

PARF: An Adaptive Abstraction-Strategy Tuner for Static Analysis

Zhong-Yi Wang1 (王钟逸), Ming-Shuai Chen1, * (陈明帅), Senior Member, CCF, Teng-Jie Lin1 (林滕劼)
Lin-Yu Yang1 (杨麟禹), Jun-Hao Zhuo1 (卓俊豪), Qiu-Ye Wang2 (王秋野), Sheng-Chao Qin3 (秦胜潮)
Xiao Yi2 (伊　晓), and Jian-Wei Yin1 (尹建伟), Senior Member, CCF

1 College of Computer Science and Technology, Zhejiang University, Hangzhou 310012, China
2 Fermat Labs, Huawei Inc., Dongguan 523000, China
3 Guangzhou Institute of Technology, Xidian University, Guangzhou 510000, China

E-mail: wzygomboc@zju.edu.cn; m.chen@zju.edu.cn; tengjie.lin@zju.edu.cn; linyu.yang@zju.edu.cn; jhzhuo@zju.edu.cn
wangqiuye2@huawei.com; shengchao.qin@gmail.com; yi.xiao1@huawei.com; zjuyjw@zju.edu.cn

Received December 31, 2024; accepted June 5, 2025.

Abstract We launch PARF — a toolkit for adaptively tuning abstraction strategies of static program analyzers in a ful-

ly automated manner. PARF models various types of external parameters (encoding abstraction strategies) as random vari-

ables subject to probability distributions over latticed parameter spaces. It incrementally refines the probability distribu-

tions based on accumulated intermediate results generated by repeatedly sampling and analyzing, thereby ultimately yield-

ing a set of highly accurate abstraction strategies. PARF is implemented on top of FRAMA-C/EVA — an off-the-shelf open-

source static analyzer for C programs. PARF provides a web-based user interface facilitating the intuitive configuration of

static analyzers and visualization of dynamic distribution refinement of the abstraction strategies. It further supports the

identification of dominant parameters in FRAMA-C/EVA analysis. Benchmark experiments and a case study demonstrate the

competitive performance of PARF for analyzing complex, large-scale real-world programs.

Keywords automatic parameter tuning, FRAMA-C/EVA, program verification, static analysis, abstraction strategy

1 Introduction

Static analysis is the process of analyzing a pro-

gram without ever executing its source code. The goal

of static analysis is to identify and help users elimi-

nate potential runtime errors (RTEs) in the program,

e.g., division by zero, overflow in integer arithmetic,

and invalid memory accesses. Identifying an appropri-

ate abstraction strategy — for soundly approximat-

ing the concrete semantics — is a crucial task to ob-

tain a delicate trade-off between the accuracy and ef-

ficiency of static analysis: a finer abstraction strategy

may yield fewer false alarms (i.e., approximation-

caused alarms that do not induce RTEs) yet typical-

ly incurs less efficient analysis. State-of-the-art sound

static analyzers, such as FRAMA-C/EVA[1], Astrée[2],

GOBLINT[3], and MOPSA[4], integrate abstraction strate-

gies encoded by various external parameters, thereby

enabling analysts to balance accuracy and efficiency

by tuning these parameters.

Albeit with the extensive theoretical study of

sound static analysis[5, 6], the picture is much less

clear on its parameterization front[7]: it is challenging

to find a set of high-precision parameters to achieve

low false-positive rates within a given time budget.

The main reasons are two-fold. 1) Off-the-shelf static

analyzers often provide a wide range of parameters

subject to a huge and possibly infinite joint parame-

ter space. For instance, the parameter setting in Table 1

Regular Paper

Special Section of ChinaSoft2024—Prototype

This work was supported by the Zhejiang Provincial Natural Science Foundation Major Program under Grant No.
LD24F020013, the CCF-Huawei Populus Grove Fund under Grant No. CCF-HuaweiFM202301, the Fundamental Research Funds
for the Central Universities of China under Grant No. 226-2024-00140, and the Zhejiang University Education Foundation's Qizhen
Talent Program.

