expected
value of 5 hence amounts to inferring the least �xed point which is in general highly intractable.

As a consequence, existing veri�cation techniques for reasoning about probabilistic loops are
mostly concerned with proving upper and/or lower bounds on expected values, i.e., on least �xed
points. Verifying lower bounds is notably essential for establishing total correctness of probabilistic
programs [Katoen et al. 2015; McIver and Morgan 2001] and for assessing the quality and tightness
of upper bounds. For verifying a candidate upper bound D, the well-known principle of Park
induction [Kozen 1985; Park 1969], or more generally, ^-induction [Batz et al. 2021a], su�ces by
“pushing D through the loop semantics” once. Whereas for lower bounds on least �xed point, a
“dual” version of Park induction is unsound (see Sect. 4.3).

Existing (sound) lower induction rules for probabilistic programs are con�ned to either (i) bounded
random variables with a priori knowledge on the termination probability of the program [McIver
and Morgan 2005]; or (ii) (universally) almost-surely terminating (AST) programs (i.e., programs that
terminate with probability 1 on all inputs) and uniformly integrable random variables – a notion
from stochastic processes, which requires reasoning about looping times and/or bounds on random
variables [Hark et al. 2020]. In contrast to Park induction for upper bounds, applying these lower
induction rules requires heavy proof e�orts in, e.g., looking for supermartingales [Chatterjee et al.
2020] witnessing AST, checking uniform integrability, and inferring termination probabilities. In
particular, none of these rules is capable of inferring lower bounds on termination probabilities strictly
less than 1, i.e., for non-AST (aka, divergent) programs. Consider, e.g., the following probabilistic
loop �3dsrw modelling the well-known three-dimensional (3-D) random walk on the lattice over Z3.1

�3dsrw : while (G ≠ 0 ∨ ~ ≠ 0 ∨ I ≠ 0) {

G ≔ G − 1 ⊕ G ≔ G + 1 ⊕ ~ ≔ ~ − 1 ⊕ ~ ≔ ~ + 1 ⊕ I ≔ I − 1 ⊕ I ≔ I + 1 } .

The random nature underneath �3dsrw is fundamentally di�erent from its 1- and 2-D counterparts:
Pólya [1921] proved that the probability P that such a random walk returns to the origin at (0, 0, 0)
is strictly less than 1, indicating that �3dsrw does not terminate almost-surely. More precisely, the
termination probability of �3dsrw starting from any neighbor location of the origin is

P = 1 −

(

3

(2c)3

∫ c

−c

∫ c

−c

∫ c

−c

dG d~ d I

3 − cosG − cos~ − cos I

)−1

= 0.3405373296 . . . (†)

Existing veri�cation techniques cannot tackle �3dsrw due to its complex nature of divergence.
In this paper, we present a new proof rule, termed the guard-strengthening rule for verifying

lower bounds on the expected value of a potentially unbounded random variable 5 for a possibly
divergent probabilistic loop �loop = while (i) {� }. Our proof rule employs reduction: Suppose we
aim to certify ; as a lower bound on the expected value of 5 after termination of�loop. We �rst forge
a new loop � ′

loop = while (i ′) {� } out of �loop by strengthening its loop guard i to i ′, yielding a

1The iterated symbol ⊕ is shorthand for discrete uniform choice (in this case, with probability 1/6 each).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:3

reduced problem where (i) the modi�ed loop � ′
loop features a stronger termination property (e.g.,

provably AST), and (ii)both the uniform integrability of ; and the boundedness conditions are easier
to verify. Our proof rule then asserts – by exploiting the “di�erence” between � ′

loop and �loop w.r.t.

5 in terms of the weakest preexpectation calculus [Kozen 1985; McIver and Morgan 2005] – that
a lower bound ; for � ′

loop (w.r.t. a restricted form of 5) also su�ces as a lower bound for �loop (w.r.t.

5). The former, due to (i) and (ii) by guard strengthening, can often be established by applying the
aforementioned lower induction rules or – if � ′

loop has a �nite state space – probabilistic model

checking [Baier and Katoen 2008; Katoen 2016; Kwiatkowska 2003]. In this case, our proof rule can
be (partially) automated to derive increasingly tighter lower bounds – as i ′ “approaches” i – on,
e.g., the termination probability P of the 3-D random walk in (†), see details in Exmp. 24.

The main results of this paper are the following:

(a) We present a new proof rule via guard strengthening for verifying lower bounds on expected
values of probabilistic programs. To the best of our knowledge, this is the �rst lower bound
rule that admits divergent probabilistic loops with unbounded expected values.

(b) We show that the modi�ed loops with strengthened guards feature easily provable almost-sure
termination and uniform integrability. This eases and enlarges the use of existing proof rules
for lower bounds; Moreover, we propose a novel su�cient criterion for proving uniform
integrability which recognizes cases that are out-of-reach by existing su�cient conditions
based on the optional stopping theorem [Hark et al. 2020].

(c) We show that the approximation error incurred by our guard-strengthening technique can
be arbitrarily small thereby yielding tight lower bounds.

(d) We identify scenarios where our proof rule facilitates inferring quantitative properties of
in�nite-state probabilistic programs by model checking �nite-state probabilistic models.

We demonstrate the e�ectiveness of our proof rule on a collection of examples, including the 3-D
random walk and a real-world randomized networking protocol.

Additional background materials, elaborated proofs, and details on the examples can be found in
the appendix of the full version of this paper [Feng et al. 2023].

2 OVERVIEW OF OUR APPROACH

In a nutshell, our idea is to transform a given potentially non-AST loop �loop into a provably AST
loop � ′

loop and then certify lower bounds for � ′
loop. Our transformation is performed in a way s.t.

the expected outcome of � ′
loop is guaranteed to be a lower bound on the expected outcome of �loop.

Thus, as encoded in our proof rule, a lower bound for � ′
loop su�ces as a lower bound for �loop.

Let us demonstrate our approach by analyzing one of the most basic expected outcomes of a
probabilistic loop: termination. Consider the 1-D random walk �1dbrw on Z (shown below on the
left) with biased probability 1/3 moving to the left and probability 2/3 moving to the right. Due to
its biased nature, this loop does not terminate almost-surely and none of the existing proof rules2

su�ces to establish non-trivial lower bounds on its termination probability; see details in Exmp. 16.

�1dbrw : while (0 < =) {

= ≔ = − 1 [1/3] = ≔ = + 1

}

�"
1dbrw : while (0 < = < ") {

= ≔ = − 1 [1/3] = ≔ = + 1

}

Above right, we see the modi�ed version of this loop, �"
1dbrw, which is obtained from �1dbrw by

introducing an arti�cial upper bound " ∈ N on = in the loop guard. This modi�ed loop does
terminate almost-surely and can moreover visit only �nitely many di�erent states.

2Referring to syntactic proof rules in the expectation-based program logic [Kozen 1985; McIver and Morgan 2005].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:4 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

· · · · · ·0 "=

✗

Fig. 1. Guard-strengthening e�ect: In �1dbrw, all the
three program traces (distinguished by colors) initiat-

ing from • terminate at •. In�"
1dbrw, however, the gray

trace crossing the “barrier”" is no longer possible.

f0

�

. . .

5 (f01) 5 (f02)
. . .
5 (f0<)E

[]

wp⟦�⟧ (5)

Fig. 2. Illustration of wp: wp⟦�⟧ (5) (f0) determines
the expected value of 5 evaluated in the final states •
reached a�er termination of� on input f0; . .

. indicates
nonterminating (aka, divergent) path of � .

�"
1dbrw terminates by “hitting”= ≤ 0 or= ≥ " . The key observation is that the probability of�"

1dbrw
terminating at = ≤ 0 is smaller than the termination probability of �1dbrw, since some terminating
program traces of �1dbrw – contributing to its termination probability – are no longer possible in
�"
1dbrw due to the arti�cial “barrier”" ; see Fig. 1 for an illustration. Meanwhile, underapproximating

the probability that�"
1dbrw terminates at = ≤ 0 – thereby yielding a lower bound on the termination

probability of�1dbrw – can be addressed by existing lower induction rules. In fact, since�"
1dbrw has a

�nite state space for any �xed" ∈ N, its exact termination probability at = ≤ 0 can be obtained by
probabilistic model checking. Moreover, if we push the “barrier” further to the right by increasing
" , then we obtain increasingly tighter lower bounds. See Exmp. 16 for a detailed analysis.

3 WEAKEST PREEXPECTATION REASONING

3.1 The Probabilistic Guarded Command Language

We consider probabilistic programs described by the simple yet Turing-complete, imperative proba-
bilistic guarded command language (pGCL) [McIver and Morgan 2005] which augments Dijkstra’s
GCL [Dijkstra 1976] with probabilistic choices and random assignments.

Syntax. The syntax of a pGCL program � adheres to the grammar

� F skip | G ≔ 4 | G :≈ ` | � # � | {� } [?] {� } |

if (i) {� } else {� } | while (i) {� }

where G is a program variable taken from a countable set Vars, 4 is an arithmetic expression over
program variables, i is a quanti�er-free �rst-order predicate over program variables, and ` denotes
a discrete or continuous distribution. We do not specify the syntax of expressions 4 and predicates
i – they can be arbitrary as long as the corresponding evaluation functions are measurable, as
is in [Szymczak and Katoen 2019]. The semantics of most program constructs – including skip,
(deterministic) assignments, sequential composition, conditional, and (nested) loops – is standard.
The probabilistic choice {�1 } [?] {�2 } �ips a coin with bias ? ∈ [0, 1] and executes �1 in case
the coin yields heads, and �2 otherwise. The random assignment G :≈ ` draws a sample from the
distribution ` – either discrete or continuous – and assigns it to the program variable G .

Program States. A program state f maps every variable in Vars to its value, i.e., a real number in
R. We denote the (possibly uncountable) set of program states by Σ ≜ {f | f : Vars → R}. The
evaluation of expressions 4 and guards i under a state f , denoted by 4 (f) and i (f) respectively, is
standard. For instance, the evaluation of arithmetic addition is

(41 + 42) (f) ≜ 41 (f) + 42 (f) = 41 [G/f (G)] + 42 [G/f (G)] for all G ∈ Vars

where 4 [G/f (G)] denotes the substitution of variable G by its value f (G) in 4 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:5

Predicates. We interpret guards in pGCL programs as predicates. A predicate i represents a subset
of program states Σ. We write f |= i , reading “f satis�es i”, to indicate that state f is in the set
represented by predicate i , i.e., i (f) = true; and f ̸ |= i otherwise. We write i1 =⇒ i2, reading
“i1 strengthens i2”, to indicate that under every state f ∈ Σ, if i1 (f) = true then i2 (f) = true.

3.2 The Weakest Preexpectation Calculus

To reason about quantitative properties of probabilistic programs, in particular, to lower-bound
expected values of certain probabilistic quantities, we view pGCL programs as expectation trans-
formers [Kaminski 2019; Kozen 1985; McIver and Morgan 2005] – a quantitative extension of the
predicate-transformer calculus for non-probabilistic programs of Dijkstra [1975, 1976].

An expectation transformer acts on real-valued functions called expectations, which map program
states to non-negative reals (extended by in�nity)3. Note the distinction between expectations and
expected values: instead of an expected value, one can think of an expectation as a random variable.

De�nition 1 (Expectations [Kaminski 2019]). The set of expectations, denoted by E, is de�ned as

E ≜
{

5 | 5 : Σ → R∞≥0
}

.

An expectation 5 ∈ E is �nite, written as 5 ≺≺ ∞, if 5 (f) < ∞ for all f ∈ Σ; 5 ∈ E is bounded, if
there exists 1 ∈ R≥0 such that 5 (f) ≤ 1 for all f ∈ Σ.

For simplicity, a constant expectation _f. A which evaluates to A ∈ R∞≥0 for every state is denoted
by A . Similarly, given an arithmetic expression 4 , we denote by 4 the expectation _f. 4 (f).

A partial order ⪯ on E is obtained by point-wise lifting the canonical ordering ≤ on R∞≥0, i.e.,

51 ⪯ 52 i� ∀f ∈ Σ : 51 (f) ≤ 52 (f) .

(E, ⪯) forms a complete lattice with least element 0 and greatest element∞.
A pGCL program � is interpreted as an expectation transformer which pushes a postexpectation

5 ∈ E (evaluated in the �nal states) backward through� and gives a preexpectation 6 ∈ E (evaluated
in the initial states). In particular, as illustrated in Fig. 2, the weakest preexpectation of � w.r.t. 5 is a
function 6 : Σ → R∞≥0 mapping each initial state f0 of � to the corresponding expected value of 5
evaluated in the �nal states reached after termination of � on input f0:

De�nition 2 (Weakest Preexpectations [Kaminski 2019; Kozen 1985; McIver and Morgan 2005]).
Given probabilistic program � and initial state f0 ∈ Σ. Let f0̀

� be the (sub)probability measure4

over �nal states reached after termination of � on input f0. Given postexpectation 5 ∈ E which
is measurable w.r.t. f0̀ � , the weakest preexpectation of � w.r.t. 5 maps any initial state f0 to the
expected value of 5 evaluated in the �nal states reached after termination of � on f0, i.e.,

5

wp⟦�⟧ (5) (f0) ≜

∫

Σ

5 d
(
f0`�

)

.

It is known that (i) for every measurable 5 ∈ E,wp⟦�⟧ (5) is measurable (cf. [Szymczak and Katoen
2019, Lem. 3.2]), and (ii) the set of measurable expectations also forms a complete lattice under
the partial order ⪯ (cf. [Szymczak and Katoen 2019, Lem. 2]). Hence, for simplicity, we abuse the
notation E to stand for the set of measurable expectations throughout the rest of the paper.

3For simplicity, we consider the standard case of non-negative expectations. An arithmetic expression is thus a well-de�ned
expectation if and only if it takes non-negative values over all reachable program states. See [Kaminski and Katoen 2017]
for more involved techniques addressing mixed-sign expectations mapping to the full extended reals.
4 f0`� (f) ∈ [0, 1] is the probability that, on input f0, � terminates in the �nal state f . Note that f0`� (Σ) ≤ 1, where
the “missing” probability mass is the probability of nontermination of � on f0. A formal de�nition of f0`� requires an
(operational) semantic model of pGCL, which is out of our scope; we refer interested readers to [Dahlqvist et al. 2020].
5In case of a countable state space Σ, the integral can be written as a countable sum

∑

f∈Σ
f0`� (f) · 5 (f) .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:6 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

Table 1. Rules for the wp-transformer. [i] denotes the Iverson-bracket of i , i.e., [i] (f) evaluates to 1 if f |= i

and to 0 otherwise. For any variable G ∈ Vars and any expression 4 , 5 [G/4] denotes the expectation with
5 [G/4] (f) = 5 (f [G/4]) for any f ∈ Σ, where f [G/4] (G) = 4 (f) and f [G/4] (~) = f (~) for all~ ∈ Vars\{G}.

