
A Unified Framework for Quantitative
Analysis of Probabilistic Programs

Shenghua Feng1 , Tengshun Yang2 , Mingshuai Chen3(B) ,
and Naijun Zhan2,4(B)

1 Zhongguancun Laboratory, Beijing, China
2 Institute of Software, CAS, University of Chinese Academy of Sciences,

Beijing, China
znj@ios.ac.cn

3 Zhejiang University, Hangzhou, China
m.chen@zju.edu.cn

4 School of Computer Science, Peking University, Beijing, China

Abstract. Verifying probabilistic programs requires reasoning about
various probabilistic behaviors, e.g., random sampling, nondetermin-
ism, and conditioning, against multiple quantitative properties, e.g.,
assertion-violation probabilities, moments, and expected running times.
It is desirable and theoretically significant to have a unified framework
which can deal with quantitative analysis of programs with different
probabilistic behaviors and properties. In this paper, we present a uni-
fied framework for the quantitative analysis of probabilistic programs,
which incorporates and extends existing results on the analysis of ter-
mination, temporal properties, and expected cost. We show that these
quantitative properties of a general probabilistic program can be char-
acterized as solutions to equation systems of the corresponding Markov
chain counterpart with a possibly uncountable state space. Based on
such characterization, we propose sufficient conditions to establish upper
and lower bounds on these quantitative properties. Moreover, we demon-
strate how our approach can be adapted to address inference problems
in Bayesian programming.

Keywords: Probabilistic programs · Quantitative analysis · Markov
chains · Equation systems

1 Introduction

Probabilistic programming [29,39,55] is a novel programming paradigm that
extends classical programming languages with statements such as probabilis-
tic branching and sampling. Probabilistic programs provide a powerful model
for randomized algorithms [9], artificial intelligence [13,52], reliability engineer-
ing [15], network protocols [27,41], etc. These applications involve safety-critical

S. Feng, T. Yang — Both authors contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
N. Jansen et al. (Eds.): Principles of Verification: Cycling the Probabilistic Landscape,
LNCS 15260, pp. 230–254, 2025.
https://doi.org/10.1007/978-3-031-75783-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-75783-9_10&domain=pdf
http://orcid.org/0000-0002-5352-4954
http://orcid.org/0000-0002-2072-0836
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0003-3298-3817
https://doi.org/10.1007/978-3-031-75783-9_10

A Unified Framework for Quantitative Analysis of Probabilistic Programs 231

domains such as autonomous vehicles and spacecraft. Thus, formal analysis of
these probabilistic (control) programs has become increasingly significant – as is
mandatory per many standards – and has undergone a recent surge of interest.

Compared to the formal analysis of classical programs that mostly focuses on
qualitative properties – which are represented as the intersection of safety and
liveness [4] – the analysis of probabilistic programs concerns quantitative prop-
erties in many situations. Prominent problems of quantitative analysis of prob-
abilistic programs include (1) expected running time analysis [1,28,30,34,35],
for reasoning about the expected termination time; (2) temporal property anal-
ysis [22,54,57], for, e.g., estimating the probability that an assertion eventually
happens (♦ operator) or the probability that one assertion always holds until
another assertion holds (U operator); (3) cost analysis [48,56,58], for analyzing
the expected accumulated resource consumption incurred by program transi-
tions and termination;1 and (4) expectation analysis [11,30,32], for deriving the
bounds for weakest pre-expectation.

In the literature, there are various approaches proposed to attack the afore-
mentioned properties for programs with different probabilistic behaviors. Among
these approaches, there are two lines of work leveraging martingale-based rea-
soning and weakest pre-expectation (wp) reasoning, respectively:

– Martingale-based reasoning. For expected running time analysis, [16] employs
martingales to find upper bounds of expected running time for programs with-
out nondeterminism. [20] further extends the martingale-based technique to
handle programs with nondeterminism, and obtains sound conditions for find-
ing upper bounds of expected running time. [30] proposes conditions to verify
lower bounds on expected running time for programs without nondetermin-
ism. For temporal property analysis, [57] focuses on finding upper and lower
bounds of assertion violations for programs without nondeterminism. For cost
analysis, [48] considers the transition cost to be non-negative and bounded.
[58] further considers general transition costs for programs with at most one
type of nondeterminism and provides sufficient conditions for finding upper
and lower bounds. Recently, [56] presents conditions to derive upper and lower
bounds on higher moments of expected accumulated cost.

– Weakest pre-expectation reasoning. Weakest pre-expectation reasoning [44]
is a reasoning technique for probabilistic programs, which extends the clas-
sical weakest precondition calculus for classical imperative programs. [35]
presents a wp-style calculus for obtaining bounds on expected running time.
In [33], a weakest pre-expectation style calculus is proposed for reasoning
about expected values of mixed-sign random variables after termination2

for programs without nondeterminism. Recently, [26] introduces a guard-
strengthening rule to infer lower bounds of wp for possibly diverging proba-
bilistic programs.

To summarize, extensive research has been conducted on analyzing prob-
abilistic programs, targeting diverse objectives such as termination, expected
1 Expected running time analysis can be seen as an instance of expected cost.
2 This can be interpreted as termination cost in cost analysis.

232 S. Feng et al.

running time, temporal properties, and expected cost. Common to many of these
methods is a typical procedure: They reduce the verification process (specifically,
the determination of upper and lower bounds on desired quantities) to synthe-
sizing functions that meet specific conditions. However, the methodologies for
expressing different types of analyses can vary significantly. Additionally, each
analytical approach imposes different side conditions on the probabilistic pro-
grams under examination. These include constraints on the non-negativity of
expectation functions [44], boundedness of transition cost functions [48], and
limitations on the boundedness of variable updates [58], to name just a few. It
is both desirable and of theoretical importance to develop a unified framework
capable of addressing all aforementioned issues in a consistent manner, thereby
allowing for the seamless integration of various analytical results.

Synopsis of Our Approach and Contributions. We propose a unified frame-
work that facilitates reasoning about various quantitative properties of proba-
bilistic programs. This approach enables the integration and extension of existing
analyses of probabilistic programs, including, but not limited to, expected run-
ning time, cost, and temporal property analyses. We demonstrate that these
quantitative properties of a general probabilistic program can be represented as
solutions to equation systems associated with its Markov chain counterpart with
a possibly uncountable state space. Based on this characterization, we propose
sufficient conditions for establishing upper and lower bounds on these quantita-
tive properties and discuss how our approach can be extended to Markov deci-
sion processes. Furthermore, we illustrate how our framework can be adapted to
tackle inference problems in Bayesian programming.

Paper Organization. In Sect. 2, we first introduce basic notations on Markov
chains and probabilistic programs and then formulate the problem of interest.
Section 3 outlines sufficient conditions for estimating the quantitative properties
of Markov chains, based on which, Sect. 4 illustrates the method for consistently
encapsulating earlier findings in the quantitative analysis of probabilistic pro-
grams. In Sect. 5, we demonstrate how our approach can be adapted to address
inference problems in Bayesian programming. Section 6 concludes the paper.