*Corresponding Author

Wang ZY, Chen MS, Lin TJ et al. PARF: An adaptive abstraction-strategy tuner for static analysis. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY. DOI: 10.1007/s11390-025-5140-6, CSTR: 32374.14.s11390-025-5140-6

©Institute of Computing Technology, Chinese Academy of Sciences 2025

https://doi.org/10.1007/s11390-025-5140-6
https://doi.org/10.1007/s11390-025-5140-6
https://doi.org/10.1007/s11390-025-5140-6
https://doi.org/10.1007/s11390-025-5140-6
https://doi.org/10.1007/s11390-025-5140-6
https://doi.org/10.1007/s11390-025-5140-6
https://doi.org/10.1007/s11390-025-5140-6
https://cstr.cn/32374.14.s11390-025-5140-6
https://cstr.cn/32374.14.s11390-025-5140-6
https://cstr.cn/32374.14.s11390-025-5140-6
https://cstr.cn/32374.14.s11390-025-5140-6
https://cstr.cn/32374.14.s11390-025-5140-6
https://cstr.cn/32374.14.s11390-025-5140-6
https://cstr.cn/32374.14.s11390-025-5140-6

consists of 13 external parameters that are highly rel-

evant to the accuracy and efficiency of FRAMA-C/EVA,

among which eight integer parameters have infinite

value spaces. 2) The process of seeking highly accu-

rate results typically requires multiple trials of param-

eter setting and analysis, which generates a large

amount of intermediate information such as RTE

alarms and analysis time. Nevertheless, few static an-

alyzers provide a fully automated approach to guid-

ing the refinement of abstraction strategies based on

such information. Therefore, the use of sound static

analysis tools still relies heavily on expert knowledge

and experience.

-eva-precision

Some advanced static analyzers attempt to address

the above challenges using various methods. FRAMA-C/

EVA[1] provides the meta option ,

which packs a predefined group of valuations to the

parameters listed in Table 1, thus enabling a quick

setup of the analysis. Kästner et al.[8] summarized the

four most important abstraction strategies in Astrée
and recommended prioritizing the accuracy of related

abstract domains, which amounts to narrowing down

the parameter space. However, both FRAMA-C/EVA and

Astrée currently do not support automatic parameter

generation. GOBLINT[3] implements a simple, heuristic

autotuning method based on syntactical criteria,

which can automatically activate or deactivate ab-

straction techniques before analysis. However, this

method only generates an initial analysis configura-

tion once and does not dynamically adapt to refine

the parameter configuration. See Section 6 for de-

tailed related work.

Following this line of research, we have presented

PARF[9], an adaptive and fully automated parameter

refining framework for sound static analyzers. PARF

models various types of parameters as random vari-

ables subject to probability distributions over lat-

ticed parameter spaces. Within a given time budget,

PARF identifies a set of highly accurate abstraction

strategies by incrementally refining the probability

distributions based on accumulated intermediate re-

sults generated via repeatedly sampling and analyz-

ing. Preliminary experiments have demonstrated that

PARF outperforms state-of-the-art parameter-tuning

mechanisms by discovering abstraction strategies

leading to more accurate analysis, particularly for

programs of a large scale.

Contributions. This article presents the PARF arti-

fact, whose theoretical underpinnings have been es-

tablished in [9]. We focus on the design, implementa-

tion, and application of the PARF toolkit and make—
in position to [9]—the following new contributions.

1) We present design principles underneath the

novel abstraction-strategy tuning architecture PARF

for establishing provable incrementality (monotonic

knowledge retention) and adaptivity (resource-aware

exploration) to achieve accuracy-efficiency trade-offs

in static analysis parameterization.

2) We develop a web-based user interface (UI) for

PARF which facilitates the intuitive configuration of

static analysis and visualizes the dynamic distribu-

tion refinement of abstraction strategies.

3) We show via a post-hoc analysis that PARF sup-

ports the identification of the most influential param-

eters dominating the accuracy-efficiency trade-off.

4) We demonstrate through a case study how

PARF can help eliminate false alarms and, in some cas-

es, certify the absence of RTEs.

2 Problem and Methodology

This section revisits the problem of abstraction-

strategy tuning and outlines the general idea behind

our PARF framework. More technical details are in [9].

Analyze : (prog, p) 7→ Ap

prog

p

Ap

p

In abstraction-strategy tuning, a static analyzer is

modeled as a function , which

receives a target program and a parameter set-

ting (encoding an abstraction strategy of the ana-

lyzer) and returns a set of RTE alarms emitted

under [9]. We assume, as is the case in most state-of-

the-art static analyzers[10], that the analyzer exhibits

monotonicity over parameters, i.e., an abstraction

strategy of higher precision (in an ordered joint pa-

rameter space) induces fewer alarms and thereby

Table 1. Parameter Settings in FRAMA-C/EVA

Parameter Type Value Space

min-loop-unroll Integer N
auto-loop-unroll Integer N
widening-delay Integer N
partition-history Integer N
slevel Integer N
ilevel Integer N
plevel Integer N
subdivide-non-linear Integer N
split-return String {��, �auto�}
remove-redundant-alarms Boolean {false, true}
octagon-through-calls Boolean {false, true}
equality-through-calls String {�none�, �formals�}

domains Set-of-strings {false, true}5

domains
|domains| = 5
{false, true}5
Note: For the set-of-strings parameter with

, its value space is the Cartesian product
.