I wp ⟦I⟧ (f)

skip 5

G ≔ 4 5 [G/4]

G :≈ `
∫

R
5 [G/a] d ` (a)

�1 # �2 wp⟦�1⟧ (wp⟦�2⟧ (5))

{�1 } [?] {�2 } ? · wp⟦�1⟧ (5) + (1 − ?) · wp⟦�2⟧ (5)

if (i) {�1 } else {�2 } [i] · wp⟦�1⟧ (5) + [¬i] · wp⟦�2⟧ (5)

while (i) {� ′ } lfp Φ
wp

⟨i,�′⟩ 5

Φ
wp

⟨i,�′⟩ 5
: E→ E, ℎ ↦→ [¬i] · 5 + [i] · wp⟦� ′⟧ (ℎ) characteristic

function

Weakest preexpectations can be determined in a backward, compositional manner; see [Feng
et al. 2023, Appx. B]. In fact, the wp-transformer can be codi�ed by structural induction:

Theorem 3 (wp-Transformer [McIver and Morgan 2005]). Let pGCL be the set of programs in the
probabilistic guarded command language. The weakest preexpectation transformer

wp : pGCL → E→ E

adhering to the rules in Table 1 is well-de�ned; in fact, Table 1 coincides with Def. 2.

A proof of Thm. 3 can be found in [Szymczak and Katoen 2019, Sect. 5], which extends the well-
de�nedness for discrete probabilistic programs [Kaminski 2019, Thm. 4.11]. The function Φ

wp
⟨i,� ⟩ 5

in Table 1 is called the characteristic function of while (i) {� }w.r.t. 5 . For simplicity, we omit wp,
i , � , or 5 from Φ whenever they are clear from the context. Φ is in fact a (Scott-)continuous – and
thus monotonic – operator, i.e., Φ(sup{61 ⪯ 62 ⪯ . . .}) = supΦ({61 ⪯ 62 ⪯ . . .}); see [Szymczak
and Katoen 2019, Lem. 3.1]. Thus by the Kleene �xed point theorem [Lassez et al. 1982], its least
�xed point lfp Φ = sup=∈N Φ

= (0) = lim=→l Φ
= (0) and greatest �xed point gfp Φ = inf=∈N Φ

= (∞) =
lim=→l Φ

= (∞) exist over the partial order ⪯ on E.
The rules for the wp-transformer in Table 1 are compositional and, mostly, purely syntactic, thus

providing the machinery for automating the weakest preexpectation calculus; see [Feng et al. 2023,
Appx. B] for an example. One exception, however, is the transformation rule for while-loops: It
amounts to determining the quantitative least �xed point which is often di�cult or even impossible
to compute [Kaminski et al. 2019]; it is thus desirable to bound them from above and/or from
below. There are in principle two challenges (cf. [Hark et al. 2020]): (i) �nding a candidate bound,
and (ii) verifying that the candidate is indeed an upper or lower bound. In this paper, we aim to
verify candidate lower bounds on wp⟦�⟧ (5) where � is a (possibly nested) while-loop that may
not terminate almost-surely. The termination probability of � is captured by wp⟦�⟧ (1) (f0):

De�nition 4 (Almost-Sure Termination and Divergence). Let � be a pGCL program and let
f0 ∈ Σ be an initial program state. Then � terminates almost-surely on input f0 i�

wp⟦�⟧ (1) (f0) = 1 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:7

� terminates almost-surely (AST) i� � terminates almost-surely on all inputs, i.e.,

wp⟦�⟧ (1) = 1 .

� diverges on input f0 i� wp⟦�⟧ (1) (f0) < 1. � diverges i� � diverges on some input f0.

4 REASONING ABOUT LOWER BOUNDS

This section formulates our problem of proving lower bounds on lfp Φ
wp

⟨i,� ⟩ 5
, i.e., on the wp of a

(possibly divergent) while-loop �loop = while (i) {� } w.r.t. postexpectation 5 . We then give a
high-level description of our approach in position to existing proof rules employing induction.

4.1 Problem Statement

The problem concerned in this paper can be formulated as follows.

Given a possibly divergent probabilistic loop �loop = while (i) {� }, a possibly unbounded
postexpectation 5 ∈ E, and a possibly unbounded candidate lower bound ; ∈ E, verify that

; ⪯ wp⟦�loop⟧ (5) . (1)

We present a new proof rule to address this problem: Our rule does not employ induction, rather, it
reduces the veri�cation of (1) with possibly divergent �loop and possibly unbounded 5 , ; ∈ E to

; ⪯ wp⟦while (i ′) {� }⟧ ([¬i] · 5) with i ′
=⇒ i . (2)

Namely, we forge a new loop � ′
loop = while (i ′) {� } out of �loop by strengthening its loop guard

i to i ′. Such guard strengthening restricts the (reachable) state space and, consequently, (i) the
modi�ed loop � ′

loop features a stronger termination property (e.g., becoming AST), and (ii) both the

uniform integrability of ; and the boundedness of expectations are easier to verify.
Our proof rule asserts – by exploiting the di�erence between wp⟦� ′

loop⟧ (5) and wp⟦�loop⟧ (5) –

that a lower bound ; w.r.t.� ′
loop satisfying (2) also su�ces as a lower bound w.r.t.�loop satisfying (1).

The former, due to guard strengthening, can often be obtained by applying existing lower induction
rules (see Sect. 4.3 below) or – in case � ′

loop has a �nite state space – probabilistic model checking.

4.2 Induction Rules for Upper Bounds

The Park induction principle [Park 1969] for least �xed points establishes an elegant mechanism
for verifying upper bounds on weakest preexpectations:

Theorem 5 (Park Induction for Upper Bounds [Kaminski 2019; Kozen 1985]). Let Φ5 be the
characteristic function of �loop = while (i) {� } w.r.t. postexpectation 5 ∈ E and let D ∈ E. Then

Φ5 (D) ⪯ D implies wp⟦�loop⟧ (5) ⪯ D . (3)

We call D ∈ E satisfying Φ5 (D) ⪯ D a superinvariant. As pointed out by Hark et al. [2020], the
striking power of Park induction lies in its simplicity: Once an appropriate candidate D is found
(which, however, is usually not an easy task), all we have to do is to push D through Φ5 once and
check whether it becomes smaller in terms of ⪯. If this is the case, we have veri�ed that D is indeed
an upper bound on lfp Φ5 and thus on the weakest preexpectation.

The soundness of Park induction is illustrated by the left (descending) chain in Fig. 3. We refer the
readers to [Hark et al. 2020] for a formal soundness argument leveraging the Tarski-Kantorovitch
principle (cf. [Jachymski et al. 2000]). See also [Batz et al. 2021a] for a strictly more general proof
rule via (latticed) :-induction for establishing upper bounds on least �xed points.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:8 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

D

Φ5 (D)

fp Φ5

lfp Φ5 = wp⟦�loop⟧ (5)

;

Φ5 (;)

fp Φ5

✓

?

Fig. 3. Intuition of the soundness of Park induction (le� branch) and the unsoundness of simple lower
induction (right branch). An arrow from 61 ∈ E to 62 ∈ E indicates 61 ⪯ 62. For Park induction, the iteration
of Φ5 on D converges downwards to a fixed point of Φ5 which is – by the Knaster-Tarski theorem [Knaster

1928; Lassez et al. 1982; Tarski 1955] – necessarily above lfp Φ5 , thus proving wp⟦�loop⟧ (5) ⪯ D. For simple
lower induction, however, the ascending chain ; ⪯ Φ5 (;) ⪯ . . . converges to a fixed point of Φ5 which is
necessarily below the greatest fixed point gfp Φ5 , but we do not know how ; compares to lfp Φ5 .

4.3 Induction Rules for Lower Bounds

A “dual” version of Park induction – by �ipping ⪯ in (3) – works for verifying lower bounds on the
greatest �xed point gfp Φ5 , but not on lfp Φ5 . More precisely, for ; ∈ E, the rule

; ⪯ Φ5 (;) implies ; ⪯ wp⟦�loop⟧ (5) , �

is unsound in general. We call ; ∈ E satisfying ; ⪯ Φ5 (;) a subinvariant and the above unsound
rule simple lower induction. The unsoundness of simple lower induction is illustrated by the right
(ascending) chain in Fig. 3, together with a counterexample below. We refer the readers to [Hark
et al. 2020] for a formal argument again using the Tarski-Kantorovitch principle.

Example 6 (Unsoundness of Simple Lower Induction). Reconsider the loop �1dbrw in Sect. 2
with postexpectation 5 = 1; its characteristic function is Φ5 (ℎ) = [= ≤ 0] + [= > 0] · (1/3 ·ℎ(= − 1) +
2/3 · ℎ(= + 1)). Observe that the constant expectation 6 = 1 is a superinvariant, since Φ5 (6) = 1 ⪯ 6.
This implies that the termination probability of�1dbrw is (trivially) upper-bounded by 1 (cf. Thm. 5).
Meanwhile, 6 is also a subinvariant as 6 ⪯ 1 = Φ5 (6), which however does not su�ce to certify 1

as a lower bound on the termination probability (recall that �1dbrw is non-AST; cf. Sect. 2). �

To retrieve soundness of lower induction, Hark et al. [2020] propose side conditions relying on
notions of almost-sure termination (i.e.,wp⟦�loop⟧ (1) = 1, cf. Def. 4) and uniform integrability from
the realm of stochastic processes. To formulate the latter, we denote by -= the random variable
representing the program state after the =-th iteration of the loop body � , by)¬i ≜ inf{= ∈
N | -= |= ¬i} the stopping time (aka, looping time) indicating the �rst time that -= hits ¬i ,6

and by
{

-) ¬i

=

}

=∈N
the corresponding stopped stochastic process, i.e., -) ¬i

= = -= if = ≤)¬i and

-) ¬i

= = -) ¬i otherwise; see [Feng et al. 2023, Appx. A] for formal de�nitions of stopping times and
stopped processes.

De�nition 7 (Uniform Integrability). A stochastic process {-=}=∈N on a probability space (Ω, F , %)
is uniformly integrable (u.i., for short), if

lim
'→∞

sup
=∈N

E
[

|-= | · 1 |-= | ≥'

]

= 0 (4)

where 1 |-= | ≥' is the indicator function, i.e., 1 |-= | ≥' (l) = 1 if l ∈ {l ∈ Ω | |-= (l) | ≥ '} and 0

otherwise. Given �loop = while (i) {� }, an expectation ℎ ∈ E is uniformly integrable for �loop if
{

ℎ
(

-) ¬i

=

)}

=∈N
is uniformly integrable on the probability space induced by �loop (cf. Sect. 5).

6The looping time) ¬i does not take into account the runtime of the loop body� .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:9

Intuitively, (4) asserts that the tail expected values of -= are uniformly (indicated by the supremum)
small in terms of the !1-norm. A u.i. process -= thus satis�es E(lim=→∞-=) = lim=→∞ E(-=) if
lim=→∞-= exists almost-surely. Now, the sound induction rule for lower bounds reads as follows.

Theorem 8 (Hark et al.’s Induction for Lower Bounds [Hark et al. 2020]). Let Φ5 be the
characteristic function of �loop = while (i) {� } w.r.t. postexpectation 5 ∈ E and let ; ∈ E. Then

; ⪯ Φ5 (;)
︸ ︷︷ ︸

subinvariance

and wp⟦�loop⟧ (1) = 1 and ; is u.i. for �loop
︸ ︷︷ ︸

side conditions

implies ; ⪯ wp⟦�loop⟧ (5) . (5)

Unlike Park induction for upper bounds, the side conditions in (5) for establishing lower bounds
require extra e�orts in proving almost-sure termination and uniform integrability, both of which
are computationally intractable in general, see, e.g., [Kaminski et al. 2019]. Various techniques
and tools have been developed in the literature, e.g., [Chatterjee et al. 2020; McIver et al. 2018;
Moosbrugger et al. 2021], to prove almost-sure termination of (subclasses of) probabilistic programs.
For showing uniform integrability, Hark et al. [2020] propose su�cient conditions based on the
well-known optional stopping time theorem [Williams 1991, Chap. 10]:

Theorem 9 (Su�cient Criteria for Uniform Integrability [Hark et al. 2020]). Given �loop =

while (i) {� }, let f0P be the (sub)probability measure induced by �loop on initial state f0 ∈ Σ.7

Then, an expectation ℎ ≺≺ ∞ is uniformly integrable for �loop if one of the following conditions holds:

(a) The looping time)¬i is almost-surely bounded, i.e., for any initial state f0 ∈ Σ, there exists
∈ N such that f0P()¬i ≤ #) = 1, and wp⟦�⟧= (ℎ) ≺≺ ∞ for any = ∈ N.

(b) The expected looping time is �nite andℎ is conditionally di�erence bounded, i.e., f0E[)¬i] < ∞
for any f0 ∈ Σ, and there exists 2 ∈ R≥0 such that wp⟦�⟧ (|ℎ − ℎ(f) |) ≤ 2 for any f |= i .

(c) ℎ is bounded, i.e., there exists 2 ∈ R≥0 such that ℎ(f) ≤ 2 for any f ∈ Σ.

In summary, Hark et al.’s sound lower induction rule in Thm. 8 does not apply to divergent programs,
and even for AST ones, it requires extra proof e�orts in, e.g., looking for supermartingales [Chat-
terjee et al. 2020] witnessing AST and reasoning about the looping time ((a) and (b) in Thm. 9) or
establishing bounds on expectations ((b) and (c) in Thm. 9) to achieve u.i..

There is an orthogonal induction rule by McIver and Morgan [2005] for bounded expectations:

Theorem 10 (McIver &Morgan’s Induction for Lower Bounds [McIver and Morgan 2005]). Let
Φ5 be the characteristic function of �loop = while (i) {� } w.r.t. a bounded postexpectation 5 ∈ E,
; ∈ E be a bounded expectation such that ; ⪯ Φ5 (;) and [¬i] · ; = [¬i] · 5 , and ? = wp⟦�loop⟧ (1)
be the termination probability of �loop. Then

(a) If ; = [�] for some predicate � , then ? · ; ⪯ wp⟦�loop⟧ (5).
(b) If [�] ⪯ ? for some predicate � , then [�] · ; ⪯ wp⟦�loop⟧ (5).
(c) If Y · ; ⪯ ? for some Y ∈ R>0, then ; ⪯ wp⟦�loop⟧ (5).

McIver and Morgan’s lower induction rule applies to divergent programs (with termination proba-
bility < 1); however, it is con�ned to bounded expectations and requires a priori knowledge on the
termination probability ? of a while-loop which is di�cult to infer in general (which may in turn
ask for lower bounds on ?). In fact, Hark et al.’s induction rule generalizes McIver and Morgan’s in
case �loop is AST [Hark et al. 2020, Thm. 41]. These two proof rules, to the best of our knowledge,
are the only existing (induction) rules for verifying lower bounds on weakest preexpectations.