Related Work. In addition to the above-mentioned techniques using martingale-
and weakest pre-expectation-based reasoning, quantitative analysis of probabilis-
tic programs can also be handled by other methods, e.g., value iteration-based
algorithms for approximating reachability probabilities of Markov systems [8,31,
50], characteristic function-based forward inference techniques [23,37], distribu-
tion approximation (in terms of, e.g., moment series) using density estimation in
statistics [36,38], coupling-based techniques for differential privacy, convergence,
and program equivalence [2,3], etc. Among them, moment-based methods exhibit
high efficiency and have been used to address, e.g., Bayesian network properties
including exact inference [53] and termination analysis [45,46]. Moreover, [47]
and [5] enlarge the scope of moments derivation to enable wider applications
of moment-based methods. [40,56] bound higher central moments for running
times and other monotonically increasing quantities.

A Unified Framework for Quantitative Analysis of Probabilistic Programs 233

2 Preliminaries

2.1 Probability Theory

Let N, R, R
+ be respectively the set of natural, real, and non-negative real

numbers. Let (f)+ and (f)− denote the positive and negative part of f , i.e.
(f)+ = max{f, 0}, (f)− = max{−f, 0}, and thus f = (f)+ − (f)−, a ∧ b denote
the minimum between a and b. For any set A, 1A denotes the indicator function
that maps s to 1 if s ∈ A and 0 otherwise.

A probability space is a triple (Ω,F ,P), where Ω is a sample space, F ⊆ 2Ω is
a σ-algebra on Ω, and P : F → [0, 1] is a probability measure on the measurable
space (Ω,F). For any measurable space (Ω,F), denote the set of probability
measure on Ω by D(Ω). The support of the probability measure P on (Ω,F) is

supp(P) = {A ∈ F | P(A) �= 0 },

where H denote the closure of H for any set H. If Ω is a finite set and F = 2Ω ,
then supp(P) is the set of all elements in Ω that have positive probability. A
random variable X defined on the probability space (Ω,F , P) is a F-measurable
function X : Ω → R∪ {−∞,+∞}; its expectation (w.r.t. P) is denoted by E[X];
For any set A ⊆ Ω, E[X · 1A] is also denoted by E[X;A]. Let F ′ ⊆ F is a sub-
σ-algebra, a conditional expectation of X w.r.t. F ′ is a F ′-measurable random
variable denoted by E[X | F ′], such that E[X · 1A] = E[E[X | F ′] · 1A] for all
A ∈ F ′. A collection {Fn | n ∈ N} of σ-algebras in F is a filtration if Fn ⊆ Fn+k

for n, k ∈ N. A random variable T : Ω → [0,∞] is called a stopping time w.r.t.
some filtration {Fn | n ∈ N0} of F if {T ≤ n} ∈ Fn for all n ∈ N.

A stochastic process {Xn}n∈N adapted to a filtration {Fn | n ∈ N} is called
a supermartingale (resp. submartingale) if E[Xn] < ∞ for any n ∈ N0 and
E[Xm | Fn] ≤ Xn (resp. E[Xm | Fn] ≥ Xn) for all m ≤ n. That is, the
conditional expected value of any future observation, given all past observations,
is no larger (resp. smaller) than the most recent observation. {Xn}n∈N is a
martingale if it is both supermartingale and submartingale. A set of random
variables {Xn}n∈N is uniformly integrable, if

lim
M→∞

sup
n

E[|Xn| · 1|Xn|≥M] = 0.

A Markov chain (MC) is a tuple M = (S,P), where S is a set of states
endowed with σ−algebra FS , and P : S×FS → [0, 1] is the transition probability
function such that for all state s, P(s, ·) is a probability measure over FS . For s ∈
S, the set of infinite paths of M starting from s is PathsM(s) = {π = s0s1 . . . ∈
Sω | s0 = s }, the set of all infinite paths of M is PathsM = ∪s∈SPathsM(s).
Following a standard procedure [25], for any initial state s ∈ S, we can construct
a probability measure over the set of infinite paths PathsM, with σ−algebra
generated by all cylinder sets. We denote this probability measure by Ps, where
s is the initial state. Let Xn be the random process that represents the system
state after nth transition, formally,

Xn : PathsM → S,

s0s1 . . . sn . . . �→ sn.

234 S. Feng et al.

1 : while (x ≥ 0){
2 : if (x ≥ 4)

3 : {x = x− 1 [0.4] x = x+ 1 }
4 : else

5 : {x = x− 1 [0.5] x = x+ 1 }
6 : }.
7 :

Fig. 1. A probabilistic program (left) and its CFG (right), where location label lin = 1
and lend = 7 represent the starting and ending point of the program, respectively.

The σ−algebra generated by X1,X2, . . . , Xn is denoted by Fn, Es[·] denotes
taking expectation w.r.t. probability measure Ps.

2.2 Probabilistic Programs

In this subsection, we describe the syntax of the probabilistic programs under
investigation:

C:: = skip | x := e | x :≈ μ | C; C | {C} [p] {C} | if (ϕ) {C} else {C} | while (ϕ) {C} ,

where x is a program variable taken from a countable set Vars of variables, ϕ is
a formula over program variables that is a Boolean combination of arithmetic
inequalities, and μ is a predefined probability distribution. The semantics of most
statements, including skip, assignment, sequential composition, conditional, and
the while statement, follow their standard meaning in imperative programs. The
semantics of a statement {C1}[p]{C2} is a probabilistic choice that flips a coin
with bias p ∈ [0, 1] and executes the statement C1 if the coin yields head, and
C2 otherwise. Note that the probabilistic choice statement {C1} [p] {C2} is the
syntactic sugar for x :≈Bernoulli(p); if (x = 0) {C1} else {C2}, where Bernoulli(p)
equals 0 with probability p and equals 1 with 1−p. The semantics of a statement
x :≈ μ samples a value according to the predefined distribution μ (including both
discrete and continuous distributions) and assigns the value to the variable x.

Given a probabilistic program C, its semantics can be interpreted as a
discrete-time Markov chain over its underlying control flow graph (e.g. Figure 1).
The state space is defined as the Cartesian product of the program location (or
program counter) L and the variable valuation Val, where Val represents the set
of all mappings from program variables to their respective values. There are two
special locations in L: lin represents the starting location of the program, and
lend represents the ending location of the program.

Definition 1 (Operational Semantics of Probabilistic Programs [16,
18]). Given a probabilistic program C, its operational semantics can be char-
acterized by a Markov chain MC = (SC ,PC), where SC � L × Val, PC is the
transition probability over Sc.

A Unified Framework for Quantitative Analysis of Probabilistic Programs 235

Therefore, analyzing a probabilistic program is essentially the same as ana-
lyzing its underlying Markov model. In the following, we will investigate the
quantitative properties of the Markov chain and demonstrate its relationship
with the corresponding probabilistic program in Sect. 4.

2.3 Quantitative Analysis of MC

In this subsection, we formalize the notations for quantitative analysis of MC
and formulate the problem investigated in this paper.

LTL-Style Notations for Quantitative Properties. Given an MC M = (S,P).
For any A,B ⊆ S, let ♦A denote the set of paths in PathsM that can reach A
eventually, and A UB stand for the set of paths staying in A before visiting B.
Formally, for any π = s0s1 . . . ∈ PathsM,

π |= ♦A iff ∃i ≥ 0, si ∈ A,

π |= A UB iff ∃i ≥ 0, si ∈ B and ∀j < i, sj ∈ A.

