PrREGuUSss: It Analyzes, It Specifies, It Verifies

Zhongyi Wang”
Zhejiang University
Hangzhou, China
zhongyi.wang@zju.edu.cn

Tengjie Lin"
Zhejiang University
Hangzhou, China
tengjie.lin@zju.edu.cn

Mingshuai Chen’
Zhejiang University
Hangzhou, China
m.chen@zju.edu.cn

Mingqi Yang Haokun Li Xiao Yi
Zhejiang University Peking University The Chinese University of Hong Kong
Hangzhou, China Beijing, China Hong Kong, China
mingqiyang@zju.edu.cn ker@pm.me yixiao5428@link.cuhk.edu.hk
Shengchao Qin Jianwei Yin
Xidian University Zhejiang University
Xi’an, China Hangzhou, China

shengchao.qin@gmail.com

Abstract

Fully automated verification of large-scale software and hard-
ware systems is arguably the holy grail of formal methods.
Large language models (LLMs) have recently demonstrated
their potential for enhancing the degree of automation in for-
mal verification by, e.g., generating formal specifications as
essential to deductive verification, yet exhibit poor scalability
due to context-length limitations and, more importantly, the
difficulty of inferring complex, interprocedural specifications.
This paper outlines PREGUSS — a modular, fine-grained frame-
work for automating the generation and refinement of formal
specifications. PREGUSS synergizes between static analysis
and deductive verification by orchestrating two components:
(i) potential runtime error (RTE)-guided construction and
prioritization of verification units, and (ii) LLM-aided syn-
thesis of interprocedural specifications at the unit level. We
envisage that PREGUSsS paves a compelling path towards the
automated verification of large-scale programs.

CCS Concepts: « Theory of computation — Program
verification; Program specifications; Program analysis; «
Software and its engineering — Formal software veri-
fication; Automated static analysis.

Keywords: Abstract interpretation, Large language models,
Minimal contract, Undefined behaviors

“Both authors contributed equally to this research.
T Corresponding author.

Q0o

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

LMPL °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2148-9/25/10
https://doi.org/10.1145/3759425.3763394

118

zjuyjw@zju.edu.cn

ACM Reference Format:

Zhongyi Wang, Tengjie Lin, Mingshuai Chen, Mingqi Yang, Haokun
Li, Xiao Yi, Shengchao Qin, and Jianwei Yin. 2025. PREGUSS: It An-
alyzes, It Specifies, It Verifies. In Proceedings of the 1st ACM SIG-
PLAN International Workshop on Language Models and Programming
Languages (LMPL °25), October 12—18, 2025, Singapore, Singapore.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3759425.
3763394

1 Introduction

Runtime errors (RTEs), e.g., division by zero, buffer/numeric
overflows, and null pointer dereference, are a common cause
of undefined behaviors (UBs) exhibited during the execution
of C/C++ programs [16, Sect. 3.5.3]. These UBs can trigger
catastrophic failures, rendering them critical considerations
for safety-critical applications [1, 4, 22, 27]. Consequently,
in conventional program verification methodologies, estab-
lishing RTE-freeness (i.e., conformance to the C standard
specification) constitutes a necessary precondition for veri-
fying functional correctness (i.e., adherence to intended be-
haviors) [24]. State-of-the-art abstract interpretation-based
static analyzers, such as Astrée [18], FRama-C/Eva [8], and
Mopsa [17], aim to reliably detect all potential UBs in C pro-
grams, thereby formally certifying the absence of RTEs. How-
ever, due to the inherent abstraction mechanism that soundly
approximates concrete program semantics [10], these tools
often emit numerous false positives. Manually identifying
such false alarms or tuning analyzer configurations for better
accuracy remains notoriously difficult [26].