7The measure f0P will be formally de�ned in Sect. 5. Note that f0P() ¬i
< ∞) = 1 i� wp⟦�loop⟧ (1) (f0) = 1.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:10 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

Σ ∪ {↑}

f0

f1 f2
f3

. . .

f′
0

f′
1

f′
2

f′
3

↑=f′
4 =f

′
5 = . . .

Fig. 4. Infinite traces in S.

i i′

f̄0

. . .

f̄�2. . .

f̄�1

f̃0

. . .
f̃�2

. . .

f̃�1

f0. . .
f� (¬i′,i)

. . .

f� (¬i,i′)

. . .

f�

. . .
f�

. . .

f�

Fig. 5. Illustration of Thm. 11 (cf. (10)).

5 DIFFERENCES OFWEAKEST PREEXPECTATIONS

Our lower-bound proof rule reduces the veri�cation of a probabilistic loop to that of its strengthened
counterpart. To justify such a reduction, we need to quantitatively relate two probabilistic loops in
terms of weakest preexpectations. In this section, we show how to quantify the di�erence of the
weakest preexpectations of two while-loops, which di�er only in loop guards, with respect to the
same postexpectation 5 ∈ E, namely,

wp⟦while (i) {� }
︸ ︷︷ ︸

�loop

⟧ (5) − wp⟦while (i ′) {� }
︸ ︷︷ ︸

�′
loop

⟧ (5) (6)

where i and i ′ are arbitrary predicates representing subsets of Σ (here, i ′ does not necessarily
strengthen i)8 and the shared loop body � itself can contain further nested while-loops. Such a
quanti�cation on the wp-di�erence forms the basis of our new proof rule (cf. Sect. 6).

Recall that the weakest preexpectation of a loop w.r.t. 5 ∈ E is de�ned (cf. Def. 2) as the integral
of 5 over the (sub)probability measure over �nal states reached after termination of the loop, where
the termination behavior is determined by the loop guard and the loop body. Thus, to connect the
two weakest preexpectations in (6), we �rst abstract away the loop guards i and i ′ and thereby

obtain a certainly divergent loop�↑
loop = while (true) {� }. We then construct a probability space

over the set S of in�nite traces (i.e., sequences of program states) of �↑
loop, formally,

S ≜ { f0f1 · · ·f8 · · · | f0 ∈ Σ, ∀8 ≥ 1 : f8 ∈ Σ ∪ {↑} ∧ (f8 = ↑ =⇒ f8+1 = ↑) }

where f8 ≠ ↑ denotes the state in which the loop body � terminates after its 8-th iteration and ↑
denotes the sink state where � diverges. See Fig. 4 for an illustration of two types of in�nite traces
(with or without sink states). Given a �nite pre�x c of an in�nite trace, the cylinder set of c is
2~; (c) ≜ {B ∈ S | ∃C ∈ (Σ ∪ {↑})l : B = cC}, i.e., the set of in�nite traces that have c as a pre�x.

The operational semantics [Dahlqvist et al. 2020] of �↑
loop induces a family of (sub)probability

measures – denoted by f
P for any f ∈ Σ – over Swith the smallest f-algebra containing all cylinder

8Assuming i′
=⇒ i su�ces to justify our proof rule. However, we are interested in a more general result on wp-di�erence

with unrelated i and i′ due to (i) symmetry in i and i′; and (ii) the potential of such a general result for addressing
problems beyond verifying lower bounds, e.g., sensitivity analysis [Aguirre et al. 2021; Barthe et al. 2018; Wang et al. 2020]
and model repair [Bartocci et al. 2011] for probabilistic programs, as one of the interesting future directions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:11

sets. That is, for any �nite pre�x c = f0f1 · · ·f= ,

f
P (2~; (c)) =

{

[f = f0] ·
f0̀

� (f1) · . . . ·
f8−1̀

� (f8) · . . . ·
f=−1̀

� (f=) if ∀8 ≤ = : f8 ≠ ↑ ,

[f = f0] ·
f0̀

� (f1) · . . . ·
f8−1̀

� (f8) · (1 −
f8`� (Σ)) if ∃8 < = : f8 ≠ ↑ ∧ f8+1 = ↑ ,

where f`� represents the (sub)probability measure over �nal states reached after termination of the
loop body � on input f . The random variable -= : S→ Σ representing the program state after the
=-th iteration of the loop body � is -= (f0f1 · · ·) = f= . Given �loop = while (i) {� }, the looping
time)¬i : S → N of �loop is de�ned as)¬i (B) = inf{= | -= (B) |= ¬i}. For any random variable
- over S and any predicate q over - , we abbreviate f

P({B ∈ S | q (- (B))}) as f
P(q (-)), e.g.,

f
P()¬i ≥ =) is a shorthand for f

P({B ∈ S |)¬i (B) ≥ =}). Based on the measure f
P de�ned above,

the di�erence between wp⟦�loop⟧ (5) and wp⟦� ′
loop⟧ (5) as in (6) can be quanti�ed as follows.

Theorem 11 (wp-Di�erence). Given loops �loop = while (i) {� } and � ′
loop = while (i ′) {� },

then, for any postexpectation 5 ∈ E,9

wp⟦�loop⟧ (5) − wp⟦� ′
loop⟧ (5) =

wp⟦while (i ∧ i ′) {� }⟧ ([¬i ∧ i ′] · 5) + _f.

∫

�

5�loop d
(
f
P
)

−

wp⟦while (i ∧ i ′) {� }⟧ ([i ∧ ¬i ′] · 5) − _f.

∫

�

5�′
loop

d
(
f
P
)

,

(7)

where � ⊆ S is the set of in�nite traces that hit ¬i ′ before hitting ¬i , and 5�loop is a partial function

mapping a trace B ∈ S to 5 (f=) if B hits ¬i for the �rst time at f= , namely,

� ≜ { f0f1 · · ·f8 · · · ∈ S | ∃= ∈ N : (f= |= ¬i) ∧ (∀8 < = : f8 |= i) ∧ (∃: < = : f: |= ¬i ′) } ,

5�loop : S⇀ R
∞
≥0 f0f1 · · ·f8 · · · ↦→ 5 (f=) if (f= |= ¬i) ∧ (∀8 < = : f8 |= i) ;

(8)

dually, � ⊆ S is the set of in�nite traces that hit ¬i before hitting ¬i ′, and 5�′
loop

maps a trace B ∈ S

to 5 (f=) if B hits ¬i
′ for the �rst time at f= (the de�nitions of � and 5�′

loop
are analogous to (8)).

Proof. We prove the theorem by exploring di�erent types of traces in S, as depicted in Fig. 5.
Given a predicate, q let ♢q be the set of all traces that eventually hit q , i.e.,

♢q ≜ { f0f1 · · ·f8 · · · ∈ S | ∃= ∈ N : f= |= q } .

By de�nition of the (sub)probability measure f
P, we have

wp⟦�loop⟧ (5) = _f.
∫

Σ

5 d
(

f`�loop

)

= _f.
∫

♦(¬i)
5�loop d

(
f
P
)

,

wp⟦� ′
loop⟧ (5) = _f.

∫

Σ

5 d
(

f`�′
loop

)

= _f.
∫

♦(¬i′)
5�′

loop
d
(
f
P
)

.

(9)

To quantify the wp-di�erence, we �rst decompose the set of traces in ♢(¬i) and ♢(¬i ′) into
disjoint parts, respectively. To this end, let

� ≜ { f0f1 · · ·f8 · · · ∈ S | ∃= ∈ N : (f= |= ¬i ∧ ¬i ′) ∧ (∀8 < = : f8 |= i ∧ i ′) } ,

and for any predicates q1, q2, let

� (q1, q2) ≜ { f0f1 · · ·f8 · · · ∈ S | ∃= ∈ N : (f= |= q1) ∧ (∀8 ≤ = : f8 |= q2) } .

9For better understandability, (7) is formulated in the form of di�erence between weakest expectations. This formulation
may raise the issue of “∞−∞”, however, one can avoid this issue by shifting all the negative terms in (7) to the other side
of the equation. The same reformulation tactic applies to the proof of Thm. 11.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:12 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

It follows that
♢ (¬i) = �

︷ ︸︸ ︷

hitting ¬i′ before hitting ¬i
e.g., f0 · · ·f� · · · , f̄0 · · · in Fig. 5

⊎ �
︷ ︸︸ ︷

hitting ¬i′,¬i simultaneously
e.g., f0 · · ·f� · · · in Fig. 5

⊎ � (¬i, i ′)
︷ ︸︸ ︷

hitting ¬i while satisfying i′

e.g., f0 · · ·f� (¬i,i′) · · · in Fig. 5

,

♢ (¬i ′) = �
︷ ︸︸ ︷

hitting ¬i before hitting ¬i′

e.g., f0 · · ·f� · · · , f̃0 · · · in Fig. 5

⊎ �
︷ ︸︸ ︷

hitting ¬i,¬i′ simultaneously
e.g., f0 · · ·f� · · · in Fig. 5

⊎ � (¬i ′, i)
︷ ︸︸ ︷

hitting ¬i′ while satisfying i
e.g., f0 · · ·f� (¬i′,i) · · · in Fig. 5

.
(10)

It is evident that, by de�nition, 5�loop and 5�′
loop

coincide on � ⊆ S, i.e.,

∀B ∈ � : 5�loop (B) = 5�′
loop

(B) . (11)

For � (·, ·), we have (see [Feng et al. 2023, Lem. 32] for a more detailed proof of (12) below)

_f.
∫

� (¬i,i′)
5�loop d

(
f
P
)

= wp⟦while (i ∧ i ′) {� }⟧ ([¬i ∧ i ′] · 5)
︸ ︷︷ ︸

evaluating 5 over, e.g., f� (¬i,i′) in Fig. 5

,

_f.
∫

� (¬i′,i)
5�′

loop
d
(
f
P
)

= wp⟦while (i ∧ i ′) {� }⟧ ([i ∧ ¬i ′] · 5)
︸ ︷︷ ︸

evaluating 5 over, e.g., f� (¬i′,i) in Fig. 5

.

(12)

By combining the facts above, we have

wp⟦�loop⟧ (5) − wp⟦� ′
loop⟧ (5) = _f.

∫

♦(¬i)
5�loop d

(
f
P
)

− _f.
∫

♦(¬i′)
5�′

loop
d
(
f
P
)

[by (9)]

= _f.
∫

�

5�loop d
(
f
P
)

+ _f.
∫

�

5�loop d
(
f
P
)

+ _f.
∫

� (¬i,i′)
5�loop d

(
f
P
)

−

_f.
∫

�

5�′
loop

d
(
f
P
)

− _f.
∫

�

5�′
loop

d
(
f
P
)

− _f.
∫

� (¬i′,i)
5�′

loop
d
(
f
P
)

[by linearity of
∫

, (10)]

= wp⟦while (i ∧ i ′) {� }⟧ ([¬i ∧ i ′] · 5) + _f.
∫

�

5�loop d
(
f
P
)

−

wp⟦while (i ∧ i ′) {� }⟧ ([i ∧ ¬i ′] · 5) − _f.
∫

�

5�′
loop

d
(
f
P
)

. [by (11) and (12)]

This completes the proof. □

Example 12 (wp-Di�erence). Consider two loops with postexpectation 5 = [0 ≤ = ≤ 11]:

�loop : while (0 < = < 10) {= ≔ = − 1 [1/2] = ≔ = + 1 } ,

� ′
loop : while (1 < = < 11) {= ≔ = − 1 [1/2] = ≔ = + 1 } .

Let �∧ be the loop while(1 < = < 10){= ≔ = − 1 [1/2] = ≔ = + 1}. To illustrate Thm. 11, we show

wp⟦�loop⟧ ([0 ≤ = ≤ 11]) − wp⟦� ′
loop⟧ ([0 ≤ = ≤ 11]) =

wp⟦�∧⟧ ([= = 10]) + _f.
∫

�

5�loop d
(
f
P
)

−

wp⟦�∧⟧ ([= = 1]) − _f.
∫

�

5�′
loop

d
(
f
P
)

.

(13)

Observe that

wp⟦�loop⟧ ([0 ≤ = ≤ 11]) = wp⟦� ′
loop⟧ ([0 ≤ = ≤ 11]) = [0 ≤ = ≤ 11] ,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:13

due to the key fact that �loop and � ′
loop both terminate with probability 1. Thus, the left-hand side

of (13) equals 0. For the right-hand side of (13), by applying Hark et al.’s induction for lower bounds
and Park induction for upper bounds (details omitted), one can show that

wp⟦�∧⟧ ([= = 10]) = [1 ≤ = ≤ 10] ·
= − 1

9
, wp⟦�∧⟧ ([= = 1]) = [1 ≤ = ≤ 10] ·

10 − =

9
.

Moreover, notice that 5�loop = 1 over � and 5�′
loop

= 1 over �, we have
∫

�

5�loop d
(
f
P
)

= [1 ≤ = < 10] ·
10 − =

9
,

∫

�

5�′
loop

d
(
f
P
)

= [1 < = ≤ 10] ·
= − 1

9
.

It follows that the right-hand side of (13) also equals 0. �

The intuition behind Thm. 11 is to decompose the weakest preexpectations into disjoint parts
covering di�erent types of traces in S – the type of a trace is determined by its temporal behavior
of hitting ¬i and/or hitting ¬i ′, see (10) and Fig. 5 – thus yielding the exact di�erence between
wp⟦�loop⟧ (5) and wp⟦� ′

loop⟧ (5) by eliminating their common parts, cf. (11). The integrals in (7)
for their exclusive parts remain hard to resolve, however, it su�ces to obtain a lower bound on
wp⟦�loop⟧ (5) if i ′ strengthens i (tightness of the so-obtained lower bound is shown in Sect. 6.3):

Corollary 13. Given loops �loop = while (i) {� } and � ′
loop = while (i ′) {� }, supposei ′

=⇒ i ,

then, for any postexpectation 5 ∈ E,

wp⟦�loop⟧ (5) ⪰ wp⟦� ′
loop⟧ ([¬i] · 5) .

The intuition of Cor. 13 is as follows: Recall that wp⟦�loop⟧ (5) maps any initial state f0 to the
expected value of 5 evaluated in the �nal states reached after termination of �loop on f0, i.e.,
upon violating the loop guard i . In order to obtain a sound lower bound on wp⟦�loop⟧ (5) via the
modi�ed loop � ′

loop, we have to restrict the postexpectation 5 to [¬i] · 5 such that 5 is evaluated

only in states violating the original guard i (and hence also violating the strengthened guard i ′).
The proof of Cor. 13 leverages the fact that, as i ′

=⇒ i , we have i ∧ i ′
= i ′, [¬i ∧ i ′] = 0, and

� = ∅ (i.e., no trace can ever hit ¬i before hitting ¬i ′, cf. (10)).

6 PROOF RULE FOR LOWER BOUNDS

In this section, we present our new proof rule for verifying lower bounds onweakest preexpectations
– termed the guard-strengthening rule – based on the wp-di�erence and the guard-strengthening
technique in Sect. 5. We then showcase the usefulness of this proof rule in several aspects, in
particular, for reasoning about possibly divergent probabilistic programs.