The probability for ♦A and A UB to hold in state s is denoted by Ps(s |= ♦A)
and Ps(s |= A UB), i.e.

Ps(s |= ♦A) = Ps({π ∈ PathsM(s) | π |= ♦A}),

Ps(s |= A UB) = Ps({π ∈ PathsM(s) | π |= A UB}).

In addition to temporal operator ♦ and U, we also consider the expected
cumulated cost in MC. Suppose M is also associated with a cost function
cost : S → R. Intuitively, the value cost(s) stands for the cost paid on leav-
ing state s. The accumulated cost for a finite path π̂ = s0s1 . . . sn is defined
by

cost(π̂) = cost(s0) + cost(s1) + . . . + cost(sn−1).

Based on accumulated cost for finite paths, we now consider the accumulated
cost paid along an infinite path until reaching A, formally, for any π = s0s1 . . . ∈
PathsM, define

cost(π,♦A) =

{

cost(s0 . . . sn) if sn ∈ A, ∀i < n, si �∈ A

lim
n→∞cost(s0 . . . sn) if π �|= ♦A

The expected cost until reaching A from initial state s for MC M = (S,P) is
then defined by

ExpCost(s |= ♦A) = Es [cost(π,♦A)] .

Intuitively, ExpCost(s |= ♦A) represents the averaged cost until reaching A over
all infinite paths w.r.t. probability measure Ps.

236 S. Feng et al.

Problem Formulation. Given a possibly infinite MC M = (S,P), estimate
the following quantitative properties

Ps(s |= ♦A), Ps(s |= A UB), ExpCost(s |= ♦A) , (1)

and relate them to the quantitative analysis of probabilistic programs.

3 Quantitative Analysis of Markov Chains

In this section, we show how to estimate (upper and lower bounds) the quanti-
tative properties in Eq. (1). In order to characterize these properties uniformly,
we first propose a novel value function V (s) which can represent P

s(s |= ♦A),
P

s(s |= A UB), and ExpCost(s |= ♦A) by choosing different parameters, then
show V (x) is a solution to a typical equation system, and finally propose suffi-
cient conditions to find upper and lower bounds on V (x).

The key ingredient of V (x) is a properly defined stopping time. For any set
of states H ⊆ S, let TH be the random variable that represents the transition
time of an infinite path before reaching H, formally,

TH : PathsM → N,

s0s1s2 . . . �→
{

inf{n ∈ N | sn ∈ H } if exists k, sk ∈ H;
∞ if forall n, sn �∈ H.

Recall that Xi represents the system state after ith transition; the random vari-
able representing the system state upon reaching H is defined by XTH

, formally,

XTH
: PathsM → S,

s0s1s2 . . . �→ sk if inf{n ∈ N | sn ∈ H } = k.

We now present the definition of value function V (s):

Definition 2. Given Markov chain M = (S,P) and H ⊆ S, for any function
f : S → R, g : S → R, value function V (s) is defined as follows3,

V (s) = Es

[

TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

. (2)

3 Here we implicitly assume summation
∑TH−1

i=0
f(Xi) converges (including converg-

ing to infinity) almost surely. If this is not the case, we may view V (s) as an interval
function. The convergence issue is similar to the well-definedness of the Lebesgue
integral. See Appx. A for details.

A Unified Framework for Quantitative Analysis of Probabilistic Programs 237

Intuitively, if f(s) and g(s) represent the cost on state s, then V (s) is the
expected cost upon reaching H over all infinite paths w.r.t. transition cost f
and termination cost g. By choosing different function f , g, and set H, value
function V (s) can represent Ps(s |= ♦A), Ps(s |= AUB), and ExpCost(s |= ♦A)
uniformly. In detail, for any set A,B ⊆ S,

1. let H = A, and

f = 0, g(s) =

{

1 if s ∈ A

0 if s ∈ S\A
,

then
V (s) = P

s(s |= ♦A).

2. let H = (S\A) ∪ B, and

f = 0, g(s) =

{

1 if s ∈ B

0 otherwise
,

then
V (s) = P

s(s |= A UB).

Proof. By Definition 2, we have

V (s) = Es [1TH<∞ · g(XTH
)]

= Ps

({π ∈ PathsM(s) | TH(π) < ∞ , g(XTH
)(π) = 1})

.

For any infinite path π ∈ PathsM(s), TH(π) < ∞ and g(XTH
)(π) = 1 if and only

if for the first time π hits H = (S\A) ∪ B, it hits B, which implies π |= A UB.
Thus we have V (s) = P

s(s |= A UB).

3. let H = A, and
f(s) = cost(s), g(s) = 0,

then
V (s) = ExpCost(s |= ♦A).

Note that the proofs for 1 and 3 are straightforward and are therefore omitted
for brevity.

Therefore, to estimate quantitative properties in Eq. (1), it suffices to esti-
mate value function V (s). We first show that V (s) serves as the solution to a
related equation system by leveraging the Markov property.

Theorem 1. Given a Markov chain M = (S,P), value function V (s) satisfies
the following equation system:

∫

S

V (t)P(s,dt) + f(s) = V (s), if s ∈ S\H,

V (s) = g(s), if s ∈ H.

(3)

238 S. Feng et al.

Proof. For any s ∈ H, V (s) = g(s) trivially holds. For any s ∈ X\H, as {Xi}i∈N

is a Markov process, by Markov property and properties of conditional expecta-
tion, we have

Es

[

TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)
∣

∣ X1

]

= f(s) + Es

[

TH−1
∑

i=1

f(Xi) + 1TH<∞ · g(XTH
)
∣

∣ X1

]

= f(s) + EX1

[

TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

= f(s) + V (X1).

Taking expectation w.r.t. probability Ps on both sides, we have

Es

[

Es

[

TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)
∣

∣ X1

]]

= f(s) + Es [V (X1)] ,

where the left-hand side equals V (s) by properties of conditional expectation,
and the right-hand side is equivalent to taking expectation w.r.t. probability
measure P(s, ·) by the construction of Ps, thus we have

V (s) =
∫

S

V (t)P(s,dt) + f(s).

This completes the proof. ��
Remark 1 (Connections to Probabilistic Model Checking). When Markov chain
M = (S,P) is finite, Eq. (3) reduces to a linear system due to the finiteness of
the state space. This system corresponds exactly to the set of equations used
to characterize the temporal properties of Markov chains in probabilistic model
checking [7]. ��

Although Theorem 1 establishes that V (s) is a solution to Eq. (3), computing
V (s) explicitly is infeasible (for infinite Markov chain), as Eq. (3) may have
multiple solutions. Even when Eq. (3) has a unique solution, solving it remains
challenging. Therefore, a more practical approach involves approximating V (s)
by determining its upper and lower bounds.

The classical Fatou’s Lemma, as presented in [25], validates the interchange
of integration and limits. In this work, we extend Fatou’s Lemma to suit our
specific requirements.

Lemma 1 (Generalized Fatou’s lemma). Let {Xn}n∈N be a sequence of ran-
dom variables,

– If {(Xn)−}n∈N is uniformly integrable, then

E[lim inf
n

Xn] ≤ lim inf
n

E[Xn].