Program verification tools employing deductive verifica-
tion [2] provide a rigorous methodology for ensuring critical
program properties, including both RTE absence and func-
tional correctness. The verification process typically involves
two stages: (i) constructing specifications to formalize in-
tended program behaviors, and (ii) proving that the program
adheres to the specifications. While modern verifiers such as

https://orcid.org/0009-0008-1986-6070
https://orcid.org/0009-0002-5951-7314
https://orcid.org/0000-0001-9663-7441
https://orcid.org/0009-0004-5304-6763
https://orcid.org/0000-0001-6411-9324
https://orcid.org/0000-0002-4792-4433
https://orcid.org/0000-0003-3028-8191
https://orcid.org/0000-0003-4703-7348
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3759425.3763394
https://doi.org/10.1145/3759425.3763394
https://doi.org/10.1145/3759425.3763394

LMPL °25, October 12-18, 2025, Singapore, Singapore

Frama-C/Wp [7] and Dafny [19] automate the latter stage,
the former stage still relies heavily on human expertise.

Recent studies [20, 21, 28-30] have explored large lan-
guage models (LLMs) for automated specification synthesis,
demonstrating substantial improvements over conventional
techniques. Nevertheless, these methods exhibit significant
scalability limitations when applied to large-scale programs.
Current evaluations [21, 28—-30] remain confined to small-
scale benchmarks (e.g., SV-COMP test suites [6], Code2Inv
benchmark set [23], SyGuS competition [3]), each compris-
ing individual or just a few functions. Although SpecGen [20,
Sect. VI-A] explores specification synthesis for substantial
real-world Java programs, its focus remains restricted to
specification verifiability (i.e., syntactic and semantic correct-
ness) rather than holistic program verification - emcompass-
ing properties like RTE-freeness and functional correctness.
This limitation is primarily due to two constraints: First, the
context-length limitation of LLMs [13] prohibits them from
processing large-scale programs as a whole; Second, verify-
ing complex programs necessitates the synthesis of a diverse
set of interprocedural specifications, e.g., preconditions, post-
conditions, invariants, etc. The latter is beyond the capability
of existing approaches: (i) some focus exclusively on specific
categories (e.g., invariants [21, 29, 30]), and (ii) others gener-
ate function contracts holistically without modeling intrinsic
differences between preconditions and postconditions (as
part of the contracts) [20, 28], which are critical for validating
potential RTEs (as demonstrated in Section 2).

In response to the aforementioned challenges, we propose
PrREGUSS — an LLM-aided framework for synthesizing fine-
grained formal specifications. PREGUSs first employs a static
analyzer to emit RTE assertions (signifying all possible RTEs),
then constructs a queue of verification units (contexts of pro-
gram slices and relevant assertions) according to the RTE
assertions, and finally prompts an LLM to generate and re-
fine interprocedural specifications for every verification unit.
We envisage that PREGUSS facilitates (i) the synergy between
static analysis and deductive verification: The RTE assertions
reported by static analysis are used to either construct nec-
essary specifications certifying RTE-freeness or locate root
causes triggering RTEs; and (ii) modular synthesis of inter-
procedural specifications and thereby a viable approach to
the automated verification of large-scale programs.

2 Background and Motivation
2.1 Potential RTE-Guided Verification

Abstract interpretation-based static analyzers [8, 17, 18] con-
duct sound value analysis of target programs to warn about
potential RTEs. These tools exhibit significant advantages in
automatically scaling to large codebases. During the analy-
sis, they embed RTE (guard) assertions at program locations
susceptible to undefined behaviors — as exemplified by the

119

Z. Wang, T. Lin, M. Chen, M. Yang, H. Li, X. Yi, S. Qin, and J. Yin

#include <limits.h>
int abs(int x) {
if (x < 0)

#include <limits.h>
/*@ requires INT_MIN < x; *x/
int abs(int x) {

/*@ assert overflow: if (x < 0)
— -2147483647 <= x; */ return -x;
return -x; else
else return x;
return x; }
} void main() {
void main() { int a = abs(42);
int a = abs(42); /*@ preconditions of abs */
int b = abs(INT_MIN); int b = abs(INT_MIN);
} }

(a) analysis result of abs.c (b) verification of specified abs.c
Figure 1. Identifying potential RTEs in a C program via the
abstract interpretation-based analyzer FRama-C/Eva [8] and
the deductive verifier FRama-C/Wp [7].

assertion -2147483647 <= x in Fig. 1a. The analyzers main-
tain abstract program states — e.g., overapproximating pos-
sible values {-3, 0,3} via an interval abstraction [-3,3] -
and validate satisfiability of the RTE assertions against these
abstract states. Unsatisfied assertions are subsequently re-
ported as RTE alarms. Fig. 1a illustrates the analysis result
for the commonly used code snippet abs.c generated by
FraMa-C/Eva [8], which signifies a potential RTE of signed
integer overflow expressed in the ANSI/ISO C Specification
Language (ACSL) [5].