Theorem 14 (Guard Strengthening for Lower Bounds). Given loops �loop = while (i) {� },
� ′
loop = while (i ′) {� }, and postexpectation 5 ∈ E, let ; ∈ E, then the following inference rule holds:

i ′
=⇒ i ; ⪯ wp⟦� ′

loop⟧ ([¬i] · 5)

; ⪯ wp⟦�loop⟧ (5)
Guard-

Strengthening
. (14)

Proof. The (soundness of the) proof rule in (14) is an immediate consequence of Cor. 13. We
provide in [Feng et al. 2023, Appx. C.3] an alternative proof which is trace-agnostic and thus simpler,
yet does not contribute to our argument on the tightness of the proof rule in Sect. 6.3. □

Our guard-strengthening rule asserts that a lower bound ; on wp⟦� ′
loop⟧ ([¬i] · 5) su�ces as a

lower bound on wp⟦�loop⟧ (5) provided that i ′
=⇒ i . Such guard strengthening restricts the

(reachable) state space and, consequently, (i) the modi�ed loop� ′
loop features a stronger termination

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:14 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

property (e.g., becoming AST), and (ii) both the uniform integrability of ; and the boundedness of
expectations are easier to verify. We will show that, due to these e�ects, our proof rule is

(a) general (Sect. 6.1 and 6.2): it is applicable to divergent �loop and unbounded 5 , ; ∈ E where
existing rules, e.g., Thm. 8 and 10, do not apply; even when �loop is AST, it is capable of
certifying a lower bound ; which is not uniformly integrable for�loop (thus beyond the scope
of Hark et al.’s lower induction rule [Hark et al. 2020]); moreover, it admits an orthogonal
su�cient criterion for proving uniform integrability.

(b) tight (Sect. 6.3): the error incurred by underapproximating wp⟦�loop⟧ (5) with wp⟦� ′
loop⟧

([¬i] · 5) approaches zero when i ′ approaches i appropriately; and
(c) automatable (Sect. 6.4): it is amenable to automation – modulo an appropriate strengthening

– via probabilistic model checking in case � ′
loop has a �nite state space.

Remark. The completeness of the guard-strengthening rule in (14) is evident: If ; is a lower bound on
wp⟦�loop⟧ (5), then there always existsi ′ strengtheningi such that ; is a lower bound ofwp⟦� ′

loop⟧

([¬i] · 5), as one can always choose i ′
= i yielding wp⟦� ′

loop⟧ ([¬i] · 5) = wp⟦�loop⟧ (5). This
completeness argument, however, shall not be viewed as a characterization of the generality of
our proof rule in absolute terms, as choosing i ′

= i does not turn a non-AST loop into an AST
one. We remark that characterizing the absolute generality of our proof rule is non-trivial as it
depends highly on the “quality” of guard strengthening which may in turn rely on expert knowledge.
Nonetheless, we provide useful heuristics in Sect. 6.4 for �nding a “good” strengthening. �

Remark. Our guard-strengthening rule in (14) applies also to non-probabilistic loops �loop. In this
case, the weakest preexpectation transformer degenerates to the weakest precondition transformer
of Dijkstra [1975, 1976], ; and 5 become predicates partially ordered by =⇒ , and · becomes ∧. Our
proof rule is then capable of verifying an underapproximation ; of the set of initial states on which
�loop certainly terminates in states satisfying 5 .

6.1 Application to Possibly Divergent Programs

Our guard-strengthening rule reduces the veri�cation of ; ⪯ wp⟦�loop⟧ (5) – with possibly di-
vergent �loop and possibly unbounded 5 , ; ∈ E – to that of ; ⪯ wp⟦� ′

loop⟧ ([¬i] · 5). In order to
apply existing lower induction rules to the latter, one has to prove almost-sure termination of the
modi�ed loop � ′

loop and/or boundedness of expectations. To show AST, one may apply established

techniques based on supermartingales, e.g., [Chatterjee et al. 2020; McIver et al. 2018; Moosbrugger
et al. 2021]. However, due to our guard-strengthening technique, a novel, simpler argument that
does not rely on the discovery of �ne-tuned supermartingales often su�ces to prove AST of � ′

loop:

Lemma 15 (AST Witness). Given � ′
loop = while (i ′) {� }, let)¬i′

be the looping time of � ′
loop. If

there exist # ∈ N and ? ∈ (0, 1) such that, for any initial state f ∈ Σ,

f
P

(

)¬i′
> #

)

≤ ? , (15)

then � ′
loop terminates almost-surely.

Proof (sketch). It su�ces to show that the tail probability f
P()¬i′

> =) (see, e.g., [Sankara-
narayanan 2020]), i.e., the probability that � ′

loop does not terminate within = ∈ N steps, decreases

exponentially in=. Then, by pushing= ad in�nitum, we have f
P()¬i′

< ∞) = 1−lim=→∞
f
P()¬i′

>

=) ≥ 1−0 = 1. Hence,� ′
loop terminates almost-surely. See details in [Feng et al. 2023, Appx. C.4] □

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:15

Remark. How to specify the class of loops �loop for which there exist strengthened counterparts
� ′
loop ful�lling the AST criterion in Lem. 15 is left as an interesting open question. This may also

contribute to the characterization of the absolute generality of our proof rule as discussed above. �

There are (semi-)automated approaches, e.g., [Chatterjee et al. 2016a], tailored for proving
exponentially decreasing nontermination probabilities via ranking-supermartingales. In our setting,
however, Lem. 15 is arguably simpler to verify since after strengthening the guard (by, e.g., bounding
the variables, cf. Sect. 6.4), one can usually read o� the constants # and ? in (15) directly from
the modi�ed program with (certain) bounded variables. In fact, Lem. 15 su�ces to witness AST of
the modi�ed loops in all the examples presented in this paper; moreover, it enables an additional
su�cient condition for establishing uniform integrability which is orthogonal to Thm. 9 (cf. Sect. 6.2).

Example 16 (1-D Biased Random Walk on Z [McIver et al. 2018]). Recall the example in Sect. 2:

�1dbrw : while (= > 0) {= ≔ = − 1 [1/3] = ≔ = + 1 } .

This loop terminates as soon as it reaches a state f with f (=) ≤ 0. We are interested in establishing
non-trivial lower bounds on the termination probability of �1dbrw, i.e., on wp⟦�1dbrw⟧ (5) with
5 = 1. However, none of the existing proof rules applies: (i)�1dbrw is not AST due to its biased nature
(see, e.g., [McIver et al. 2018]), and thus Hark et al.’s lower induction [Hark et al. 2020] does not
apply; moreover, (ii) it makes no sense to apply McIver and Morgan’s lower induction [McIver and
Morgan 2005] as having (a lower bound on) the termination probability – the quantity we aim to
infer – is in turn one of the prerequisites for applying the rule (cf. Thm. 10).

We now show how our guard-strengthening rule can be used to verify non-trivial lower bounds
on wp⟦�1dbrw⟧ (1). To this end, we strengthen the guard (= > 0) of �1dbrw to i"

= (0 < = < ")
for any �xed" ∈ N, and hence obtain a modi�ed loop which di�ers from �1dbrw only in the guard:

�"
1dbrw : while (0 < = < ") {= ≔ = − 1 [1/3] = ≔ = + 1 } .

Our proof rule asserts that, for any �xed " ∈ N, a lower bound on wp⟦�"
1dbrw⟧ ([= ≤ 0] · 1)

su�ces as a lower bound on wp⟦�1dbrw⟧ (1). Since �"
1dbrw terminates after at most" − 1 steps of

consecutively moving to the right with probability (2/3)"−1, we have f
P
(

)¬i"
> "

)

< 1− (2/3)"−1

for any initial state f (=) ∈ Z. Thus, by Lem. 15, �"
1dbrw terminates almost-surely. We can therefore

try to apply Hark et al.’s lower induction for a lower bound on wp⟦�"
1dbrw⟧ ([= ≤ 0] · 1). Let

;" = [= < 0] + [0 ≤ = ≤ "] ·
(

(1/2)= − (1/2)"
)

.

It is straightforward to check (see [Feng et al. 2023, Appx. D.1]) that, for any �xed" ∈ N, ;" is a
subinvariant, i.e.,

;" ⪯ Φ
"
6 (;")

where 6 = [= ≤ 0] · 1 is the restricted postexpectation, and Φ
"
6 is the characteristic function

of �"
1dbrw with respect to 6. Furthermore, ;" is bounded from above by 1, and thus is uniformly

integrable for �"
1dbrw due to condition (c) in Thm. 9. Consequently, we have

;" ⪯ wp⟦�"
1dbrw⟧ ([= ≤ 0] · 1) [by Hark et al.’s induction, cf. Thm. 8]

⪯ wp⟦�1dbrw⟧ (1) . [by guard-strengthening rule, cf. Thm. 14]

We therefore conclude that, for any �xed " ∈ N, ;" is a lower bound on wp⟦�1dbrw⟧ (1). In
particular, by pushing" ad in�nitum – to obtain the tightest possible bound; this step is however
not necessary to establish a valid lower bound – we have

wp⟦�1dbrw⟧ (1) ⪰ lim
"→∞

;" = [= < 0] + [= ≥ 0] · (1/2)= ,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:16 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

namely, ;∞ = [= < 0] + [= ≥ 0] · (1/2)= is a lower bound on wp⟦�1dbrw⟧ (1). In fact, for this example,
one can verify (cf. [Feng et al. 2023, Appx. D.1]) that ;∞ is a superinvariant, i.e., Φ5 (;∞) ⪯ ;∞, where
Φ5 is the characteristic function of �1dbrw w.r.t. postexpectation 5 = 1. Thus, by Park induction (cf.
Thm. 5), ;∞ is also an upper bound on wp⟦�1dbrw⟧ (1). We can thus claim that the exact least �xed
point of Φ5 , i.e., the exact termination probability of �1dbrw starting from initial position =, is

wp⟦�1dbrw⟧ (1) = ;∞ = [= < 0] + [= ≥ 0] · (1/2)= .

Finally, we remark that the reasoning process in this example applies to a more general form
of one-dimensional random walk with parametrized biased probability ? ∈ [0, 1/2), whose exact
termination probability can be shown to be [= < 0] + [= ≥ 0] · (?/1−?)= . �

Next, we show via the following example that even when the targeted loop �loop almost-surely
terminates, a genuine lower bound on wp⟦�loop⟧ (5) may not be uniformly integrable for �loop,
thereby staying out-of-reach by Hark et al.’s lower induction rule; our guard-strengthening rule,
however, is capable of certifying such a lower bound.

Example 17 (Bernoulli’s St. Petersburg Paradox [Bernoulli 1954]). Consider the following loop
�pd modelling a lottery game via fair-coin tosses: The stake 1 ∈ Z>0 is doubled every time heads
appears; the �rst time tails occurs, the game ends and the player wins all the stake in the pot:

�pd : while (0 = 1) { 0 ≔ 0 [1/2] 1 ≔ 2 · 1 } .

We are interested in establishing non-trivial lower bounds on the expected payo� of the lottery, i.e.,
lower bounds onwp⟦�pd⟧ (5) with 5 = 1. Since�pd terminates by setting 0 to 0 with probability 1/2,
we have f

P()0≠1
> 1) < 1/2 for any initial state f . Thus, by Lem. 15, �pd terminates almost-surely.

However, the genuine lower bound ;∞ = ([0 ≠ 1] · 1 + [0 = 1] · ∞) ⊀≺ ∞ – which we ultimately
aim to verify – is not uniformly integrable for �pd, and thus cannot be addressed by Hark et al.’s
lower induction rule (see a detailed argument in [Hark et al. 2019, Appx. A]).
To apply our new proof rule, we strengthen the guard (0 = 1) of �pd to i"

= (0 = 1 ∧ 1 < ")
for any �xed" ∈ Z>0, and thereby obtain the modi�ed loop:

�"
pd : while (0 = 1 ∧ 1 < ") { 0 ≔ 0 [1/2] 1 ≔ 2 · 1 } .

Our proof rule asserts that, for any �xed" ∈ Z>0, a lower bound on wp⟦�"
pd⟧ ([0 ≠ 1] · 1) su�ces

as a lower bound on wp⟦�pd⟧ (1). Program �"
pd is clearly AST (by the same argument as for �pd);

in fact, its looping time)¬i"
is certainly bounded by ⌈log2"⌉, and thus by condition (a) in Thm. 9,

any expectation ℎ ≺≺ ∞ is uniformly integrable for �"
pd (as wp⟦�⟧

= (ℎ) ≺≺ ∞ for any = ∈ N is

vacuously satis�ed by ℎ ≺≺ ∞ and loop-free body � , which is the case for �"
pd). Let

;" = [0 ≠ 1] · 1 +
∑ ⌈log2 " ⌉

8=1
[0 = 1 ∧ ("/28 ≤ 1 < "/28−1)] · 8 · 1/2 .

It is straightforward to check (see [Feng et al. 2023, Appx. D.2]) that, for any �xed" ∈ Z>0, ;" is a
subinvariant, i.e.,

;" ⪯ Φ
"
6 (;")

where 6 = [0 ≠ 1] · 1 is the restricted postexpectation, and Φ
"
6 is the characteristic function of �"

pd

with respect to 6. Since ;" ≺≺ ∞ is uniformly integrable for �"
pd, by Thm. 8 and 14, we have

;" ⪯ wp⟦�"
pd⟧ ([0 ≠ 1] · 1) ⪯ wp⟦�pd⟧ (1)

for any �xed" ∈ Z>0. It follows that, when" tends to in�nity,

wp⟦�pd⟧ (1) ⪰ lim
"→∞

;" = [0 ≠ 1] · 1 + [0 = 1] · ∞ = ;∞ .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:17

In analogy to Exmp. 16, one can further show that ;∞ su�ces as a superinvariant and ultimately
conclude that wp⟦�pd⟧ (1) = ;∞, that is, the exact expected value of 1 upon termination. �

6.2 Orthogonal Su�icient Condition for Uniform Integrability

Exmp. 16 and 17 demonstrate how we can certify lower bounds on wp⟦�loop⟧ (5) leveraging
existing su�cient criteria for uniform integrability (cf. Thm. 9) for the modi�ed loop� ′

loop. The fact

that � ′
loop often features a strong and easily checkable termination property (cf. Lem. 15) enables

an alternative su�cient condition for establishing uniform integrability:

Theorem 18 (Orthogonal Su�cient Criterion for Uniform Integrability). Suppose � ′
loop =

while (i ′) {� } satis�es the AST condition in Lem. 15. Then, an expectation ℎ ≺≺ ∞ is uniformly
integrable for � ′

loop if (i) �
′
loop has the bounded update property

10, i.e., there exists 2 ∈ R≥0 such that

for any f ∈ Σ, fP(∀= ∈ N : |-=+1 −-= | ≤ 2) = 1, and (ii) ℎ is bounded by a polynomial expectation11.

