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Probabilistic programs are typically normal-looking programs describing posterior probability dis-
tributions. They intrinsically code up randomized algorithms and have long been at the heart of mod-
ern machine learning and approximate computing. We explore the theory of generating functions [19]
and investigate its usage in the exact quantitative reasoning of probabilistic programs. Important topics
include the exact representation of program semantics [13], proving exact program equivalence [5], and
– as our main focus in this extended abstract – exact probabilistic inference.

In probabilistic programming, inference aims to derive a program’s posterior distribution. In contrast
to approximate inference, inferring exact distributions comes with several benefits [8], e.g., no loss of
precision, natural support for symbolic parameters, and efficiency on models with certain structures.
Exact probabilistic inference, however, is a notoriously hard task [6,12,17,18]. The challenges mainly
arise from three program constructs: (1) unbounded while-loops and/or recursion, (2) infinite-support
distributions, and (3) conditioning (via posterior observations). We present our ongoing research in
addressing these challenges (with a focus on conditioning) leveraging generating functions and show
their potential in facilitating exact probabilistic inference for discrete probabilistic programs.

1 Inference in Probabilistic Programs

State-of-the-Art. Most existing probabilistic programming languages implement sampling-based infer-
ence algorithms rooted in the principles of Monte Carlo [15], thereby yielding numerical approximations
of the exact results, see, e.g., [9]. In terms of semantics, many probabilistic systems employ probabil-
ity density function (PDF) representations of distributions, e.g., (λ)PSI [7,8], AQUA [11], HAKARU [16],
and the density compiler in [3,4]. These systems are dedicated to inference (with conditioning) for pro-
grams encoding (joint discrete-)continuous distributions. Reasoning about the underlying PDF repre-
sentations, however, amounts to resolving complex integral expressions in order to answer inference
queries, thus confining these techniques either to (semi-)numerical methods [3,4,11,16] or exact meth-
ods yet limited to bounded looping behaviors [7,8]. DICE [10] employs weighted model counting to
enable exact inference for discrete probabilistic programs, yet is also confined to statically bounded
loops. The tool MORA [1,2] supports exact inference for various types of Bayesian networks, but relies
on a restricted form of intermediate representation known as prob-solvable loops.

The PGF Approach. Klinkenberg et al. [13] provide a program semantics that allows for exact quantita-
tive reasoning about probabilistic programs without conditioning. They exploit a denotational approach
à la Kozen [14] and treat a probabilistic program as a distribution transformer, i.e., mapping a distribution
over the inputs (the prior) into a distribution after execution of the program (the posterior). In [13], the
domain of discrete distributions is represented in terms of probability generating functions (PGFs), which
are a special kind of generating functions [19]. This representation comes with several benefits: (a) it
naturally encodes common, infinite-support distributions (and variations thereof) like the geometric
or Poisson distribution in compact, closed-form representations; (b) it allows for compositional reason-
ing and, in particular, in contrast to representations in terms of density or mass functions, the effective
computation of (high-order) moments; (c) tail bounds, concentration bounds, and other properties of
interest can be extracted with relative ease from a PGF; and (d) expressions containing parameters, both
for probabilities and for assigning new values to program variables, are naturally supported. Some suc-
cessfully implemented ideas based on PGFs, e.g., for deciding probabilistic equivalence and for proving
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non-almost-sure termination, are presented in [5,13], which address especially the aforementioned chal-
lenges (1) and (2) for exact probabilistic inference without conditioning.

2 Taming Conditioning Using PGFs

The creation of generative models is a challenging task, as these models oftentimes need expert domain
knowledge. Therefore, the concept of conditioning as a first-class language element is crucial as it allows
for a natural and intuitive approach to the creation of models. Our current research aims to extend the
PGF approach towards exact inference for probabilistic programs with conditioning – thus addressing challenges
(1), (2), and (3) – and to push the limits of automation as far as possible. To this end, we are in the process of
developing an exact, symbolic inference engine based on the open-source, PGF-based tool PRODIGY [5].
We illustrate below its current capability to cater for conditioning via two examples.

{w := 0}[5/7]{w := 1}#

if(w = 0){ c := poisson(6) }
else { c := poisson(2) }#

observe(c = 5)

Prog. 1: The telephone operator.

x := 1#

while(x = 1){
{c := c+ 1}[1/2]{x := 0}# }

observe(c ≡ 1 (mod 2))

Prog. 2: The odd geometric distribution.

Conditioning in Loop-Free Programs. Prog. 1 is a loop-free probabilistic program encoding an infinite-
support distribution. It describes a telephone operator who is unaware of whether today is a weekday
or weekend. The operator’s initial belief is that with probability 5/7 it is a weekday (w = 0) and thus
with probability 2/7 weekend (w = 1). Usually, on weekdays there are 6 incoming calls per hour on
average; on weekends this rate decreases to 2 calls – both rates are subject to a Poisson distribution.
The operator observes 5 calls in the last hour. The inference task is to compute the distribution in which
the initial belief is updated based on the posterior observation. PRODIGY can automatically infer that
Pr(w = 0) = 1215

1215+2·e4 ≈ 0.9178.

Conditioning Outside of Loops. Prog. 2 describes an iterative algorithm that repeatedly flips a fair coin –
while counting the number of trials – until seeing heads, and observes that this number is odd. Whereas
Prog. 1 can be handled by (λ)PSI [7,8], Prog. 2 cannot, as (λ)PSI do not support programs with un-
bounded looping behaviors. However, given a suitable invariant as described in [5], PRODIGY is able to
reason about the posterior distribution of Prog. 2 in an automated fashion using the second-order PGF
(SOP) technique [5]: the resulting posterior distribution for any input with c = 0 is 3·c

(4−c2) which encodes
precisely a closed-form solution for the generating function

∑∞
n=0 −3 · cn ·

(
2−2−n · (−1 + (−1)n)

)
.

3 Future Directions

A natural question is whether we can tackle exact inference when conditioning occurs inside of a loop. As
argued in [17], more advanced inference techniques are required to answer this question. In fact, to the
best of our knowledge, there is no (semi-)automated exact inference technique that allows for the pres-
ence of observe statements inside a (possibly unbounded) loop (an exception could be the potentially
automatable conditional weakest preexpectation calculus [17]). This is precisely our current research fo-
cus. One promising idea is to develop a non-trivial syntactic restriction of the programming language,
where the more advanced SOP technique [5] can be generalized to address conditioning inside loops.

The possibility to incorporate symbolic parameters in PGF representations can enable the application
of well-established optimization methods, e.g., maximum-likelihood estimations and parameter fitting,
to the inference for probabilistic programs. Other interesting future directions include deciding equiv-
alence of probabilistic programs with conditioning, amending our method to continuous distributions
using characteristic functions, and exploring the potential of PGFs in differentiable programming.
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