Tracing the RTE in Fig. 1a is a classic source-to-sink prob-
lem [25] in static (taint) analysis, namely, to identify that x =
INT_MIN (source) exclusively triggers the overflow RTE (sink)
in the abs function. Although taint analysis tools can track
data-flow paths from untrusted sources to sinks, validating
these paths requires analysts to monitor how the data flows
through the program and interacts with different compo-
nents. This is a prohibitively challenging task in large-scale
programs due to intricate call hierarchies and data dependen-
cies. Deductive verification addresses this challenge through
an advanced mechanism that propagates guard assertions
from sinks upward along caller-callee chains, enabling vio-
lation checks at potential source locations. This approach
facilitates either precise RTE source tracing or formal estab-
lishment of RTE absence [12, 14].

Specifically, by augmenting functions with necessary spec-
ifications, e.g., the ACSL precondition requires INT_MIN <
x in Fig. 1b, verifiers like FRamMA-C/WP [7] (based on weakest-
precondition reasoning [11]) formally certify RTE-free exe-
cution under the specified preconditions. These preconditions
subsequently serve as guard assertions at call sites of caller
functions. Fig. 1b demonstrates this mechanism: The argu-
ment INT_MIN violates abs’s (weakest) precondition, thus
leading the verifier to report a definitive RTE at call site

PREGUSS: It Analyzes, It Specifies, It Verifies

int id(int x) {return x;} /*@ requires x != 0; */
/*@ ensures \result == x; */
void one() { int id(int x) {return x;}
int x = id(1);
/%@ assert division_by_0: void one() {
o x !=0; %/ int x = id(1); 1/x;
1/x; 3
3} void zero() {
void zero() { /*@ preconditions of id x/
id(0); 1d(0);
} 3

void main() {
one(); zero();

void main() {
one(); zero(Q);

} 3

(a) analysis result of id.c (b) verification of specified id.c
Figure 2. Demonstrating the dual role of interprocedural
specifications: postconditions can eliminate false RTEs while
over-constrained preconditions can induce false alarms.

abs (INT_MIN); In other words, RTE-freeness can be guaran-
teed in case no caller of abs violates its precondition.

This gives rise to our conceptual idea of potential RTE-
guided verification, which aims to synergize between static
analysis and deductive verification. The core paradigm is to
exploit analyzer-reported RTE assertions to either (i) con-
struct necessary specifications certifying RTE-freeness, or
(ii) locate root causes triggering RTEs. We will show in Sec-
tion 3 how this paradigm can be refined to a pipeline that
facilitates automated verification of large-scale programs.

2.2 Interprocedural Specifications

The example in Fig. 1 illustrates the simple case where an
RTE assertion (2147483647 <= x) can be validated through
specifications (requires INT_MIN < x) localized to its host
function (abs). There are, however, common cases where in-
terprocedural specifications are necessary: As demonstrated
by Fig. 2, function one contains a potential division-by-zero
UB flagged by assertion x != @ (Fig. 2a), which is in fact a
false alarm that can be eliminated solely through the postcon-
dition ensures \result == x of function id (Fig. 2b). Con-
cretely, the value of x is determined by argument 1 and the
postcondition of id at call site id(1), thereby guaranteeing
assertion satisfaction irrespective of the precondition of its
host function one. Both examples in Figs. 1 and 2 reveal a core
forward verification principle: Validating control-flow down-
stream properties (e.g., RTE assertions in Figs. 1a and 2a)
requires correct upstream specifications (e.g., precondition
in Fig. 1b or postcondition in Fig. 2b). This observation moti-
vates specialized mechanisms for generating interprocedural
specifications in programs with complex call hierarchies.
Nevertheless, existing approaches [20, 28] mostly assume
RTE-freeness of a target program for verifying functional cor-
rectness, employing simplistic interprocedural-specification