The su�cient criterion for uniform integrability in Thm. 18 is orthogonal to those in Thm. 9,
in particular, to condition (b) thereof: Our new su�cient condition leverages the fact that � ′

loop

with a strengthened guard often features a strong and easily checkable termination property (cf.
Lem. 15); it is con�ned to loops with the bounded update property, yet relaxes the conditional
di�erence boundedness of ℎ to the polynomial boundedness of ℎ. Our new su�cient criterion is
usually easier to check than condition (b) in Thm. 9 in the sense that (i) in case� ′

loop has a loop-free

body, one can simply read o� the bounded update property from the syntax of � ′
loop, and (ii) any

(piece-wise) polynomial expectation ℎ ful�ls the polynomial boundedness condition. The following
example demonstrates a scenario where none of the conditions in Thm. 9 su�ces to show uniform
integrability, but our (orthogonal) su�cient condition in Thm. 18 does.

Example 19 (1-D Symmetric Random Walk with Bounded Updates). Consider the following
loop �bu modelling a symmetrized 1-D random walk on Z, where we additionally increase (resp.
decrease) the value of 1 ∈ R≥0 by 2 along every left (resp. right) move with probability 1/2:

�bu : while (= > 0) { {= ≔ = − 1 # 1 ≔ 1 + 2} [1/2] {= ≔ = + 1 # 1 ≔ 1 − 2} } .

We are interested in certifying non-trivial lower bounds on the expected value of1 upon termination,
i.e., lower bounds onwp⟦�bu⟧ (5) with 5 = 1. Notice that�bu exhibits exactly the same termination
behavior as the standard 1-D symmetric random walk [McIver et al. 2018], namely, �bu terminates
almost-surely yet with an in�nite expected looping time. Moreover, the candidate lower bound
;∞ = [= < 0] · 1 + [= ≥ 0] · (1 + 2 · =) – which we ultimately aim to verify – is unbounded, thereby
out-of-reach by Hark et al.’s lower induction (as Thm. 9 does not su�ce to show u.i. of ;∞).
To apply our new proof rule, we strengthen the guard (= > 0) of �bu to i"

= (0 < = < ") for
any �xed" ∈ Z>0, and thereby obtain the modi�ed loop:

�"
bu : while (0 < = < ") { {= ≔ = − 1 # 1 ≔ 1 + 2} [1/2] {= ≔ = + 1 # 1 ≔ 1 − 2} } .

Our proof rule asserts that, for any �xed" ∈ Z>0, a lower bound on wp⟦�"
bu⟧ ([= ≤ 0] · 1) su�ces

as a lower bound on wp⟦�bu⟧ (1). Let

;" = [= < 0] · 1 + [0 ≤ = ≤ "] · (1 + 2 · =) · (1 − =/") .

One can readily verify that, for any �xed " ∈ Z>0, ;" is a subinvariant (see [Feng et al. 2023,
Appx. D.3]). Since �"

bu terminates after at most " − 1 steps of consecutively increasing = with

10The bounded update property has been used to analyze expected costs for nondeterministic probabilistic programs [Wang
et al. 2019]; it subsumes the class of constant probability programs [Giesl et al. 2019].
11One can replace (ii) with (ii’) ℎ is bounded by a piece-wise polynomial expectation, and the theorem still holds.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:18 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

probability (1/2)"−1, we have f
P
(

)¬i"
> "

)

< 1 − (1/2)"−1 for any initial state f (=) ∈ Z. Thus, by
Lem. 15, �"

bu terminates almost-surely. Nevertheless, still none of the conditions in Thm. 9 su�ces to

show that ;" is uniformly integrable for�"
bu: the looping time)¬i"

is not almost-surely bounded, ;"
is not bounded due to unbounded variable 1 thereof, and ;" is not conditionally di�erence bounded
(see [Feng et al. 2023, Appx. D.3]).

However, it is evident that our (orthogonal) su�cient criterion in Thm. 18 is ful�lled, thereby
witnessing uniform integrability of ;" for �"

bu: �
"
bu has the bounded update property, as it has

a loop-free body with only bounded updates; moreover, ;" meets the polynomial boundedness
condition as, for any �xed " ∈ Z>0, ;" is a piece-wise polynomial in = and 1. Consequently, by
Thm. 8 and 14, we have, for any �xed" ∈ Z>0,

;" ⪯ wp⟦�"
bu⟧ ([= ≤ 0] · 1) ⪯ wp⟦�bu⟧ (1) .

We can eventually certify the lower bound ;∞ by pushing" ad in�nitum:

wp⟦�bu⟧ (1) ⪰ lim
"→∞

;" = [= < 0] · 1 + [= ≥ 0] · (1 + 2 · =) = ;∞ . �

6.3 Tightness of the Guard-Strengthening Rule

Next, we discuss the error incurred by our guard-strengthening rule, i.e., the di�erence between
wp⟦�loop⟧ (5) and the established lower bound ; as per Thm. 14. To this end, observe that

wp⟦�loop⟧ (5) − ; =

(

wp⟦�loop⟧ (5) − wp⟦� ′
loop⟧ ([¬i] · 5)

)

︸ ︷︷ ︸

error incurred by guard strengthening, ⪰ 0

+
(

wp⟦� ′
loop⟧ ([¬i] · 5) − ;

)

︸ ︷︷ ︸

error incurred in the reduced problem, ⪰ 0

(16)

where, on the right-hand side, the �rst summand encodes the error inherently caused by our
guard-strengthening technique, whereas the second summand accounts for the error in under-
approximating wp⟦� ′

loop⟧ ([¬i] · 5) by ; , which is independent of the proof rule itself. In what
follows, we quantify the �rst summand, i.e., the error incurred by strengthening the guard.

Lemma 20. Given loops �loop = while (i) {� } and � ′
loop = while (i ′) {� }, suppose i ′

=⇒ i ,

then, for any postexpectation 5 ∈ E,

wp⟦�loop⟧ (5) − wp⟦� ′
loop⟧ ([¬i] · 5) ⪯ wp⟦� ′

loop⟧ ([i]) · sup
f |=¬i′∧i

wp⟦�loop⟧ (5) (f) .

Proof (sketch). As shown in the proof of Cor. 13 (cf. [Feng et al. 2023, Appx. C.2]), we have

wp⟦�loop⟧ (5) − wp⟦� ′
loop⟧ ([¬i] · 5) = _f.

∫

�

5�loop d
(
f
P
)

.

It thus su�ces to bound the integral above, which can be achieved by examining di�erent fragments
(witnessed by guard violations) of traces in �. See details in [Feng et al. 2023, Appx. C.6]. □

An immediate consequence of Lem. 20 yields the tightness of our guard-strengthening rule, that
is, the error incurred by underapproximating wp⟦�loop⟧ (5) by wp⟦� ′

loop⟧ ([¬i] · 5) approaches

zero when i ′ approaches i in an appropriate manner:

Theorem 21 (Tightness of Guard Strengthening). Given �loop = while (i) {� }, suppose there
exists a sequence of guards {i<}<∈N such that ∀< ∈ N : i< =⇒ i . Let �<

loop = while (i<) {� }.

If one of the following two conditions holds:

(a) lim<→∞ supf |=¬i<∧i wp⟦�loop⟧ (5) (f) < ∞ and lim<→∞ wp⟦�<
loop⟧ ([i]) = 0,

(b) lim<→∞ supf |=¬i<∧i wp⟦�loop⟧ (5) (f) = 0,12

12Note that wp⟦�<
loop⟧ ([i]) maps a state to a probability, and thus lim<→∞ wp⟦�<

loop⟧ ([i]) ⪯ 1 ≺≺ ∞.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:19

then, the error incurred by strengthening i with i< converges to zero as< tends to ∞, i.e.,

wp⟦�loop⟧ (5) = lim
<→∞

wp⟦�<
loop⟧ ([¬i] · 5) .

Remark. There are cases where both conditions (a) and (b) in Thm. 21 do not hold: Recall the 1-D
random walk given in Sect. 2 and consider, for instance, the sequence of guards {i<}<∈N with
i< = (0 < = < 9 + (2<−1)/2<). We have that lim<→∞ i< = (0 < = < 10) and ∀< ∈ N : i< =⇒ i .
However, one can verify that neither (a) nor (b) holds (as {i<}<∈N do not approach i at all). �

Conditions (a) and (b) in Thm. 21 can be checked by certifying upper bounds on the weakest
preexpectations therein via, e.g., Park induction, as demonstrated by the following example.

Example 22. Reconsider the probabilistic loops �1dbrw and �"
1dbrw with postexpectation 5 = 1 in

Exmp. 16. We have shown – with the aid of Park induction – that ;∞ = [= < 0] + [= ≥ 0] · (1/2)=

coincides with the exact termination probability of �1dbrw starting from initial position =, i.e.,
wp⟦�1dbrw⟧ (1) = ;∞ ≺≺ ∞. Thus, by (16), one can already conclude the tightness, namely,

wp⟦�1dbrw⟧ (1) = lim
"→∞

wp⟦�"
1dbrw⟧ ([= ≤ 0] · 1) .

We now show that the same conclusion can be drawn via condition (b) in Thm. 21. Observe that

lim
"→∞

sup
f |=¬i"∧i

wp⟦�1dbrw⟧ (1) (f) = lim
"→∞

sup
f |==≥"

wp⟦�1dbrw⟧ (1) (f)

≤ lim
"→∞

sup
f |==≥"

([= < 0] + [= ≥ 0] · (1/2)=) (f)

[by wp⟦�1dbrw⟧ (1) ⪯ ;∞]

= lim
"→∞

sup
f |==≥"

((1/2)=) (f)

= lim
"→∞

(1/2)" = 0 .

Thus, by condition (b) in Thm. 21, the error incurred by strengthening i with i" converges to
zero as" tends to∞. �

6.4 On Automation of the Guard-Strengthening Rule

We brie�y discuss the potential to automate our guard-strengthening rule for �nding – rather than
just verifying – lower bounds on weakest preexpectations. Such automation needs to address two
questions: (i) how to �nd a “good” guard strengthening, i.e., i ′

=⇒ i? (ii) how to generate a
non-trivial lower bound for the modi�ed loop � ′

loop?

How to Find a “Good” Strengthening? In terms of logical strength, a good modi�ed guard i ′

cannot be too strong, otherwise only trivial lower bound can be derived (think of i ′
= false);

it cannot be too weak either, otherwise the resulting loop � ′
loop may not ful�l our conditions on

termination (cf. Lem. 15) and uniform integrability (cf. Thm. 9 and 18). In general, it is hard to �nd –
or even to characterize– the “best” strengthening i ′

=⇒ i , however, a naive strengthening pattern
by simply bounding a subsetV ⊆ Vars of program variables turns out to be rather e�ective, i.e.,

i ′
= i ∧

∧

G ∈V
G ⋄ 2 ,

where 2 is a constant and ⋄ ∈ {<, >, ≤, ≥,=}. The subset V ⊆ Vars shall be selected in a way such
that � ′

loop meets our conditions on termination and uniform integrability. Such a strengthening

pattern is indeed heuristic, but it su�ces to produce good strengthened guards i ′ (in the sense
discussed above) for all the examples presented in this paper – except for those in Sect. 8 where we

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:20 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

address limitations of the naive strengthening pattern. Investigating a potentially more advanced
and clever guard-strengthening strategy is subject to future work.

How to Generate a Non-trivial Lower Bound for � ′
loop? Due to the nice properties of � ′

loop on, e.g.,

termination, the desired lower bounds on wp⟦� ′
loop⟧ ([¬i] · 5) can be discovered by leveraging

various (semi-)automated techniques for synthesizing lower bounds on least �xed points. These
include – in the probabilistic setting – techniques based on constraint solving [Chen et al. 2015;
Feng et al. 2017; Katoen et al. 2010] and invariant learning [Bao et al. 2022] for generating lower
bounds on weakest preexpectations of probabilistic programs, recurrence solving [Bartocci et al.
2019] for synthesizing moment-based invariants of (solvable) probabilistic loops, and various forms
of value iteration [Baier et al. 2017; Hartmanns and Kaminski 2020; Quatmann and Katoen 2018]
for determining reachability probabilities in Markov models. In particular, we identify a special
case where computing the exact least �xed point can be done by probabilistic model checking:

Theorem 23 (Reduction to Probabilistic Model Checking [Baier and Katoen 2008, Chap. 10]).
Given � ′

loop = while (i ′) {� } and postexpectation 6 ∈ E, if � ′
loop has a �nite set of reachable states,

then wp⟦� ′
loop⟧ (6) can be computed exactly by solving a system of linear equations.

Thm. 23 holds since a �nite-state loop� ′
loop can be unrolled into a �nite-state Markov chainM, and

wp⟦� ′
loop⟧ (6) coincides with the unique solution to a linear-equation system induced by M with

rewards modelling 6 [Baier and Katoen 2008, Chap. 10], which can be computed symbolically by
probabilistic model checkers, e.g., Storm [Dehnert et al. 2017], PRISM [Kwiatkowska et al. 2002].
The combination of our guard-strengthening rule with Thm. 23 facilitates inferring quantitative

properties of in�nite-state probabilistic programs by model checking �nite-state probabilistic models:

Example 24 (3-D Symmetric RandomWalk on Z3 [McCrea and Whipple 1940; Montroll 1956]).
Consider the loop �3dsrw modelling a symmetric random walk on the 3-D lattice over Z3:

�3dsrw : while (G ≠ 0 ∨ ~ ≠ 0 ∨ I ≠ 0) {

G ≔ G − 1 ⊕ G ≔ G + 1 ⊕ ~ ≔ ~ − 1 ⊕ ~ ≔ ~ + 1 ⊕ I ≔ I − 1 ⊕ I ≔ I + 1 }

where iterated ⊕ is shorthand for discrete uniform choice (in this case, with probability 1/6 each).
The random nature underneath�3dsrw is fundamentally di�erent from its 1- and 2-D counterparts:

Pólya [1921] proved that the probability P that such a random walk returns to the origin at (0, 0, 0)
is strictly less than 1, indicating that �3dsrw does not terminate almost-surely. More precisely, the
termination probability of �3dsrw starting from any neighbor location of the origin is

P = 1 −

(

3

(2c)3

∫ c

−c

∫ c

−c

∫ c

−c

dG d~ d I

3 − cosG − cos~ − cos I

)−1

= 0.3405373296 . . .

which is known as one of Pólya’s random walk constants. To the best of our knowledge, existing
techniques cannot cope with the veri�cation of �3dsrw due to its complex nature of divergence.
We now show how our guard-strengthening rule can be used to automatically derive lower

bounds on the termination probability P of �3dsrw (i.e., with postexpectation 5 = 1) by leveraging
probabilistic model checking. To this end, we �rst bound the possible positions (G,~, I) with a cube
of side-length 2 ·" with �xed" ∈ Z>0, and thereby obtain the modi�ed loop:

�"
3dsrw : while ((G ≠ 0 ∨ ~ ≠ 0 ∨ I ≠ 0) ∧ |G | < " ∧ |~ | < " ∧ |I | < ") {

G ≔ G − 1 ⊕ G ≔ G + 1 ⊕ ~ ≔ ~ − 1 ⊕ ~ ≔ ~ + 1 ⊕ I ≔ I − 1 ⊕ I ≔ I + 1 } .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:21

●

●

●

●
●

● ●

■

■

■

■
■

■
■ ■

▲

▲

▲

▲
▲

▲
▲ ▲

● σ0 = (1,0,0)

■ σ0 = (1,1,0)

▲ σ0 = (1,1,1)

0 5 10 15 20 25 30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M

P
ro
b
a
b
il
it
y

P

Fig. 6. Lower bounds obtained by PRISM on the
termination probability of �3dsrw in Exmp. 24
on initial position f0. P ≈ 0.34 marks the true
termination probability when starting from
a neighbor location of the origin, e.g., f0 =

(1, 0, 0); the true termination probabilities on
other initial positions are unknown.