A Unified Framework for Quantitative Analysis of Probabilistic Programs 239

– If {(Xn)+}n∈N is uniformly integrable, then

lim sup
n

E[Xn] ≤ E[lim sup
n

Xn].

Proof. For the first part, let X = lim infn Xn. Due to the uniform integrability
of {(Xn)−}n∈N, for any ε > 0, there exists c such that E[X−

n ; (Xn)− > c] ≤ ε for
any n ∈ N (recalling E[X;A] denotes E[X ·1A]). Since X+c ≤ lim infn(Xn+c)+,
we have

E[X] + c ≤ E[lim inf
n

(Xn + c)+] ≤ lim inf
n

E[(Xn + c)+].

Moreover, we have that

(Xn + c)+ = Xn + c + (Xn + c)− ≤ Xn + c + 1Xn<−c · (Xn)−

holds, which implies

E[X] + c ≤ lim inf
n

E[(Xn + c)+]

≤ lim inf
n

(E[Xn] + c + E[(Xn)−; (Xn)− > c])

≤ lim inf
n

(E[Xn] + c + ε).

Since ε is an arbitrary positive number, the result follows. For the second part,
substituting {Xn}n∈N with {−Xn}n∈N, the result follows similarly. ��

Given a Markov chain M = (S,P), random variable uYn is defined by

uYn � u(Xn) +
n−1
∑

i=0

f(Xi) (4)

for any function u : S → R, where Xi represents system state after ith transition.
We may omit prescript u in uYn when it is clear from the context. The following
theorem indicates how to find upper bounds on value function V (x).

Theorem 2. Given a Markov chain M = (S,P), suppose there exists a function
u : S → R such that the process

{(uYn∧TH
)−}n∈N

is uniformly integrable, then u(s) ≥ V (s) for s ∈ S if one of the following
conditions holds:

– Ps(TH < ∞) = 1 for any s ∈ S, and
∫

S

u(t)P(s,dt) + f(s) ≤ u(s), if s ∈ S\H,

u(s) ≥ g(s), if s ∈ H.

(5)

240 S. Feng et al.

– the following equation holds
∫

S

u(t)P(s,dt) + f(s) ≤ u(s), if s ∈ S\H,

u(s) ≥ 0, if s ∈ S\H,

u(s) ≥ g(s), if s ∈ H.

(6)

Proof. For any s ∈ H, Eq. (5) and Eq. (6) imply u(s) ≥ g(s) = V (s). For any
s ∈ S\H, Eq. (5) and Eq. (6) imply

∫

S

u(t)P(s,dt) + f(s) ≤ u(s), if s ∈ S\H.

Thus for any π ∈ PathsM, if TH(π) > n + 1, then

Es[Y(n+1)∧TH
| Fn](π) = Es

[

u(Xn+1) +
n+1
∑

i=0

f(Xi) | Fn

]

(π)

=Es [u(Xn+1) | Fn] (π) +
n

∑

i=0

f(Xi)(π)

=
∫

S

u(t)P(Xn,dt)(π) + f(Xn)(π) +
n−1
∑

i=0

f(Xi)(π)

≤u(Xn)(π) +
n−1
∑

i=0

f(Xi)(π) = Yn(π) = Yn∧TH
(π),

and if TH(π) ≤ n, then

Y(n+1)∧TH
(π) = Yn∧TH

(π).

In this case, we still have

Es[Y(n+1)∧TH
(π) | Fn] ≤ Yn∧TH

(π)

Then it follows that {Yn∧TH
}n∈N is a supermartingale. By properties of super-

martingale, we have
Es[Yn∧TH

] ≤ Es[Y0] = u(s).

holds for any n ∈ N. Moreover, since {(Yn∧TH
)−}n∈N is uniformly integrable,

properties of supermartingale [25] imply limn Yn∧TH
) converges almost surely,

thus Lemma 1 further implies

Es[lim
n→∞ Yn∧TH

] ≤ lim
n→∞ Es[Yn∧TH

] ≤ u(s)

If Ps(TH < ∞) = 1 for any s ∈ S and Eq. (5) holds, then u(s) ≥ g(s) for s ∈ H,
thus

lim
n→∞ Yn∧TH

= lim
n→∞

(

u(Xn∧TH
) +

n∧TH−1
∑

i=0

f(Xi)

)

= u(XTH
) +

TH−1
∑

i=0

f(Xi) ≥ g(XTH
) +

TH−1
∑

i=0

f(Xi)

A Unified Framework for Quantitative Analysis of Probabilistic Programs 241

By taking expectation on both sides, we have

V (s) ≤ Es[lim
n→∞ Yn∧TH

] ≤ u(s)

If Eq. (6) holds, then u(s) ≥ g(s) for s ∈ H, and u(s) ≥ 0 for s ∈ S\H, thus

lim
n→∞ Yn∧TH

= lim
n→∞

(

u(Xn∧TH
) +

n∧TH−1
∑

i=0

f(Xi)

)

≥ 1TH<∞ · u(XTH
) +

TH−1
∑

i=0

f(Xi)

≥ 1TH<∞ · g(XTH
) +

TH−1
∑

i=0

f(Xi).

Thus, we still have V (s) ≤ Es[lim
n→∞ Yn∧TH

] ≤ u(s), This completes the proof. ��

Sufficient conditions for finding lower bounds on value function V (s) can be
dually formulated as follows.

Theorem 3. Given a Markov chain M = (S,P), suppose there exists a function
u : S → R such that the process

{(uYn∧TH
)+}n∈N

is uniformly integrable, then u(s) ≤ V (s) for s ∈ S if one of the following
conditions holds:

– Ps(TH < ∞) = 1 for any s ∈ S, and
∫

S

u(t)P(s,dt) + f(s) ≥ u(s), if s ∈ S\H

u(s) ≤ g(s), if s ∈ H

(7)

– the following equation holds
∫

S

u(t)P(s,dt) + f(s) ≥ u(s), if s ∈ S\H

u(s) ≤ 0, if s ∈ S\H

u(s) ≤ g(s), if s ∈ H

(8)

Proof. The result follows from Theorem 2 if we replace f , g with −f , −g, then
finding lower bounds on the original V (s) is equivalent to finding upper bounds
on the new V (s). ��

As demonstrated in Theorem 2 and Theorem 3, determining upper and
lower bounds necessitates verifying the uniform integrability of {(uYn∧TH

)−}n∈N

and {(uYn∧TH
)+}n∈N, respectively. This verification is challenging by definition.

However, the classical Optional Stopping Theorem offers sufficient conditions to
confirm uniform integrability, simplifying the process.

242 S. Feng et al.

Theorem 4 (Optional Stopping Theorem [25,60]).] Let T be a stopping
time w.r.t. Fn, and {Xn}n∈N is a stochastic process adapted to Fn, such that
E[Xn] < ∞ for all n ∈ N, Process {Xn∧T }n∈N is uniformly integrable if one of
the following conditions holds:
– T is bounded almost surely, i.e. there exists N ∈ N such that P(T ≤ N) = 1;
– Xn∧T is bounded, i.e. there exists constant C ∈ R

+ such that |Xn∧T | ≤ C
almost surely;

– E[T] < ∞ and Xn∧T is conditional difference bounded, i.e. there exists M >
0, such that for any n ∈ N,

E[|X(n+1)∧T − Xn∧T | | Fn] ≤ M.

then {Xn∧T }n∈N is uniformly integrable.