120

LMPL °25, October 12-18, 2025, Singapore, Singapore

synthesis strategies that ask LLMs to generate holistic func-
tion contracts across the entire program context in a uni-
form, monolithic manner. This methodology risks inducing
false positives during RTE-freeness validation, as illustrated
by Fig. 2. An LLM may be misled by the context “x != 0
and 1/x” in one and thus forge an over-constrained precon-
dition requires x != @ for id, which triggers spurious
alarms at call sites like id(@) in function zero. Although
discarding over-constrained preconditions while retaining
postconditions may resolve immediate false alarms (as is
the case for Fig. 2b), determining whether a precondition
is over-constrained is per se a nontrivial task (cf. Fig. 1b vs.
Fig. 2b). For Fig. 1b, simply discarding the precondition com-
promises soundness (as true RTEs are missed) and thus un-
dermines verification integrity. Therefore, interprocedural-
specification synthesis mechanisms should make efforts to
prevent the generation of over-constrained preconditions.

3 Methodology

This section presents the design principles behind PREGUSS -
our framework for Potential Runtime Error-GUided Specifi-
cation Synthesis. As depicted in Fig. 3, PREGUSS is comprised
of two synergistic components: (i) Potential RTE-guided con-
struction and prioritization of verification units: a divide-and-
conquer strategy [31] for decomposing the monolithic RTE-
freeness verification into prioritized units; (ii) Fine-grained
interprocedural specification synthesis: a tactic for inferring
necessary specifications via LLMs along caller-callee chains
to validate target assertions per verification unit. Below, we
show how these two components cooperate to facilitate PRE-
GUss’s scalability to large-scale programs.

3.1 Decomposing the Monolithic Verification

To address the context-length limitation of LLMs [13], we
decompose the monolithic RTE-freeness verification prob-
lem into a sequence of subproblems for validating individual
potential RTEs associated with necessary program contexts. As
shown in Fig. 3, we first employ static analysis to generate
RTE assertions for all possible UBs in the target program (@).
We then construct the program’s call graph while recording
all the call sites (), yielding a complete set of RTE guard
assertions. These assertions are classified into two distinct
categories: (i) UB assertions generated during the initial anal-
ysis, and (ii) call-site preconditions (initially defaulting to
tautological true) to be synthesized/updated by LLMs per
Section 3.2. For each assertion, we construct a verification
unit (V-Unit) containing both the assertion and its necessary
contextual program slices. These V-Units are prioritized in
a queue () exactly matching the sequence of their corre-
sponding RTE assertions produced by a post-order traversal
of the call graph. This deliberate ordering implements the
bottom-up verification mechanism by progressing systemat-
ically from leaf functions toward the root function [28].

LMPL °25, October 12-18, 2025, Singapore, Singapore

Z. Wang, T. Lin, M. Chen, M. Yang, H. Li, X. Yi, S. Qin, and J. Yin

Stage 1. Potential RTE-Guided Construction and Prioritization of Verification Units

[\

Program Program with

RTE assertions

Static Analyzer

l—

—[V-Unit Priority Queue }

V-Unit 4 V-Unit 3 V-Unit 2 V-Unit 1
cs 2 cs 1 UB_2 UB_1
V-Unit 5 V-Unit 6 V-Unit 7 V-Unit 8
UB_3 UB_4 cs. 3 cs_4
—_—— T
L V-Unit
| St

If the
assertion is

Y

() Update specifications of
the host function hd

@ call Graph

Call Graph
—

1 main()
Analysis {CS_3; CS_4;}
funcl()
{Cs_1; CS_2; func2()
Program slicer UB_3;} {UB_4;3
& <«——] | fool() fo02()
Priority-Queue {UB_1;} {uB_2;}

Generator

UB_#: RTE guard assertion for the #-th UB
CS_#: the #-th call-site precondition check

Update specifications of (6
all callee functions

N
If #iter
exhausts?

assertion is
valid?

valid?
e [

(i) Jump to the next V-Unit, or (ii) return the
specified program if this is the last V-Unit.