Observe that, starting from any initial position in the
lattice, the modi�ed random walk �"

3dsrw can reach
only a �nite number of positions, i.e., it either (i) ter-
minates by escaping the cube or returning to the origin,
or (ii) keeps strolling within the cube. Thus, by the con-
nection in Thm. 23, the reduced weakest preexpecta-
tion wp⟦�"

3dsrw⟧ ([G = 0 ∧ ~ = 0 ∧ I = 0] · 1) – which
underapproximates the termination probability P of
�3dsrw – can be computed symbolically by o�-the-shelf
probabilistic model checkers. For instance, Fig. 6 de-
picts such underapproximations produced by PRISM

[Kwiatkowska et al. 2002] under di�erent choices of"
(cf. the - -axis). In particular, Fig. 6 con�rms our previ-
ous claim on tightness (cf. Thm. 21)13: as" gets larger,
the strengthening gets weaker, thus yielding tighter
lower bounds on the actual termination probability P.
Fig. 6 also con�rms our intuition that the further the walker is away from the origin, the lower
probability returns the walker back to the origin. �

Remark. In the aforementioned special case where our problem is reducible to model checking
�nite-state discrete-time Markov chains, our guard-strengthening rule acts analogously (yet on
the source-code level) to the so-called partial exploration technique [Brázdil et al. 2014] estab-
lished in probabilistic model checking. The latter constructs a sequence of increasingly precise
approximations (lower and upper bounds on reachability probabilities) by (partially) exploring
an incremental subset of the state space. This procedure yields a similar e�ect as we gradually
weaken our strengthening to obtain tighter and tighter lower bounds. Since we always infer safe
underapproximations, our technique may be used to generate critical subsystems [Ábrahám et al.
2014] serving as counterexamples to quantitative properties in probabilistic veri�cation.

7 CASE STUDIES

In this section, we present a few non-trivial examples to demonstrate the e�ectiveness of our guard-
strengthening rule in establishing lower bounds on weakest preexpectations. These examples
include probabilistic programs with continuous distributions, nested loops, and state-dependent
probabilities, as well as a real-world randomized networking protocol. These are all in�nite-state
programs, for some of which our proof rule can be used to prove almost-sure termination by
certifying 1 as a lower bound on the termination probability.

Example 25 (Continuous Sampling). Consider the following loop �cs modelling a 1-D random
walk where the branching probability is drawn form a continuous uniform distribution over (0, 1).

�cs : while (= > 0) {

? :≈ uniform (0, 1) #

{= ≔ = − 1 # 1 ≔ 1 + uniform (0, 1) } [?] {= ≔ = + 1 # 1 ≔ 1 − uniform (0, 1) } } .

We aim to verify ;∞ = [= < 0] ·1 + [= ≥ 0] · (1 + 1/2 ·=) as a lower bound on the expected value of 1
upon termination, i.e., ;∞ ⪯ wp⟦�cs⟧ (1). Observe that ;∞ is unbounded; moreover,�cs behaves – in

13A rigorous proof of tightness in this example requires �nding an appropriate superinvariant – like we did in Exmp. 22, yet
now for the 3-D random walk – which is extremely hard and beyond the scope of this paper.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:22 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

expectation – as the standard 1-D symmetric random walk [McIver et al. 2018] and thus terminates
almost-surely yet with an in�nite expected looping time. Existing proof rules hence do not apply.
We now strengthen the guard (= > 0) of �cs to i"

= (0 < = < ") for any �xed " ∈ Z>0, and
denote the so-obtained loop by �"

cs . It can be shown (cf. [Feng et al. 2023, Appx. D.4]) that

;" = [= < 0] · 1 + [0 ≤ = ≤ "] · (1 + 1/2 · =) · (1 − =/")

is a subinvariant, i.e., ;" ⪯ Φ
"
6 (;"), where 6 = [= ≤ 0] · 1 is the restricted postexpectation, and

Φ
"
6 is the characteristic function of �"

cs with respect to 6. Furthermore, �"
cs terminates after at

most" − 1 steps of consecutively increasing = with probability at least (1/2 · 1/2)"−1 (i.e., by �rst

drawing ? ∈ (1/2, 1) and then picking the right branch), we have f
P
(

)¬i"
> "

)

< 1 − (1/4)"−1

for any initial state f (=) ∈ Z. Thus, by Lem. 15, �"
cs terminates almost-surely. Moreover, �"

cs is
uniformly integrable for �"

cs as witnessed by our new su�cient condition in Thm. 18. It follows
that ;" ⪯ wp⟦�"

cs⟧ ([= ≤ 0] · 1) ⪯ wp⟦�cs⟧ (1) for any �xed" ∈ Z>0. We can eventually certify
the lower bound ;∞ by pushing" ad in�nitum:

wp⟦�cs⟧ (1) ⪰ lim"→∞ ;" = [= < 0] · 1 + [= ≥ 0] · (1 + 1/2 · =) = ;∞ . �

Example 26 (Nested Loops). Consider the program �nl with two nested loops (the outer loop
alters = ∈ Z based on the outcome of the inner loop; 0, 1 ∈ Z>0 are parameters satisfying 0 > 114):

�nl : while (= > 0) {

: ≔ = #

while (−0 < : − = < 1) { : ≔ : − 1 [1/2] : ≔ : + 1 } #

if (: < =) {= ≔ = − 1 } else {= ≔ = + 1 } } .

Suppose we are interested in proving a non-trivial lower bound on the termination probability
wp⟦�nl⟧ (1). This problem is out-of-reach by existing proof rules as �nl is not AST. To apply our
proof rule, we strengthen the guard of the outer loop to i"

= (0 < = < ") for any �xed" ∈ Z>0.
The modi�ed program �"

nl is AST due to a similar argument per Lem. 15. Let

;" = [= < 0] + [0 ≤ = ≤ "] ·
(

(1/0)= − (1/0)"
)

.

Since ;" is bounded, we know by Thm. 8 and 14 that ;" underapproximates the termination
probability of �nl if ;" is a subinvariant of �"

nl . In that case, we have proved the lower bound ;∞:

wp⟦�nl⟧ (1) ⪰ lim
"→∞

;" = [= < 0] + [= ≥ 0] · (1/0)= ≜ ;∞ .

We now show that ;" is indeed a subinvariant of �"
nl , i.e., ;" ⪯ Φ

"
6 (;"), where 6 = [= ≤ 0] · 1

is the restricted postexpectation, and Φ
"
6 is the characteristic function of �"

nl w.r.t. 6. Checking

subinvariance in this case is more involved due to the nested feature of �"
nl : one also has to reason

about lower bounds for the inner loop w.r.t. a speci�c postexpectation depending on ;" . More
precisely, let�"

body and�
"
inner denote the loop body and the inner loop of�"

nl , respectively. We have

Φ
"
6 (;") = [= ≤ 0 ∨ = ≥ "] · [= ≤ 0] + [0 < = < "] · wp⟦�"

body⟧ (;")

= [= ≤ 0] + [0 < = < "] ·

wp⟦: ≔ =⟧
(

wp⟦�"
inner⟧ ([: < =] · ;" [=/= − 1] + [: ≥ =] · ;" [=/= + 1])

)

.

14The restriction 0 > 1 makes�nl a non-AST program.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:23

By combining the fact (see [Feng et al. 2023, Appx. D.5]) that, for any bounded postexpectation ℎ,

wp⟦�"
inner⟧ (ℎ) ⪰ [(: − = < −0) ∨ (: − = > 1)] · ℎ +

[−0 ≤ : − = ≤ 1] ·

(

1 − (: − =)

1 + 0
· ℎ [:/= − 0] +

(: − =) + 0

1 + 0
· ℎ [:/= + 1]

)

,

we can conclude the subinvariance of ;" , i.e., ;" ⪯ Φ
"
6 (;") (detailed in [Feng et al. 2023, Appx. D.5]).

This completes our veri�cation of the lower bound ;∞. �

Example 27 (Fair-in-the-Limit Random Walk [McIver et al. 2018]). Consider the following
loop ��rw modelling a biased random walk on Z, where in particular, the probability of taking the
next move depends on the current position of the walker:15

��rw : while (= > 0) {= ≔ = − 1 [=+1/2=+1] = ≔ = + 1 } .

The further the walker moves to the right, the more fair becomes the random walk as =+1/2·=+1
approaches 1/2 asymptotically. We show how our guard-strengthening rule can be used to prove
almost-surely termination of ��rw by certifying 1 as a lower bound on wp⟦��rw⟧ (1). Similarly,
we strengthen the guard (= > 0) to i"

= (0 < = < ") for any �xed " ∈ Z>0 and denote the
so-obtained loop by �"

�rw. Since �
"
�rw terminates after at most" − 1 steps of consecutively moving

to the left with probability at least (1/2)"−1, �"
�rw terminates almost-surely by Lem. 15. Let

;" = [= < 0] + [0 ≤ = ≤ "] · (1 − =/") .

;" is bounded from above by 1, thus is uniformly integrable for �"
�rw by condition (c) in Thm. 9.

Furthermore, ;" is a subinvariant since

Φ6 (;") = [= ≤ 0 ∨ = ≥ "] · [= ≤ 0] + [0 < = < "] ·

(

= + 1

2= + 1
· ;" [=/= − 1] +

=

2= + 1
· ;" [=/= + 1]

)

= [= ≤ 0 ∨ = ≥ "] · [= ≤ 0] + [0 < = < "] ·

(

= + 1

2= + 1
·
" − = + 1

"
+

=

2= + 1
·
" − = − 1

"

)

= [= ≤ 0] + [0 < = < "] ·

(

1 −
=

"
+

1

(2= + 1) ·"

)

⪰ ;" ,

where 6 = [= ≤ 0] · 1 is the restricted postexpectation, and Φ"
6 is the characteristic function of�"

�rw
with respect to 6. This implies ;" ⪯ wp⟦��rw⟧ (1), i.e., ;" is a lower bound on the termination
probability of ��rw for any �xed" ∈ Z>0. In particular, when" approaches in�nity, we have

wp⟦��rw⟧ (1) ⪰ lim
"→∞

;" = 1 .

We can thus conclude that ��rw terminates almost-surely. �

Example 28 (Zeroconf Protocol [Bohnenkamp et al. 2003]). Consider the loop �zc encoding the
randomized IPv4 Zeroconf protocol (parameterized in #) for self-con�guring IP network interfaces:

�zc : start = 1 # established = 0 # probe = 0 #

while (start ≤ 1 ∧ established ≤ 0 ∧ probe < # ∧ # ≥ 4) {

if (start = 1) {

{ start ≔ 0 } [0.5] { start ≔ 0 # established ≔ 1 } }

else { { probe ≔ probe + 1 } [0.001] { start ≔ 1 # probe ≔ 0 } } } .

15The loop remains AST if we replace the biased probability =+1/2=+1 by =/2=+1. However, in this case, one needs a more
advanced subinvariant in order to certify AST of the loop. See, e.g., a proof using harmonic numbers in [McIver et al. 2018].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:24 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

This program is intended for providing a convenient way to analyze the probability that an unused
IP address is successfully assigned to a host that is newly connected to a network of< existing
devices: Once being connected, the host �rst randomly selects an IP address from a pool of =
available addresses. With probability </= (instantiated as 0.5), this address is already in use; with
probability 1 −</=, the chosen address is unused and thus the IP connection can be established
(signi�ed by terminating with established = 1). For the former case, the host broadcasts a “probe”
message to other devices in the network asking whether the chosen IP address is already taken; If
the probe is received by a device that already uses the address, it replies with a message indicating
so. After receiving this message, the host to be con�gured restarts.16 The probability 0.001 in the
else-statement encodes the probability of message loss (for probe or reply). To increase reliability,
the host is required to send multiple probes (upper-bounded by #). In fact, �zc encodes an in�nite
family of Markov chains (cf. [Baier and Katoen 2008, Exmp. 10.5]) by parameterizing # , and thus
cannot be handled by probabilistic model checking.

We are interested in verifying a non-trivial lower bound 0.99999999999 on the probability P that,
starting from a state satisfying the loop guard,�zc terminates in a state with established = 1. We do
so by trying to synthesize a subinvariant justifying this lower bound using the recently developed
tool cegispro2 [Batz et al. 2023] which automates Hark et al.’s sound lower induction rule [Hark
et al. 2020]. Unfortunately, cegispro2 failed in this case (timeout in 20 minutes). However, by
strengthening the loop guard with upper bounds on # , e.g., # ≤ 10, and applying our proof rule,
cegispro2 found a piece-wise linear subinvariant (in less than a second; omitted due to limited
space) that su�ces to certify 0.99999999999 as a lower bound on P. Overall, this demonstrates the
potential of our proof rule to enable verifying lower bounds via automated techniques for practical
randomized algorithms that are otherwise out-of-reach. �

Our proof rule applies further to a few extra case studies from the Quantitative Veri�cation
Benchmark Set [Hartmanns et al. 2019], including the (in�nite family of) Bounded Retransmission
protocol, the (parametrized) Rabin Mutual Exclusion algorithm, and the Coupon Collectors. These
case studies are not included because they either do not bring extra insights over the Zeroconf
protocol or can already be tackled by existing techniques. The main challenges of pursuing a wider
range of real randomized algorithms are (i) to �nd good guard strengthening (cf. Sect. 8 below) and,
in some cases, (ii) to �nd subinvariants certifying the given lower bounds. We plan to address these
challenges by exploiting the potential for automating our proof rule as discussed in Sect. 6.4.

8 LIMITATIONS OF THE GUARD-STRENGTHENING RULE

There are interesting divergent programs for which the proposed guard-strengthening principle is
insu�cient or inadequate. We address such limitations by means of two examples.

The following example demonstrates the case where the naive strengthening heuristic is insu�-
cient, yet a more advanced strengthening strategy su�ces to establish non-trivial lower bounds.