Based on optional stopping theorem, the following results ensure the uniform
integrability of {(uYn∧TH

)−}n∈N and {(uYn∧TH
)+}n∈N.

Lemma 2. The stochastic process {(uYn∧TH
)−}n∈N (resp. {(uYn∧TH

)+}n∈N) is
uniformly integrable if one of the following conditions hold.
– TH is bounded almost surely, i.e. there exists N ∈ N such that Ps(TH ≤ N) =

1 for any s ∈ S;
– u− (resp. u+) is bounded and f− = 0 (resp. f+ = 0);
– Es[TH] < ∞ for any s ∈ S, f− (resp. f+) is bounded, and there exists

C ∈ R
+, such that

∫

S

∣

∣u−(t) − u−(s)
∣

∣ P(s,dt) ≤ C

(resp.

∫

S

∣

∣u+(t) − u+(s)
∣

∣ P(s,dt) ≤ C)
(9)

for any s ∈ S\H.

Proof. We give a proof for {(uYn∧TH
)−}n∈N, the proof for {(uYn∧TH

)+}n∈N is
similar. By Eq. (4), we have

0 ≤ (uYn)− ≤ u−(Xn) +
n−1
∑

i=0

f−(Xi)

It suffices to prove the uniform integrability of Zn∧TH
, where Zn is defined by

Zn � u−(Xn) +
n−1
∑

i=0

f−(Xi)

The above three sufficient conditions directly correspond to three sufficient con-
ditions formulated in Theorem 4. ��
Remark 2. Eq. (9) can be relaxed to

∫

S

|u(t) − u(s)| P(s,dt) ≤ C

since |u−(t) − u−(s)| ≤ |u(t) − u(s)| and |u+(t) − u+(s)| ≤ |u(t) − u(s)| for any
t, s ∈ S. ��

A Unified Framework for Quantitative Analysis of Probabilistic Programs 243

3.1 Extension to MDP

Our approach can be readily adapted to the quantitative analysis of Markov
Decision Processes (MDPs). An MDP represents a demonic nondeterministic
extension of a Markov Chain and reduces to a Markov Chain when a scheduler
resolves the nondeterminism.

Considering demonic nondeterminism, the value function is generalized to

V (s) = sup
σ

Es

[

TH−1
∑

i=0

f(Xσ
i) + 1TH<∞ · g(Xσ

TH
)

]

, (10)

where σ represents a scheduler that resolves nondeterminism. Also, the equa-
tional characterization for determining upper and lower bounds of V must
account for the calculation of suprema across the action set. For instance, Eq.
(5), which characterizes the upper bound for a Markov Chain, extends to

sup
a∈Act(s)

∫

S

u(t)P(s, a,dt) + f(s) ≤ u(s), if s ∈ S\H,

u(s) ≥ g(s), if s ∈ H

(11)

for the MDP scenario, where Act(s) represents the action set at state s. Solving
Eq. (11) establishes an upper bound on the value function V . Similarly, Eq. (7)
for the lower bound extends to

sup
a∈Act(s)

∫

S

u(t)P(s, a,dt) + f(s) ≥ u(s), if s ∈ S\H,

u(s) ≤ g(s), if s ∈ H

(12)

in the MDP context. It is important to note that while the computational com-
plexity of solving Eq. (11) (i.e., finding the upper bound) remains consistent
with the Markov Chain case, finding solutions for Eq. (12) (i.e., determining
the lower bound) is considerably more challenging, as it involves computing the
suprema over all possible actions.

4 Quantitative Analysis of Probabilistic Programs

In this section, we establish a link between the quantitative analysis of the
Markov chain in Sect. 3 and the quantitative analysis of probabilistic programs.
We will demonstrate how varying the parameters in V (x) can represent different
quantitative properties of a probabilistic program within the program’s semantic
Markov chain.

Recall that for any program C, there exists a corresponding Markov chain
MC = (SC ,PC), with SC is defined as L×Val, representing the product of pro-
gram counters and variable valuations. Within L, there are two notable counters:
the starting counter lin and the ending counter lend.

244 S. Feng et al.

4.1 Assertion Violation

Assertion violation analysis constitutes a fundamental problem in the quanti-
tative assessment of probabilistic programs. This analysis aims to estimate the
probability that a given assertion will be violated before the program terminates.
Assertion violation was first considered in [17], and further investigated in [21,22]
via concentration inequality. In [57], the authors demonstrate that the probabil-
ity of an assertion violation represents the least solution to a specific equation.
They also propose sufficient conditions for establishing upper and lower bounds
on this probability. In this subsection, we will re-establish the results in [57]
within our own framework.

Suppose the assertion we aim to avoid is B ⊆ L × Val, and let lend denote
the ending location, then Ps

(

s |= (

(L \ lend) × Val
)

UB
)

is exactly the assertion
violation probability with undesirable set B. According to Sect. 3,

V (s) = Ps

(

s |= (

(L \ lend) × Val
)

UB
)

= Assertion violation probability

with

H = (lend × Val) ∪ B, f = 0, g(s) =

{

1 if s ∈ B

0 otherwise.

Thus Theorem 2 and Theorem 3 provide sufficient conditions for obtaining upper
and lower bounds on assertion violation probability.

4.2 Expected Running Time

Expected running time is one of the most important properties of probabilistic
programs. There are various works considering to calculate the bounds for the
expected running time, e.g., [16,20] employs martingale techniques to find upper
bound of expected running time for programs, [34,35] present a wp-style calculus
for obtaining bounds on expected running time, [30] proposes conditions to verify
lower bound on expected running time for programs without nondeterminism. In
this subsection, we show how our approach entails the proof rules for establishing
upper and lower bounds on expected running time proposed in [30].

Since lend is the ending location, we have

V (s) = E[TH] = Expected running time of C

with
H = (lend × Val), f = 1, g(s) = 0.

Thus Theorem 2 and Theorem 3 are exactly the same4 canonical proof rules for
upper and lower bound proposed in [16,30].

4 Note in this case, side conditions (i.e. uniformly integrability) in Theorem 2 trivially
holds, thus Theorem 2 is essentially the Park’s induction rule.

A Unified Framework for Quantitative Analysis of Probabilistic Programs 245

4.3 Expected Accumulated Cost

Expected running time analysis can be naturally generalized5 to cost analysis,
i.e., calculating the expected resource consumption of the programs. In [48],
the authors first consider the expected cost with bounded non-negative transi-
tion cost, [58] further considers mixed-sign transition costs (i.e. both positive
and negative cost) for probabilistic programs with nondeterminism and derives
upper and lower bounds for the expected cost, [56] presents conditions to derive
bounds on higher moments of expected accumulated cost, and so forth. Again,
we demonstrate how our methods establish the results in [58].

Suppose one-step transition cost is denoted by cost : L × Val → R, then
ExpCost(s |= ♦(lend × Val) represents the expected cost of program C. Thus

V (s) = ExpCost(s |= ♦(lend × Val)) = Expected Cost of C

with
H = (lend × Val), f = cost , g(s) = 0.

Therefore, Theorem 2 and Theorem 3 provide sufficient conditions for obtain-
ing upper and lower bounds on expected cost, which are the same as [58].