—

Halt and alert

Stage 2. Fine-Grained Interprocedural Specification Synthesis

Figure 3. Architecture of the PREGUSsS framework.

PrEGUSS leverages the modularization principle of deduc-
tive verification [2, Chap. 9], wherein functions are verified
in isolation using their contracts. Rather than feeding LLMs
with the entire program in an end-to-end manner, validating
individual RTEs requires a constrained context comprising
two components: the guard assertion and a two-layer pro-
gram slice (encompassing both the assertion’s host function
and its callees), collectively encapsulated within a V-Unit
(e.g., @). This design ensures that the context does not expand
significantly during the bottom-up verification progression,
thereby enabling scalability to large-scale programs.

3.2 Generating Interprocedural Specifications

As motivated in Section 2, PREGUSs implements a fine-grained
strategy for synthesizing interprocedural specifications. This
approach fundamentally differs from existing methods by
avoiding the holistic function-contract generation from uni-
form contexts. PREGUSS processes each V-Unit through two
distinct phases: specification generation for the assertion’s
host function (8), followed by specification generation for
callee functions (®). Both phases employ an iterative refine-
ment strategy where (i) an LLM generates candidate spec-
ifications, (ii) a verifier validates the target assertion using
these specifications, and (iii) an LLM refines the (possibly)
failed candidates based on the verifier’s feedback. This pro-
cedure terminates until either the validation succeeds or the
iteration limit (#iter) is exhausted. In the initial phase (@), the
LLM is prompted to infer preconditions and auxiliary speci-
fications (e.g., loop contracts) through backward reasoning
from the guard assertion — as informally analogous to the

121

process of weakest-precondition reasoning [11]. When the
assertion depends on callees’ return values (recall Fig. 2a),
the verification requires callees’ postconditions, thus trig-
gering the transition to the subsequent phase (®). Crucially,
to prevent over-constrained preconditions (as exemplified
in Fig. 2b), the callees’ precondition synthesis is expressly
prohibited during this stage. Upon successful verification
of the assertion alongside all generated specifications (ex-
cluding host preconditions), PREGUSS either proceeds to the
next V-Unit or returns the specified program if the priority
queue becomes empty (@). Unverifiable assertions trigger
immediate termination with high-risk RTE alerts ().
PreGuss directly operationalizes our insights presented in
Section 2.2: By leveraging the V-Unit’s constrained context
and implementing a two-stage interprocedural-specification
synthesis strategy (thereby mirroring the forward verifica-
tion principle), PREGUSs systematically avoids generating
over-constrained preconditions while enabling automated,
scalable RTE-freeness verification for large-scale programs.

4 Conclusion and Future Directions

We have conceived PREGUSs — a modular, fine-grained frame-
work for inferring formal specifications that synergize be-
tween static analysis and deductive verification. We envisage
that PREGUSS offers a promising paradigm towards the au-
tomated verification of large-scale programs (subject to an
extensive experimental evaluation in future work).

While initially devised to certify RTE-freeness and identify
genuine RTEs, the framework can be extended to cater for
the verification of other vulnerability classes and functional

PREGUSS: It Analyzes, It Specifies, It Verifies

correctness. The key is to substitute RTE-assertion gener-
ation (via static analysis) with tailored formal annotations
for the target properties, including ones with complex data
structures. The subsequent stages, commencing from @ in
Fig. 3, remain fully generic to handle these annotations.

Although PrREGUSS presents a promising paradigm for
automated large-scale program verification, establishing a
formal proof of its soundness remains non-trivial — It re-
quires a rigorous justification that verified properties hold
under all execution paths. This necessitates foundational
work in two directions: (i) precise formalization of target
verification properties, and (ii) rigorous proof establishing
semantic equivalence between synthesized specifications
and program behaviors. This foundational work must bridge
the gap between practical LLM-based synthesis and formal
method guarantees. Additionally, language-specific complex-
ities pose significant soundness threats. The pervasive use of
function pointers in C programs may induce incomplete call
graphs during static analysis, potentially causing undetected
function dependencies, verification context omissions, and
unsound RTE guard propagation. Ensuring call graph relia-
bility - through advanced pointer analysis techniques like
flow-sensitive analysis — becomes imperative for any robust
implementation.