Example 29 (2-D Discrete Spiral). Consider the probabilistic program

G ≔ 0 # ~ ≔ 0 # �ag ≔ 0 #

while
(

(G − 1)2 + (~ − 1)2 < 4
)

{

{ G ≔ −1 # ~ ≔ −1 } [|G−1 |/4] {

if (�ag) {~ ≔ (3−~)/2 } else { G ≔ (3−G)/2 } # �ag ≔ 1 − �ag } } .

16The program�zc is an abstract model of the actual protocol in the sense that�zc abstracts away the need for broadcasting
probe messages when the right branch of the if-statement is executed (in this case, no reply message will be sent anyway).
Such an abstraction does not a�ect the analysis of the probability of terminating with established = 1.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:25

This program terminates only if it visits the left branch of the probabilistic choice; otherwise, it
diverges with (G,~) approaching (1, 1) in the shape of a 2-D discrete spiral. Note that the program
is non-AST and we aim to verify lower bounds on its termination probability. Observe that, in this
case, the naive strengthening heuristic i ′

= i ∧ G < 2 ∧ ~ < 2 by adding a constant bound 2 on
program variables is insu�cient for any 2 > 3/2 as the resulting program is still non-AST; whereas
for any 2 ≤ 3/2, the resulting program terminates after at most one loop iteration thus only yielding
trivial lower bounds. In contrast, by applying the more advanced (yet intuitive) strengthening
i ′

= i ∧ (G − 1)2 + (~ − 1)2 > n with a small constant n > 0 (i.e., to rule out the spiral center (1, 1)),
we reduce the program to the case of a �nite state space, which can then be tackled by probabilistic
model checking for establishing non-trivial lower bounds. �

As remarked in Sect. 6.4, it is an interesting future direction to investigate potentially more advanced,
(semi-)automatable guard-strengthening strategies than the heuristic used in this paper.

The following example demonstrates a corner case where no useful strengthening exists.

Example 30 (Dummy Swapper). Consider the probabilistic program

while (G ≠ ~) { G ≔ ~ ⊕ {temp ≔ G # G ≔ ~ # ~ ≔ temp} ⊕ diverge }

where iterated ⊕ is shorthand for discrete uniform choice (in this case, with probability 1/3 each);
diverge is syntactic sugar for while(true){skip}. This program is non-AST and it terminates
only by visiting the leftmost branch of the uniform choice; otherwise, it diverges by either keeping
swapping the values of G and ~ (i.e., pacing between two points) or diverges immediately by visiting
the rightmost branch. It can be shown that every possible strengthening that can turn this program
AST necessarily leads to i ′

= false – otherwise, at least one loop iteration is executed and the
program diverges with probability at least 1/3 – and therefore only yield trivial lower bounds. �

9 RELATED WORK

Weakest Preexpectation Reasoning. As a probabilistic analog to Dijkstra’s predicate-transformer
calculus [Dijkstra 1975, 1976], expectation transformers have been extensively used to reason about
quantitative properties of probabilistic programs. wp-style reasoning goes back to the seminal work
of Kozen [1983, 1985] on probabilistic propositional dynamic logic. Amongst others, Jones [1990],
Morgan et al. [1996], McIver and Morgan [2005], and Hehner [2011] furthered this line of research
by considering, e.g., nondeterminism and proof rules for bounding preexpectations in the presence
of loops. The classical weakest preexpectation calculus has been signi�cantly advanced in several
directions to reason about, e.g., expected runtimes of (recursive) probabilistic programs [Kaminski
et al. 2016, 2018; Olmedo et al. 2016], probabilistic programs with conditioning [Olmedo et al. 2018;
Szymczak and Katoen 2019], mixed-sign postexpectations [Kaminski and Katoen 2017], sensitivity
of probabilistic programs [Aguirre et al. 2021], probabilistic temporal logic [Morgan and McIver
1999], and quantitative separation logic [Batz et al. 2019]. A relative completeness result has been
recently established by Batz et al. [2021b] for weakest preexpectation reasoning.

Bounds on Weakest Preexpectation and Fixed Points. There are a wide spectrum of results on
establishing upper and/or lower bounds on loop semantics captured by (least) �xed points. These
include (semi-)automated techniques based on metering functions [Frohn et al. 2020, 2016] for un-
derapproximating runtimes of non-probabilistic programs, constraint solving [Chen et al. 2015; Feng
et al. 2017; Katoen et al. 2010] and invariant learning [Bao et al. 2022] for generating lower bounds
on weakest preexpectations of probabilistic programs, recurrence solving [Bartocci et al. 2019] for
synthesizing moment-based invariants of the so-called prob-solvable probabilistic loops, bounded
model checking [Jansen et al. 2016] for verifying probabilistic programs with nondeterminism and

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:26 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

conditioning, and various forms of value iteration [Baier et al. 2017; Hartmanns and Kaminski 2020;
Quatmann and Katoen 2018] for determining reachability probabilities in Markov models.
Apart from the proof rules elaborated in this paper, Baldan et al. [2021] recently proposed

lattice-theoretic proof rules for verifying lower bounds on least �xed points of �nite-state stochastic
systems. Batz et al. [2021a] invented latticed :-induction for establishing upper bounds on least
�xed points of possibly in�nite-state probabilistic programs. A closely related concept to our
guard-strengthening rule is the notion of l-subinvariant [Audebaud and Paulin-Mohring 2009;
Jones 1990; Kaminski et al. 2016, 2018], which is a monotonically increasing sequence {�=}=∈N of
expectations that are subinvariants relative to each other, i.e., �0 = 0 and �=+1 ⪯ Φ(�=). It is known
that sup=∈N �= su�ces as a lower bound on the least �xed point of Φ, however, �nding such a lower
bound amounts to (i) learning a closed form of �= in = by inspecting the “pattern” through �xed
point iterations, and (ii) �nding the supremum of the closed form. These two steps may barely save
e�orts compared to just inferring the supremum (limit) of the sequence sup=∈N Φ

= (0) to obtain
the exact least �xed point. In some of our examples, we also reason about limits of ;" w.r.t. " –
the constant used to strengthen the guard – to get tight lower bounds. This step, however, is not
necessary since ;" ⪯ Φ(;") su�ces already as a lower bound for any �xed" , that is, we only need
to “push ;" through the loop semantics” once. Moreover, for discrete-state programs with complex
closed form solutions, e.g., the 3-D random walk in Exmp. 24, our rule is capable of inferring tight
lower bounds (via probabilistic model checking) without the need for taking limits.

Space-Restricting in Analyzing Random Walks. There is an intellectual connection between our
guard-strengthening technique and the space-restricting tactic in analyzing random walks over
in�nite, discrete lattices: Restricting an in�nite-space random walk à la Feller [1950, Chap. XIV]
and McCrea and Whipple [1940] by setting “barriers” and then taking the limit is analogous to our
approach. Nonetheless, they both proceed, after the restriction, by solving the recurrence equation
(aka, di�erence equation) to obtain a closed-form solution for the restricted random walk in order
to take the limit. Although a similar methodology can be embedded in our approach – as solving
recurrences is one (expensive) way to obtain subinvariants – it is not necessary: our proof rule
reduces the problem and places it under the lens of probabilistic model checking. The rule is thus
able to handle examples that are out-of-reach by existing veri�cation techniques, e.g., the 3-D
random walk, without the need for recurrence solving nor taking limits. Moreover, our proof rule
codi�es ad-hoc proof methods in probability theory as a syntactic rule of a program logic, and
enables the use of existing proof rules on veri�cation problems that are otherwise out-of-scope.

Martingale-Based Reasoning. Probabilistic program analysis via martingales was pioneered by
Chakarov and Sankaranarayanan [2013, 2014] for �nding upper bounds on expected runtimes and
synthesizing expectation invariants. Chatterjee et al. [2016b] further extended the martingale-based
approach to address nondeterminism. Barthe et al. [2016] focus on synthesizing exact martingale
expressions. Fioriti and Hermanns [2015] develop a type system for uniform integrability in order
to prove AST of probabilistic programs and provide upper bounds on expected runtimes. In contrast,
Fu and Chatterjee [2019] give lower bounds on expected runtimes; Chatterjee et al. [2022] prove
lower bounds on termination probabilities. Kobayashi et al. [2020] provide a semi-decision procedure
for upper-bounding termination probabilities of probabilistic higher-order recursive programs.
Chatterjee et al. [2017]; Wang et al. [2021b] focus on �nding upper and lower bounds on assertion-
violation probabilities. Ngo et al. [2018] perform automated template-driven resource analysis, yet
infer upper bounds only. Wang et al. [2019] provide su�cient conditions for �nding upper and
lower bounds on expected costs. Wang et al. [2021a] present conditions to derive upper and lower
bounds on higher moments of expected accumulated costs. In contrast to our proof rule, most of these
martingale-based methods for inferring lower bounds address only AST probabilistic programs.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:27

Probabilistic Bisimulation and Equivalence. Our result on wp-di�erence falls in the general scope
of quantifying the “distance” between two programs. This gives rise to the notions of probabilistic
bisimulation [Hong et al. 2019; Larsen and Skou 1991] and probabilistic equivalence (see [Murawski
and Ouaknine 2005] over �nite data types and [Barthe et al. 2009] for straight-line programs). Chen
et al. [2022] recently proved a decidability result for checking the equivalence of an in�nite-state
discrete, loopy probabilistic program with a loop-free speci�cation program (assuming AST). Barthe
et al. [2009, 2012] developed a relational Hoare logic for probabilistic programs, which has been
extensively used for proving program equivalence with applications in provable security and side-
channel analysis. Our proof rule is dedicated to reasoning about lower bounds on expected values of
possibly divergent probabilistic programs, nevertheless, it is interesting to explore its generalization
in proving equivalence, bisimulation, and Y-closeness of possibly in�nite-state, non-AST probabilistic
programs by, e.g., embedding our proof rule in the probabilistic relational Hoare logic.

10 CONCLUSION

Wehave presented a new proof rule – based onwp-di�erence and the guard-strengthening technique
– for verifying lower bounds on weakest preexpectations of probabilistic programs. This is the �rst
lower bound rule that admits divergent probabilistic loops with possibly unbounded expectations. In
particular, we unleash existing lower induction rules for general applicability to possibly divergent
programs whose strengthened counterparts feature easily provable almost-sure termination and
uniform integrability. Moreover, we have shown that the error incurred by our guard-strengthening
technique can be arbitrarily small thereby yielding tight lower bounds, and in case the modi�ed loop
has a �nite state space, our proof rule can be automated to generate lower bounds via probabilistic
model checking. The e�ectiveness of our proof rule has been demonstrated on several examples. In
particular, we managed to infer tight lower bounds on the termination probability of the well-known
3-D random walk on a lattice, which has not been addressed yet in the context of veri�cation.
Future directions include (i) extending our proof rule to the expected runtime calculus for

lower-bounding expected runtimes [Kaminski et al. 2016, 2018], to probabilistic programs with
angelic/demonic nondeterminism [McIver and Morgan 2001, 2005] and/or with soft/hard condition-
ing [Olmedo et al. 2018; Szymczak and Katoen 2019]; (ii) exploring the applicability of our result
on wp-di�erence in the context of sensitivity analysis [Aguirre et al. 2021; Barthe et al. 2018; Wang
et al. 2020] and model repair [Bartocci et al. 2011] for probabilistic programs; and (iii) investigating
(semi-)automated synthesis of (candidate) quantitative (sub)invariants used in our proof rule.

ACKNOWLEDGMENTS

This work has been partially funded by the National Key R&D Program of China under grant No.
2022YFA1005101, by the NSFC under grant No. 62192732 and 62032024, by the CAS Project for Young
Scientists in Basic Research under grant No. YSBR-040, by the ZJU Education Foundation’s Qizhen
Talent program, by the ERC Advanced Project FRAPPANT under grant No. 787914, and by the
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 101008233. The authors would like to thank Kevin Batz, Tim Quatmann,
and anonymous reviewers for the insightful discussions on the connection respectively to l-
invariants in weakest preexpectation reasoning, partial exploration in Markov models, and the
space-restricting tactic in analyzing random walks.

REFERENCES

Erika Ábrahám, Bernd Becker, Christian Dehnert, Nils Jansen, Joost-Pieter Katoen, and Ralf Wimmer. 2014. Counterexample
Generation for Discrete-Time Markov Models: An Introductory Survey. In SFM (LNCS, Vol. 8483). Springer, 65–121.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

99:28 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021.
A Pre-Expectation Calculus for Probabilistic Sensitivity. Proc. ACM Program. Lang. 5, POPL (2021), 1–28.

James Aspnes and Maurice Herlihy. 1990. Fast Randomized Consensus Using Shared Memory. J. Algorithms 11, 3 (1990),
441–461.

Philippe Audebaud and Christine Paulin-Mohring. 2009. Proofs of Randomized Algorithms in Coq. Sci. Comput. Program.

74, 8 (2009), 568–589.
Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT press.
Christel Baier, Joachim Klein, Linda Leuschner, David Parker, and Sascha Wunderlich. 2017. Ensuring the Reliability of Your

Model Checker: Interval Iteration for Markov Decision Processes. In CAV (II) (LNCS, Vol. 10426). Springer, 160–180.
Paolo Baldan, Richard Eggert, Barbara König, and Tommaso Padoan. 2021. Fixpoint Theory – Upside Down. In FoSSaCS

(LNCS, Vol. 12650). Springer, 62–81.
Jialu Bao, Nitesh Trivedi, Drashti Pathak, Justin Hsu, and Subhajit Roy. 2022. Data-Driven Invariant Learning for Probabilistic

Programs. In CAV (I) (LNCS, Vol. 13371). Springer, 33–54.
Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. 2016. Synthesizing Probabilistic Invariants via

Doob’s Decomposition. In CAV (I) (LNCS, Vol. 9779). Springer, 43–61.
Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. Proving Expected Sensitivity of

Probabilistic Programs. Proc. ACM Program. Lang. 2, POPL (2018), 57:1–57:29.
Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal Certi�cation of Code-Based Cryptographic

Proofs. In POPL. ACM, 90–101.
Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2012. Probabilistic Relational Hoare Logics for Computer-

Aided Security Proofs. In MPC (LNCS, Vol. 7342). Springer, 1–6.
Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva (Eds.). 2020. Foundations of Probabilistic Programming. Cambridge

University Press.
Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2013. Probabilistic Relational Reasoning for

Di�erential Privacy. ACM Trans. Program. Lang. Syst. 35, 3 (2013), 9:1–9:49.
Ezio Bartocci, Radu Grosu, Panagiotis Katsaros, C. R. Ramakrishnan, and Scott A. Smolka. 2011. Model Repair for Probabilistic

Systems. In TACAS (LNCS, Vol. 6605). Springer, 326–340.
Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2019. Automatic Generation of Moment-Based Invariants for Prob-

Solvable Loops. In ATVA (LNCS, Vol. 11781). Springer, 255–276.
Kevin Batz, Mingshuai Chen, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.

2023. Probabilistic Program Veri�cation via Inductive Synthesis of Inductive Invariants. In TACAS. To appear.
Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schröer. 2021a.