4.4 Expectation Analysis

The weakest-precondition calculus [24] offers a logical framework for formally
reasoning about classical programs. Its probabilistic counterpart, the weakest
pre-expectation calculus [44], extends this framework to accommodate prob-
abilistic programs. This extension provides a robust deductive verification
framework for analyzing probabilistic behaviors. Intuitively, the weakest pre-
expectation transformer wp �C� (g) represents the expected value of g after pro-
gram C terminates. Within our framework, we have

V (s) = wp �C� (g) (s) = E[g(XTH
) · 1TH<∞],

with
H = (lend × Val), f = 0, g = g.

Thus Theorem 2 and Theorem 3 also incorporate results about upper and lower
bounding wp �C� (g) proposed in [30].

Example 1. Consider the following 1-D biased random walk,

C1dbrw : while (n > 0) { n := n − 1 [2/3] n := n + 1 } .

We are interested in bounding the expected running time of C1dbrw. According
to Sect. 4.2, it suffices to solve Eq. (5) with f = 1, g = 0:

2
3
u(x − 1) +

1
3
u(x + 1) + 1 ≤ u(x), if x > 0,

u(x) ≥ 0 , if x ≤ 0;
(13)

5 The expected running time analysis is a special case of cost analysis, where the
transition cost can be taken as a constant (e.g., 1).

246 S. Feng et al.

to find upper bounds on expected running time and solve Eq. (7) with f = 1,
g = 0:

2
3
u(x − 1) +

1
3
u(x + 1) + 1 ≥ u(x), if x > 0,

u(x) ≤ 0 , if x ≤ 0;
(14)

to find lower bounds. Equations (13) and (14) can be encoded as semidefinite
programming problems [19], and further solved by an off-the-shelf solver like
Mosek [6]. ��

5 Extension to Bayesian Programming

In this section, we demonstrate how our approach can be adapted to address
inference problems in Bayesian programming.

Bayesian programming [51,55] is a specific programming paradigm that mod-
els Bayesian models as probabilistic programs. In a nutshell, compared with
(standard) probabilistic programs, Bayesian programming languages have one
specific construct: score (a.k.a. observe) [10,14], which is used to record the
likelihood of observed data in the form of “score(weight)”. The syntax of our
Bayesian probabilistic programming language is

C:: = skip | x := e | x :≈ μ | C;C | {C} [p] {C} |
if (ϕ) {C} else {C} | while (ϕ) {C} | score(weight)

where parameter weight can be a number w ∈ R or a probability density func-
tion. The semantics of score can be interpreted as weighting the current execu-
tion with the parameter weight6.

Example 2 (Pedestrian [13,42,43,59]). A pedestrian has got lost on the way
home and only knows that she is a uniform random distance between 0 and
3 km from her house. She repeatedly walks a uniform random distance of at
most 1 km in either direction, until she arrives at her house. Upon her arrival,
an odometer tells her that she has walked 1.1 km in total. However, this odometer
was once broken and the measured distance is normally distributed around the
true distance with a standard deviation of 0.1 km. The movement can be modeled
by the probabilistic program in Fig. 2, together with its underlying CFG.

In Bayesian programming, one central problem is to infer the normalized pos-
terior distribution of Bayesian programming. We show that our unified frame-
work can be extended to infer the normalized posterior distribution for Bayesian
programming by a direct adaption of value function V (s).
6 score is more expressive and general than observe. Actually, the relation of the key-

word observe and score is score(f(D)) = observe D from p, where p is a predefined
probabilistic distribution, f is the corresponding probability density function, and
D is a measurable set. See more details in [10]. When using observe to filter the
admissible executions with a Boolean condition D (usually called hard conditioning),
we also can express it with if (D) {score(1)} else {score(0)}.

A Unified Framework for Quantitative Analysis of Probabilistic Programs 247

start :≈ uniform(0, 3)

p := start; d := 0;

lin : while(p ≥ 0){
r :≈ uniform(0, 1);

{p := p− r [0.5] p := p+ r}
d := d+ r;

}
score(pdf(normal(d, 0.1), 1.1));

lend : return start

Fig. 2. Pedestrian random walk (left) and its simplified CFG (right), where location
label lin and lend represent the starting and ending point of the program, respectively.

Given a measurable set U , the normalized posterior distribution of Bayesian
program P w.r.t. set U is defined by:

posterior(U) =
ZU

ZP
,

where ZU is the expected accumulated weights that terminal states lie in lend×U ,
and ZP is the normalising constant7. Thus, the key challenge in bounding the
normalized posterior distribution lies in finding upper and lower bounds on the
expected accumulated weights ZU and ZP .

Problem Formulation. Given a probabilistic program P and a measurable
set U , we aim to estimate the expected accumulated weights ZP and ZU

after the termination of program P .

To address this problem, we refine the value function V (s) by incorporat-
ing a weight factor and eliminating the transition cost, yielding the following
formulation:

V (s) = Es

[

TH−1
∏

i=0

weight(Xi) · 1TH<∞ · g(XTH
)

]

,

where weight(Xi) represents8 the weight factor at state Xi.
Based on the adapted value function, if H and g are further defined by

H = (lend × Val), g(s) =

{

1 if s ∈ U

0 otherwise.

7 We assume ZP < ∞.
8 If the program location associated with Xi contains no score statement, the weight

factor defaults to 1, i.e. weight(Xi) = 1.

248 S. Feng et al.

then V (s) = ZU . Similarly, V (s) = ZP if H = (lend × Val) and g(s) = 1. Thus,
it suffices to find upper and lower bounds on value V (s). Let

uYn � u(Xn) ·
n−1
∏

i=0

weight(Xi), (15)

for any u : S → R, the following results, analogous to Theorem 2, present
sufficient conditions to obtain upper bounds on V (s).

Theorem 5. Given a Bayesian Program P and its underlying Markov chain
M = (S,P), suppose there exists a function u : S → R such that the process

{(uYn∧TH
)−}n∈N

is uniformly integrable, then u(s) ≥ V (s) for s ∈ S if one of the following
conditions holds:

– Ps(TH < ∞) = 1 for any s ∈ S, and
∫

S

u(dt)P(s,dt) · weight(s) ≤ u(s), if s ∈ S\H

u(s) ≥ g(s), if s ∈ H

(16)

– the following equation holds
∫

S

u(dt)P(s,dt) · weight(s) ≤ u(s), if s ∈ S\H

u(s) ≥ 0, if s ∈ S\H

u(s) ≥ g(s), if s ∈ H

(17)

Remark 3. A similar result can be obtained for deriving lower bounds on V (s).
��

Proof. The proof closely resembles the proof of Theorem 2. Since Eq. (16) holds,
one can directly verify {Yn∧TH

}n∈N is a supermartingale. Thus, by properties of
supermartingale, we have

Es[Yn∧TH
] ≤ Es[Y0] = u(s).

holds for any n ∈ N. by taking limit on both sides and following a similar
argument in Theorem 2, we obtain u(s) ≥ V (s). ��
Example 3. We simply illustrate how our extended framework is applied to
address the Bayesian inference through Example 2. Without loss of generality, we
take the calculation of the upper bound and lower bound for ZP as an example.
According to Theorem 5, we have the following characterization for the upper
bound of ZP :