Conceived for scalability in programs with lengthy chains
of function calls, PREGUSSs exhibits limitations when applied
to: (i) Mutually recursive functions, which induce loopy struc-
tures in the call graph disrupting the bottom-up verification
mechanism, causing potential failures of the interprocedural
specification synthesis; (ii) Star-structured call graphs (char-
acterized by few callers invoking numerous callees), where
V-Units containing an inflated context of such functions may
exceed the LLM’s context limit. For the latter, a potential
solution is to employ program slicing to extract the minimal
subset of statements exhibiting dependencies with the target
assertion, thus omitting nonessential callees.

Given LLMs’ susceptibility to hallucination [15], they fre-
quently generate specifications exhibiting critical flaws —
ranging from syntactically illegal constructs that violate
specification language grammars to semantically unsatis-
fiable predicates that contradict actual program behaviors.
While verifiers provide rich feedback (e.g., proof obligations
and diagnostic logs) on such errors, translating these formal
outputs into effective LLM refinement prompts presents a
significant research challenge due to the formal-to-informal
semantic gap (cf. [9]). Future work should therefore focus
on developing principled mechanisms to bridge this gap.

Acknowledgments

This work was funded by the Fundamental Research Funds
for the Central Universities of China (No. 226-2024-00140),
by the ZJNSF Major Program (No. LD24F020013), by the CCF-
Huawei Populus Grove Fund (No. CCF-HuaweiSY202503), by

122

LMPL °25, October 12-18, 2025, Singapore, Singapore

the Open Fund of the High-Reliability Embedded Software
Engineering Technology Laboratory (No. LHCESET202502),
and by the Huawei Technical Collaboration Project (No.
TC20250422031).

References

[1] 2000. The Explosion of the Ariane 5. https://www-users.cse.umn.edu/
~arnold/disasters/ariane.html

Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Héhnle,
Peter H. Schmitt, and Mattias Ulbrich (Eds.). 2016. Deductive Software
Verification — The KeY Book — From Theory to Practice. Lecture Notes in
Computer Science, Vol. 10001. Springer. doi:10.1007/978-3-319-49812-
6

Rajeev Alur, Dana Fisman, Saswat Padhi, Rishabh Singh, and Ab-
hishek Udupa. 2019. SyGuS-Comp 2018: Results and Analysis. CoRR
abs/1904.07146 (2019).

America’s Cyber Defense Agency. 2025. Secure by Design Alert: Elimi-
nating Buffer Overflow Vulnerabilities. https://www.cisa.gov/resources-
tools/resources/secure-design-alert-eliminating-buffer-overflow-
vulnerabilities

Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliatre, Claude Marché,
Benjamin Monate, Yannick Moy, and Virgile Prevosto. 2025. ANSI/ISO
C Specification LanguageVersion 1.22. https://www.frama-c.com/
download/frama-c-acsl-implementation.pdf

Dirk Beyer. 2024. State of the Art in Software Verification and Witness
Validation: SV-COMP 2024. In TACAS (3) (Lecture Notes in Computer
Science, Vol. 14572). Springer, 299-329. doi:10.1007/978-3-031-57256-
215

Allan Blanchard. 2020. Introduction to C program proof with Frama-C
and its WP plugin. https://allan-blanchard.fr/frama-c-wp-tutorial.
html

David Biihler, Pascal Cuoq, and Boris Yakobowski. 2025. The Eva plug-
in. https://www.frama-c.com/download/frama-c-eva-manual.pdf
Jialun Cao, Yaojie Lu, Meiziniu Li, Haoyang Ma, Haokun Li, Mengda
He, Cheng Wen, Le Sun, Hongyu Zhang, Shengchao Qin, Shing-Chi
Cheung, and Cong Tian. 2025. From Informal to Formal - Incorporating
and Evaluating LLMs on Natural Language Requirements to Verifiable
Formal Proofs. In ACL (1). Association for Computational Linguistics,
26984-27003. doi:10.18653/v1/2025.acl-long.1310