Latticed :-Induction with an Application to Probabilistic Programs. In CAV (I) (LNCS, Vol. 12760). Springer, 524–549.
Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021b. Relatively Complete Veri�cation

of Probabilistic Programs: An Expressive Language for Expectation-Based Reasoning. Proc. ACM Program. Lang. 5, POPL
(2021), 1–30.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative
Separation Logic: A Logic for Reasoning about Probabilistic Pointer Programs. Proc. ACM Program. Lang. 3, POPL (2019),
34:1–34:29.

Daniel Bernoulli. 1954. Exposition of a New Theory on the Measurement of Risk. Econometrica 22, 1 (1954), 23–36.
Henrik C. Bohnenkamp, Peter van der Stok, Holger Hermanns, and Frits W. Vaandrager. 2003. Cost-Optimization of the

IPv4 Zeroconf Protocol. In DSN. IEEE Computer Society, 531–540.
Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretínský, Marta Z. Kwiatkowska, David Parker,

andMateusz Ujma. 2014. Veri�cation of Markov Decision Processes Using Learning Algorithms. InATVA (LNCS, Vol. 8837).
Springer, 98–114.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2016. Verifying Quantitative Reliability for Programs that Execute
on Unreliable Hardware. Commun. ACM 59, 8 (2016), 83–91.

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In CAV (LNCS,

Vol. 8044). Springer, 511–526.
Aleksandar Chakarov and Sriram Sankaranarayanan. 2014. Expectation Invariants for Probabilistic Program Loops as Fixed

Points. In SAS (LNCS, Vol. 8723). Springer, 85–100.
Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016a. Termination Analysis of Probabilistic Programs

Through Positivstellensatz’s. In CAV (I) (LNCS, Vol. 9779). Springer, 3–22.
Krishnendu Chatterjee, Hongfei Fu, and Petr Novotný. 2020. Termination Analysis of Probabilistic ProgramswithMartingales.

In Foundations of Probabilistic Programming, Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva (Eds.). Cambridge
University Press, 221–258.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:29

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2016b. Algorithmic Analysis of Qualitative
and Quantitative Termination Problems for A�ne Probabilistic Programs. In POPL. ACM, 327–342.

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Djordje Zikelic. 2022. Sound and Complete
Certi�cates for Quantitative Termination Analysis of Probabilistic Programs. In CAV (I) (LNCS, Vol. 13371). Springer,
55–78.

Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. 2017. Stochastic Invariants for Probabilistic Termination. In POPL.
ACM, 145–160.

Mingshuai Chen, Joost-Pieter Katoen, Lutz Klinkenberg, and Tobias Winkler. 2022. Does a Program Yield the Right
Distribution? Verifying Probabilistic Programs via Generating Functions. In CAV (I) (LNCS, Vol. 13371). Springer, 79–101.

Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. Counterexample-Guided Polynomial Loop
Invariant Generation by Lagrange Interpolation. In CAV (I) (LNCS, Vol. 9206). Springer, 658–674.

Fredrik Dahlqvist, Alexandra Silva, and Dexter Kozen. 2020. Semantics of Probabilistic Programming: A Gentle Introduction.
In Foundations of Probabilistic Programming, Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva (Eds.). Cambridge
University Press, 1–42.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. 2017. A Storm is Coming: A Modern
Probabilistic Model Checker. In CAV (II) (LNCS, Vol. 10427). Springer, 592–600.

Edsger Wybe Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18,
8 (1975), 453–457.

Edsger Wybe Dijkstra. 1976. A Discipline of Programming. Prentice-Hall.
Owain Evans, Andreas Stuhlmüller, John Salvatier, and Daniel Filan. 2017. Modeling Agents with Probabilistic Programs.

http://agentmodels.org. Accessed: 2022-7-7.
Willliam Feller. 1950. An Introduction to Probability Theory and Its Applications. Vol. I. John Wiley & Sons.
Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan. 2023. Lower

Bounds for Possibly Divergent Probabilistic Programs. CoRR abs/2302.06082 (2023). arXiv:2302.06082
Yijun Feng, Lijun Zhang, David N. Jansen, Naijun Zhan, and Bican Xia. 2017. Finding Polynomial Loop Invariants for

Probabilistic Programs. In ATVA (LNCS, Vol. 10482). Springer, 400–416.
Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Composi-

tionality. In POPL. ACM, 489–501.
Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl. 2020. Inferring Lower Runtime Bounds for Integer

Programs. ACM Trans. Program. Lang. Syst. 42, 3 (2020), 13:1–13:50.
Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and Jürgen Giesl. 2016. Lower Runtime Bounds for Integer

Programs. In IJCAR (LNCS, Vol. 9706). Springer, 550–567.
Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In VMCAI (LNCS,

Vol. 11388). Springer, 468–490.
Jürgen Giesl, Peter Giesl, and Marcel Hark. 2019. Computing Expected Runtimes for Constant Probability Programs. In

CADE (LNCS, Vol. 11716). Springer, 269–286.
Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic Programming. In

FOSE. ACM, 167–181.
Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2019. Aiming Low Is Harder – Inductive

Proof Rules for Lower Bounds on Weakest Preexpectations in Probabilistic Program Veri�cation. CoRR abs/1904.01117
(2019). arXiv:1904.01117

Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2020. Aiming Low Is Harder: Induction for
Lower Bounds in Probabilistic Program Veri�cation. Proc. ACM Program. Lang. 4, POPL (2020), 37:1–37:28.

Arnd Hartmanns and Benjamin Lucien Kaminski. 2020. Optimistic Value Iteration. In CAV (II) (LNCS, Vol. 12225). Springer,
488–511.

Arnd Hartmanns, Michaela Klauck, David Parker, Tim Quatmann, and Enno Ruijters. 2019. The Quantitative Veri�cation
Benchmark Set. In TACAS (I) (LNCS, Vol. 11427). Springer, 344–350.

Eric Charles Roy Hehner. 2011. A Probability Perspective. Formal Aspects Comput. 23, 4 (2011), 391–419.
Michael Hicks. 2014. What is Probabilistic Programming? In: The Programming Languages Enthusiast. http://www.pl-

enthusiast.net/2014/09/08. Accessed: 2021-12-09.
Chih-Duo Hong, AnthonyW. Lin, Rupak Majumdar, and Philipp Rümmer. 2019. Probabilistic Bisimulation for Parameterized

Systems - (with Applications to Verifying Anonymous Protocols). In CAV (I) (LNCS, Vol. 11561). Springer, 455–474.
Jacek Jachymski, Leslaw Gajek, and Piotr Pokarowski. 2000. The Tarski-Kantorovitch Principle and the Theory of Iterated

Function Systems. Bulletin of the Australian Mathematical Society 61, 2 (2000), 247–261.
Nils Jansen, Christian Dehnert, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Lukas Westhofen. 2016. Bounded

Model Checking for Probabilistic Programs. In ATVA (LNCS, Vol. 9938). 68–85.
Claire Jones. 1990. Probabilistic Non-determinism. Ph. D. Dissertation. University of Edinburgh, UK.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

http://agentmodels.org
https://arxiv.org/abs/2302.06082
https://arxiv.org/abs/1904.01117
http://www.pl-enthusiast.net/2014/09/08
http://www.pl-enthusiast.net/2014/09/08

99:30 S. Feng, M. Chen, H. Su, B. L. Kaminski, J.-P. Katoen, and N. Zhan

Benjamin Lucien Kaminski. 2019. Advanced Weakest Precondition Calculi for Probabilistic Programs. Ph. D. Dissertation.
RWTH Aachen University, Germany.

Benjamin Lucien Kaminski and Joost-Pieter Katoen. 2017. AWeakest Pre-expectation Semantics for Mixed-Sign Expectations.
In LICS. IEEE Computer Society, 1–12.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2019. On the Hardness of Analyzing Probabilistic
Programs. Acta Informatica 56, 3 (2019), 255–285.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition
Reasoning for Expected Run-Times of Probabilistic Programs. In ESOP (LNCS, Vol. 9632). Springer, 364–389.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition
Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM 65, 5 (2018), 30:1–30:68.

Joost-Pieter Katoen. 2016. The Probabilistic Model Checking Landscape. In LICS. ACM, 31–45.
Joost-Pieter Katoen, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, and Federico Olmedo. 2015. Understanding

Probabilistic Programs. In Correct System Design (LNCS, Vol. 9360). Springer, 15–32.
Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan. 2010. Linear-Invariant Generation for

Probabilistic Programs: Automated Support for Proof-Based Methods. In SAS (LNCS, Vol. 6337). Springer, 390–406.
Bronisław Knaster. 1928. Un Théorème sur les Functions D’ensembles. Annales de la Societe Polonaise de Mathematique 6

(1928), 133–134.
Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2020. On the Termination Problem for Probabilistic Higher-Order

Recursive Programs. Log. Methods Comput. Sci. 16, 4 (2020).
Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350.
Dexter Kozen. 1983. A Probabilistic PDL. In STOC. ACM, 291–297.
Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. Syst. Sci. 30, 2 (1985), 162–178.
Marta Kwiatkowska, Gethin Norman, and David Parker. 2002. PRISM: Probabilistic Symbolic Model Checker. In TOOLS.

Springer, 200–204.
Marta Z. Kwiatkowska. 2003. Model Checking for Probability and Time: From Theory to Practice. In LICS. IEEE Computer

Society, 351.
Kim Guldstrand Larsen and Arne Skou. 1991. Bisimulation through Probabilistic Testing. Inf. Comput. 94, 1 (1991), 1–28.
Jean-Louis Lassez, V. L. Nguyen, and E. A. Sonenberg. 1982. Fixed Point Theorems and Semantics: A Folk Tale. Inform.

Process. Lett. 14, 3 (1982), 112–116.
William H. McCrea and Francis J. W. Whipple. 1940. XXII.—Random Paths in Two and Three Dimensions. Proceedings of

the Royal Society of Edinburgh 60, 3 (1940), 281–298.
Annabelle McIver and Carroll Morgan. 2001. Partial Correctness for Probabilistic Demonic Programs. Theor. Comput. Sci.

266, 1-2 (2001), 513–541.
Annabelle McIver and Carroll Morgan. 2005. Abstraction, Re�nement and Proof for Probabilistic Systems. Springer.
Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A New Proof Rule for

Almost-Sure Termination. Proc. ACM Program. Lang. 2, POPL (2018), 33:1–33:28.
Elliot W Montroll. 1956. Random Walks in Multidimensional Spaces, Especially on Periodic Lattices. J. Soc. Indust. Appl.

Math. 4, 4 (1956), 241–260.
Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. 2021. The Probabilistic Termination Tool Amber.

In FM (LNCS, Vol. 13047). Springer, 667–675.
Carroll Morgan and Annabelle McIver. 1999. An Expectation-Transformer Model for Probabilistic Temporal Logic. Log. J.

IGPL 7, 6 (1999), 779–804.
Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program.

Lang. Syst. 18, 3 (1996), 325–353.
Andrzej S. Murawski and Joël Ouaknine. 2005. On Probabilistic Program Equivalence and Re�nement. In CONCUR (LNCS,

Vol. 3653). Springer, 156–170.
Van Chan Ngo, Quentin Carbonneaux, and Jan Ho�mann. 2018. Bounded Expectations: Resource Analysis for Probabilistic

Programs. In PLDI. ACM, 496–512.
Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Annabelle McIver. 2018.

Conditioning in Probabilistic Programming. ACM Trans. Program. Lang. Syst. 40, 1 (2018), 4:1–4:50.
Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about Recursive

Probabilistic Programs. In LICS. ACM, 672–681.
David Park. 1969. Fixpoint Induction and Proofs of Program Properties. Machine Intelligence 5 (1969).
G. Pólya. 1921. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betre�end die Irrfahrt im Straßennetz. Math. Ann. 84

(1921), 149–160.
Tim Quatmann and Joost-Pieter Katoen. 2018. Sound Value Iteration. In CAV (I) (LNCS, Vol. 10981). Springer, 643–661.
Nasser Saheb-Djahromi. 1978. Probabilistic LCF. In MFCS (LNCS, Vol. 64). Springer, 442–451.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs 99:31

Sriram Sankaranarayanan. 2020. Quantitative Analysis of Programs with Probabilities and Concentration of Measure
Inequalities. In Foundations of Probabilistic Programming, Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva (Eds.).
Cambridge University Press, 259–294.

Marco Schneider. 1993. Self-Stabilization. ACM Comput. Surv. 25, 1 (1993), 45–67.
Seyed Mahdi Shamsi, Gian Pietro Farina, Marco Gaboardi, and Nils Napp. 2020. Probabilistic Programming Languages for

Modeling Autonomous Systems. In MFI. IEEE, 32–39.
Marcin Szymczak and Joost-Pieter Katoen. 2019. Weakest Preexpectation Semantics for Bayesian Inference - Conditioning,

Continuous Distributions and Divergence. In SETSS (LNCS, Vol. 12154). Springer, 44–121.
Alfred Tarski. 1955. A Lattice-Theoretical Fixpoint Theorem and Its Applications. Paci�c J. Math. 5, 2 (1955), 285–309.
Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An Introduction to Probabilistic Program-

ming. CoRR abs/1809.10756 (2018).
Di Wang, Jan Ho�mann, and Thomas W. Reps. 2021a. Central Moment Analysis for Cost Accumulators in Probabilistic

Programs. In PLDI. ACM, 559–573.
Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2021b. Quantitative Analysis

of Assertion Violations in Probabilistic Programs. In PLDI. ACM, 1171–1186.
Peixin Wang, Hongfei Fu, Krishnendu Chatterjee, Yuxin Deng, and Ming Xu. 2020. Proving Expected Sensitivity of

Probabilistic Programs With Randomized Variable-Dependent Termination Time. Proc. ACM Program. Lang. 4, POPL
(2020), 25:1–25:30.

Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin, and Wenjun Shi. 2019. Cost
Analysis of Nondeterministic Probabilistic Programs. In PLDI. ACM, 204–220.

David Williams. 1991. Probability with Martingales. Cambridge University Press.
Mingsheng Ying. 2011. Floyd-Hoare logic for Quantum Programs. ACM Trans. Program. Lang. Syst. 33, 6 (2011), 19:1–19:49.

Received 2022-10-28; accepted 2023-02-25

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 99. Publication date: April 2023.

	Abstract
	1 Introduction
	2 Overview of Our Approach
	3 Weakest Preexpectation Reasoning
	3.1 The Probabilistic Guarded Command Language
	3.2 The Weakest Preexpectation Calculus

	4 Reasoning about Lower Bounds
	4.1 Problem Statement
	4.2 Induction Rules for Upper Bounds
	4.3 Induction Rules for Lower Bounds

	5 Differences of Weakest Preexpectations
	6 Proof Rule for Lower Bounds
	6.1 Application to Possibly Divergent Programs
	6.2 Orthogonal Sufficient Condition for Uniform Integrability
	6.3 Tightness of the Guard-Strengthening Rule
	6.4 On Automation of the Guard-Strengthening Rule

	7 Case Studies
	8 Limitations of the Guard-Strengthening Rule
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