0.5Er[u1(p − r, d + r)] + 0.5Er[u1(p + r, d + r)] ≤ u1(p, d), if p ≥ 0 ∧ s ∈ lin,

pdf(normal(d, 0.1), 1.1) · u2(p, d) ≤ u1(p, d), if p < 0 ∧ s ∈ lin,

u2(p, d) ≥ 1 , if s ∈ lend,
(18)

A Unified Framework for Quantitative Analysis of Probabilistic Programs 249

where u1 is the value function on location lin and u2 is the value function on
location lend. Equation (18) can be encoded into semidefinite programming prob-
lems using Putinar’s Positivstellensatz [49], and further solved by a off-the-shelf
solver, e.g. Mosek [6]. ��
Remark 4. The sufficient conditions for deriving upper and lower bounds on
V (x) (or expected accumulated weights) constitute the central finding in [59].
In this paper, we re-establish these results within our unified framework. ��

6 Conclusion

We have introduced a unified framework for the quantitative analysis of prob-
abilistic programs, which encompasses termination analysis, temporal property
analysis, cost analysis, and expectation analysis. We illustrate how our approach
can be adapted to tackle inference problems in Bayesian programming. In the
future, we aim to expand our framework to encompass a broader spectrum of
probabilistic models, such as weighted programs discussed in [12], and to explore
efficient computational algorithms for determining upper and lower bounds.

Acknowledgments. We dedicate this article to our dear colleague Joost-Pieter
Katoen on the occasion of his 60th birthday, who has been tirelessly pushing the
limits of, amongst others, (automated) quantitative analysis of probabilistic programs.
This work has been funded by the National Key R&D Program of China under grant
No. 2022YFA1005101, by the NSFC under grant No. 62192732, by the ZJNSF Major
Program under grant No. LD24F020013, by the Fundamental Research Funds for the
Central Universities of China under grant No. 226-2024-00140, and by the ZJU Edu-
cation Foundation’s Qizhen Talent program.

A Additional Remarks on Value Function

In Definition 2, the value function V (s) for Markov chains is defined by

V (s) = Es

[

TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

(19)

which implicitly assume that
∑TH−1

i=0 f(Xi) converges9 (including converging to
infinity) almost surely. If it is not the case, we may define V (s) as an interval,
which contains all possible expected cost during the execution of the system.
Formally, let

L(s) = Es

[

lim inf
n→∞

n∧TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

(20)

U(s) = Es

[

lim sup
n→∞

n∧TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

(21)

9 Note
∑TH−1

i=0 f(Xi) is an infinite sum iff TH = ∞, thus if TH < ∞ almost surely,∑TH−1
i=0 f(Xi) also converges almost surely.

250 S. Feng et al.

we then define V (s) = [L,U]. If V (s) is an interval, the equation system in The-
orem 1 is not applicable, but the sufficient conditions for finding upper and lower
bounds proposed in Theorem 2 and Theorem 3 are still valid in the sense that
u(s) ≥ V (s) = [L(s), U(s)] means u(s) ≥ U(s), and u(s) ≤ V (s) = [L(s), U(s)]
means u(s) ≤ L(s).

For Markov chain, the value function V (s) in Definition 2 is defined by

V (s) = Es

[

TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

(22)

which also implicitly assume
∑TH−1

i=0 f(Xi) converges almost surely. If it is not
the case, we may define V (s) as an interval, formally, let

L(s) = Es

[

lim inf
n→∞

n∧TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

U(s) = Es

[

lim sup
n→∞

n∧TH−1
∑

i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

then V (s) is defined by
V (s) = [L(s), U(s)].

In this case, the equation system for V (s) proposed in Theorem 1 is not applica-
ble, but the conditions for finding upper and lower bounds proposed in Theorem
2 and Theorem 3 are still valid in the sense that

u(s) ≥ V (s) = [L(s), U(s)]

means u(s) ≥ U(s), and

u(s) ≤ V (s) = [L(s), U(s)]

means u(s) ≤ L(s).

References

1. Abate, A., Giacobbe, M., Roy, D.: learning probabilistic termination proofs. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 3–26. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 1

2. Albarghouthi, A., Hsu, J.: Constraint-based synthesis of coupling proofs. In: Chock-
ler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 327–346.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 18

3. Albarghouthi, A., Hsu, J.: Synthesizing coupling proofs of differential privacy. In:
Proceedings of the ACM on Programming Languages, vol. 2, pp. 1–30 (2018)

4. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1007/978-3-319-96145-3_18

A Unified Framework for Quantitative Analysis of Probabilistic Programs 251

5. Amrollahi, D., Bartocci, E., Kenison, G., Kovács, L., Moosbrugger, M., Stankovič,
M.: Solving invariant generation for unsolvable loops. In: Singh, G., Urban, C.
(eds.) Static Analysis, pp. 19–43. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-22308-2 3

6. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-
point method for conic quadratic optimization. Math. Program. 95(2), 249–277
(2003)

7. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
8. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-

ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

9. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Proving differential
privacy via probabilistic couplings. In: Grohe, M., Koskinen, E., Shankar, N., (eds.)
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pp. 749–758. ACM (2016)

10. Barthe, G., Katoen, J.P., Silva, A.: Foundations of Probabilistic Programming.
Cambridge University Press (2020)

11. Batz, K., Chen, M., Junges, S., Kaminski, B.L., Katoen, J.P., Matheja, C.: Prob-
abilistic program verification via inductive synthesis of inductive invariants. In:
Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems, pp. 410–429. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-30820-8 25

12. Batz, K., Gallus, A., Kaminski, B.L., Katoen, J., Winkler, T.: Weighted program-
ming: a programming paradigm for specifying mathematical models. Proc. ACM
Program. Lang. 6(OOPSLA1), 1–30 (2022)

13. Beutner, R., Ong, C.H.L., Zaiser, F.: Guaranteed bounds for posterior inference
in universal probabilistic programming. In: Jhala, R., Dillig, I. (eds.) PLDI ’22:
43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 13 - 17, 2022, pp. 536–551. ACM
(2022)

14. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: Garrigue, J., Keller, G., Sumii,
E. (eds.) Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pp.
33–46. ACM (2016)

15. Carbin, M., Misailovic, S., Rinard, M.C.: Verifying quantitative reliability for pro-
grams that execute on unreliable hardware. In: Hosking, A.L., Eugster, P.T.,
Lopes,C.V. (eds.) Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31,
2013, pp. 33–52. ACM (2013)

16. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 34

17. Chakarov, A., Voronin, Y.L., Sankaranarayanan, S.: Deductive proofs of almost
sure persistence and recurrence properties. In: Chechik, M., Raskin, J.F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 260–279. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9 15

https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-662-49674-9_15

252 S. Feng et al.

18. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 1

19. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 1

20. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis
of qualitative and quantitative termination problems for affine probabilistic pro-
grams. In : Bod́ık, R., Majumdar, R. (eds.) Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pp. 327–342. ACM (2016)

21. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
ACM Trans. Program. Lang. Syst. 40(2), 7–45 (2018)

22. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for probabilistic ter-
mination. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pp. 145–160. ACM (2017)