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In POPL. ACM, 238-252. doi:10.1145/
512950.512973

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and
Formal Derivation of Programs. Commun. ACM 18, 8 (1975), 453-457.
doi:10.1145/360933.360975

Arnaud Ebalard, Patricia Mouy, and Ryad Benadjila. 2019. Journey to
a RTE-Free X.509 Parser. In Symposium sur la sécurité des technologies
de 'information et des communications (SSTIC 2019).

Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu
Zhang, Ruijie Fang, Asmita, Ryan Tsang, Najmeh Nazari, Han Wang,
and Houman Homayoun. 2024. Large Language Models for Code Anal-
ysis: Do LLMs Really Do Their Job?. In USENIX Security Symposium.
USENIX Association. doi:10.5555/3698900.3698947

[14] Jens Gerlach. 2019. Minimal contract Hoare-style verification versus
abstract interpretation. Technical Report.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng,
Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing
Qin, and Ting Liu. 2025. A Survey on Hallucination in Large Language
Models: Principles, Taxonomy, Challenges, and Open Questions. ACM
Trans. Inf. Syst. 43, 2 (2025), 42:1-42:55. doi:10.1145/3703155

ISO/IEC JTC 1/SC 22. 2024. ISO/IEC 9899:2024 Information technology
— Programming languages — C. ISO. https://www.iso.org/standard/

[2

—

3

—

[4

—

(5

—

(6

—

[7

—

8

[t

[9

—

[10]

[11]

[12]

[13]

[15]

[16]

https://www-users.cse.umn.edu/~arnold/disasters/ariane.html
https://www-users.cse.umn.edu/~arnold/disasters/ariane.html
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://www.cisa.gov/resources-tools/resources/secure-design-alert-eliminating-buffer-overflow-vulnerabilities
https://www.cisa.gov/resources-tools/resources/secure-design-alert-eliminating-buffer-overflow-vulnerabilities
https://www.cisa.gov/resources-tools/resources/secure-design-alert-eliminating-buffer-overflow-vulnerabilities
https://www.frama-c.com/download/frama-c-acsl-implementation.pdf
https://www.frama-c.com/download/frama-c-acsl-implementation.pdf
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https:// allan-blanchard.fr/frama-c-wp-tutorial.html
https:// allan-blanchard.fr/frama-c-wp-tutorial.html
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://doi.org/10.18653/v1/2025.acl-long.1310
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/360933.360975
https://doi.org/10.5555/3698900.3698947
https://doi.org/10.1145/3703155
https://www.iso.org/standard/82075.html
https://www.iso.org/standard/82075.html
https://www.iso.org/standard/82075.html

LMPL °25, October 12-18, 2025, Singapore, Singapore

(17]

(18]

(19]

[20]

[21]

[22

—

(23]

[24]

82075.html

Matthieu Journault, Antoine Miné, Raphaél Monat, and Abdelraouf
Ouadjaout. 2019. Combinations of Reusable Abstract Domains for
a Multilingual Static Analyzer. In VSTTE (Lecture Notes in Computer
Science, Vol. 12031). Springer, 1-18. doi:10.1007/978-3-030-41600-3_1
Daniel Kastner, Reinhard Wilhelm, and Christian Ferdinand. 2023.
Abstract Interpretation in Industry - Experience and Lessons Learned.
In SAS (Lecture Notes in Computer Science, Vol. 14284). Springer, 10-27.
do0i:10.1007/978-3-031-44245-2_2

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for
Functional Correctness. In LPAR (Dakar) (Lecture Notes in Computer
Science, Vol. 6355). Springer, 348-370. doi:10.1007/978-3-642-17511-
420