23. Chen, M., Katoen, J.P., Klinkenberg, L., Winkler, T.: Does a program yield
the right distribution?: verifying probabilistic programs via generating functions.
In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification, pp. 79–101. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-13185-1 5

24. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
25. Durrett,R.: Probability: Theory and Examples, vol. 49. Cambridge University Press

(2019)
26. Feng, S., Chen, M., Su, H., Kaminski, B.L., Katoen, J., Zhan, N.: Lower

bounds for possibly divergent probabilistic programs. Proc. ACM Program. Lang.
7(OOPSLA1), 696–726 (2023)

27. Thiemann, P. (ed.): ESOP 2016. LNCS, vol. 9632. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49498-1

28. Fu, H., Chatterjee, K.: Termination of nondeterministic probabilistic programs. In:
Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 468–490. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11245-5 22

29. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Herbsleb , J.B., Dwyer, M.B (eds.) Proceedings of the on Future of
Software Engineering, FOSE 2014, Hyderabad, India, May 31 - June 7, 2014, pp.
167–181. ACM (2014)

30. Hark, M., Kaminski, B.L., Giesl, J.,Katoen, J.P.: Aiming low is harder: induction
for lower bounds in probabilistic program verification. Proc. ACM Program. Lang.
4(POPL), 1–28 (2020)

31. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 488–511. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8 26

32.) Kaminski, B.L.: Advanced weakest precondition calculi for probabilistic pro-
grams, PhD thesis, RWTH Aachen University, Germany (2019)

33. Kaminski, B.L., Katoen, J.P.:A weakest pre-expectation semantics for mixed-sign
expectations. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pp. 1–12. IEEE Computer
Society (2017)

https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-031-13185-1_5
https://doi.org/10.1007/978-3-662-49498-1
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1007/978-3-030-53291-8_26

A Unified Framework for Quantitative Analysis of Probabilistic Programs 253

34. Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49498-1 15

35. Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected runtimes of randomized algorithms. J. ACM, 65(5), 1–68
(2018)

36. Karimi, A., Moosbrugger, M., Stankovič, M., Kovács, L., Bartocci, E., Bura, E.:
Distribution estimation for probabilistic loops. In: Ábrahám, E., Paolieri, M. (eds.)
Quantitative Evaluation of System, pp. 26–42. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-16336-4 2

37. Klinkenberg, L., Batz, K., Kaminski, B.L., Katoen, J.P., Moerman, J., Winkler,
T.: Generating functions for probabilistic programs. In: LOPSTR 2020. LNCS,
vol. 12561, pp. 231–248. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-68446-4 12

38. Kofnov, A., Moosbrugger, M., Stankovič, M., Bartocci, E., Bura, E.: Moment-based
invariants for probabilistic loops with non-polynomial assignments. In : Ábrahám,
E., Paolieri M. (eds.) Quantitative Evaluation of Systems - 19th International
Conference, QEST 2022, Warsaw, Poland, September 12-16, Proceedings (2022)

39. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

40. Kura, S., Urabe, N., Hasuo, I.: Tail probabilities for randomized program runtimes
via martingales for higher moments. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11428, pp. 135–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17465-1 8

41. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

42. Mak, C., Ong, C.-H.L., Paquet, H., Wagner, D.: Densities of almost surely ter-
minating probabilistic programs are differentiable almost everywhere. In: ESOP
2021. LNCS, vol. 12648, pp. 432–461. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-72019-3 16

43. Mak, C., Zaiser, F., Ong, L.: Nonparametric Hamiltonian Monte Carlo. In: Meila,
M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine
Learning, Volume 139 of Proceedings of Machine Learning Research, 18–24 Jul
2021, pp. 7336–7347. PMLR (2021)

44. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer, New York, NY (2005). https://
doi.org/10.1007/b138392

45. Moosbrugger, M., Bartocci, E., Katoen, J.P., Kovács, L.: Automated termina-
tion analysis of polynomial probabilistic programs. In: ESOP 2021. LNCS, vol.
12648, pp. 491–518. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72019-3 18

46. Moosbrugger, M., Bartocci, E., Katoen, J.P., Kovács, L.: The probabilistic ter-
mination tool amber. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 667–675. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 36

47. Moosbrugger, M., Stankovic, M., Bartocci, E., Kovács, L.: This is the moment for
probabilistic loops. Proc. ACM Program. Lang. 6(OOPSLA2), 1497–1525 (2022)

https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-031-16336-4_2
https://doi.org/10.1007/978-3-031-16336-4_2
https://doi.org/10.1007/978-3-030-68446-4_12
https://doi.org/10.1007/978-3-030-68446-4_12
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-030-72019-3_16
https://doi.org/10.1007/978-3-030-72019-3_16
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36

254 S. Feng et al.

48. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource anal-
ysis for probabilistic programs. In: Foster, J.S., Grossman, D. (eds.) Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pp. 496–
512. ACM (2018)

49. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ.
Math. J. 42(3), 969–984 (1993)

50. Quatmann, T., Katoen, J.P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 37

51. Rainforth, T.: Automating inference, learning, and design using probabilistic pro-
gramming, PhD thesis, University of Oxford (2017)

52. Ścibior, A., Ghahramani, Z., Gordon, A.D.: Practical probabilistic programming
with monads. In: Lippmeier. B., (ed.) Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4,
2015, pp. 165–176. ACM (2015)

53. Stankovic, M., Bartocci, E., Kovács, L.: Moment-based analysis of Bayesian net-
work properties. Theor. Comput. Sci. 903, 113–133 (2022)

54. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-
gales for reachability in randomized programs. ACM Trans. Program. Lang. Syst.
43(2), 1–46 (2021)

55. van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An introduction to probabilistic
programming. arXiv preprint arXiv:1809.10756 (2018)

56. Wang, D., Hoffmann, J., Reps, T.W.: Central moment analysis for cost accumula-
tors in probabilistic programs. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21: 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 20211, pp. 559–573. ACM
(2021)

57. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative analysis
of assertion violations in probabilistic programs. In: Freund, S.N., Yahav. E (eds.)
PLDI 2021: 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, Virtual Event, Canada, June 20-25, 2021, pp.
1171–1186. ACM (2021)

58. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analysis
of nondeterministic probabilistic programs. In : McKinley, K.S., Fisher, K, (eds.),
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26 (2019)

59. Wang, P., Fu, H., Yang, T., Li, G., Ong, L.: Template-based static posterior
inference for Bayesian probabilistic programming. arXiv preprint arXiv:2307.13160
(2023)

60. Williams, D.: Probability with Martingales. Cambridge University Press (1991)

https://doi.org/10.1007/978-3-319-96145-3_37
http://arxiv.org/abs/1809.10756
http://arxiv.org/abs/2307.13160

	A Unified Framework for Quantitative Analysis of Probabilistic Programs
	1 Introduction
	2 Preliminaries
	2.1 Probability Theory
	2.2 Probabilistic Programs
	2.3 Quantitative Analysis of MC

	3 Quantitative Analysis of Markov Chains
	3.1 Extension to MDP

	4 Quantitative Analysis of Probabilistic Programs
	4.1 Assertion Violation
	4.2 Expected Running Time
	4.3 Expected Accumulated Cost
	4.4 Expectation Analysis

	5 Extension to Bayesian Programming
	6 Conclusion
	A Additional Remarks on Value Function
	References