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. 2025. SpecGen:
Automated Generation of Formal Program Specifications via Large
Language Models. (2025), 16-28. doi:10.1109/ICSE55347.2025.00129
Muhammad A. A. Pirzada, Giles Reger, Ahmed Bhayat, and Lucas C.
Cordeiro. 2024. LLM-Generated Invariants for Bounded Model Check-
ing Without Loop Unrolling. In ASE. ACM, 1395-1407. doi:10.1145/
3691620.3695512

Narges Shadab, Pritam M. Gharat, Shrey Tiwari, Michael D. Ernst,
Martin Kellogg, Shuvendu K. Lahiri, Akash Lal, and Manu Sridharan.
2025. Lightweight and modular resource leak checking (extended
version). Int. J. Softw. Tools Technol. Transf. 27, 2 (2025), 267-288.
d0i:10.1007/s10009-025-00804-2

Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. 2020.
Code2Inv: A Deep Learning Framework for Program Verification. In
CAV (2) (Lecture Notes in Computer Science, Vol. 12225). Springer, 151—
164. doi:10.1007/978-3-030-53291-8_9

Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. 2009.
Formal Verification of Avionics Software Products. In FM (Lecture Notes
in Computer Science, Vol. 5850). Springer, 532-546. doi:10.1007/978-3-

123

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Z. Wang, T. Lin, M. Chen, M. Yang, H. Li, X. Yi, S. Qin, and J. Yin

642-05089-3_34

Chengpeng Wang. 2025. Advances in AI-Powered Code Security: Next-
Level Bug Detection. Technical Report.

Zhongyi Wang, Linyu Yang, Mingshuai Chen, Yixuan Bu, Zhiyang Li,
Qiuye Wang, Shengchao Qin, Xiao Yi, and Jianwei Yin. 2024. Parf:
Adaptive Parameter Refining for Abstract Interpretation. In ASE. ACM,
1082-1093. doi:3691620.3695487

Westley Weimer and George C. Necula. 2004. Finding and preventing
run-time error handling mistakes. In OOPSLA. ACM, 419-431. doi:10.
1145/1028976.1029011

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda
He, Haokun Li, Shing-Chi Cheung, and Cong Tian. 2024. Enchanting
Program Specification Synthesis by Large Language Models Using
Static Analysis and Program Verification. In CAV (2) (Lecture Notes in
Computer Science, Vol. 14682). Springer, 302-328. doi:10.1007/978-3-
031-65630-9_16

Guangyuan Wu, Weining Cao, Yuan Yao, Hengfeng Wei, Taolue Chen,
and Xiaoxing Ma. 2024. LLM Meets Bounded Model Checking: Neuro-
Symbolic Loop Invariant Inference. In ASE. ACM, 406-417. doi:10.
1145/3691620.3695014

Haoze Wu, Clark W. Barrett, and Nina Narodytska. 2024. Lemur: Inte-
grating Large Language Models in Automated Program Verification.
In ICLR. OpenReview.net.

Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and
Xiangyu Zhang. 2025. Validating Network Protocol Parsers with
Traceable RFC Document Interpretation. Proc. ACM Softw. Eng. 2,
ISSTA, Article ISSTA078 (June 2025), 23 pages. doi:10.1145/3728955

Received 2025-07-06; accepted 2025-08-08

https://www.iso.org/standard/82075.html
https://doi.org/10.1007/978-3-030-41600-3_1
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1109/ICSE55347.2025.00129
https://doi.org/10.1145/3691620.3695512
https://doi.org/10.1145/3691620.3695512
https://doi.org/10.1007/s10009-025-00804-2
https://doi.org/10.1007/978-3-030-53291-8_9
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/3691620.3695487
https://doi.org/10.1145/1028976.1029011
https://doi.org/10.1145/1028976.1029011
https://doi.org/10.1007/978-3-031-65630-9_16
https://doi.org/10.1007/978-3-031-65630-9_16
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3728955

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Potential RTE-Guided Verification
	2.2 Interprocedural Specifications

	3 Methodology
	3.1 Decomposing the Monolithic Verification
	3.2 Generating Interprocedural Specifications

	4 Conclusion and Future Directions
	Acknowledgments
	References