2 J. Comput. Sci. & Technol.

more accurate analysis.

prog

T ∈ R>0 Analyze

S Analyze

p ∈ S

Analyze(prog, p)

T

The abstraction-strategy tuning problem can be

formally defined as: given a target program , a

time budget , a static analyzer , and

the joint space of parameter settings of ,

find a parameter setting such that

 returns as few alarms as possible

within [9].

Our PARF framework[9] addresses the problem as

follows. It models external parameters of the static

analyzer as random variables subject to probability

distributions over parameter spaces equipped with

complete lattice structures. It incrementally refines

the probability distributions based on accumulated in-

termediate results generated by repeatedly sampling

and analyzing, thereby ultimately yielding a set of

highly accurate parameter settings within a given

time budget. More concretely, PARF adopts a multi-

round iterative mechanism. In each iteration, PARF

1) repeatedly samples parameter settings based on the

initial or refined probability distribution of parame-

ters, and then 2) uses these parameter settings as in-

puts to the static analyzer to analyze the program,

and finally 3) utilizes the analysis results to refine the

probability distribution of parameters. PARF contin-

ues this process until the prescribed time budget is

exhausted, upon which it returns the analysis results

of the final round together with the final probability

distribution of parameters.

Pbase

Pdelta

Pbase Pdelta

Pbase

Pdelta

The core technical challenge lies in designing the

representation of probability distributions over lat-

ticed parameter spaces and the iterative refinement

mechanism that jointly enforce 1) incrementality: re-

wardless analyses (i.e., no new false alarms are elimi-

nated) with low-precision parameters do not occur;

and 2) adaptivity: analysis failures can be avoided

while enabling the effective search of high-precision

parameters. Specifically, we model each parameter as

a combination of dual random variables (and

) with type-specific initialization. Then we de-

sign and stratified refinement strategies, re-

spectively, which guarantees: 1) incremental ex-

pectation to preserve the accumulated knowledge dur-

ing the iterative procedure, and 2) adaptive ex-

pectation scaling to balance trade-offs of exploring the

uncharted parameter space and high-precision analy-

sis resource costs. Related details are illustrated in

Section 3.

Regarding implementation, we are primarily con-

cerned with the open-source static analyzer FRAMA-

C/EVA[1] for C programs. However, since PARF treats

the underlying analyzer as a black-box function, it

can be integrated with any static analyzer exhibiting

monotonicity (e.g., MOPSA[4] as shown in [9]).

3 PARF Architecture

This section elaborates on PARF artifact that im-

Frontend

Backend

①②

③

④

⑤
⑥

⑦⑧

⑨

⑨

Fig.1. Architecture of the PARF artifact.

Zhong-Yi Wang et al.: PARF: An Adaptive Abstraction-Strategy Tuner for Static Analysis 3

plements the aforementioned techniques. As depicted

in Fig.1, the artifact is composed of two components:

the backend tuning algorithm and the frontend web

UI. The former comprises about 1 500 lines of OCaml

code and the latter is built using Next.js and Type-

Script.

The workflow of the backend tuning algorithm

comprises four main steps.

1) Value-Space Encoding (Subsection 3.1). PARF

encodes the value spaces of parameters as sample

spaces with complete lattice structures (①. Mean-

while, it models external parameters of FRAMA-C/EVA

as random variables subject to probability distribu-

tions over those latticed spaces (②). This step aims

to initialize the parameter distribution (③), which

serves as the basis for subsequent sample-analyze-re-

fine iterations.

numsample

2) Parameter Sampling (Subsection 3.2). PARF re-

peatedly samples (④) parameter settings as per ei-

ther the initial distribution (from step 1) or the re-

fined distribution (from step 4). The number of sam-

ples is determined by a user-defined hyper-parameter

.

prog

timebudget

3) Program Analyzing (Subsection 3.3). Using the

parameter settings generated in step 2, PARF performs

static analysis (⑤) on the target program via

FRAMA-C/EVA within the given time budget .

The artifact supports parallelization and thus allows

multiple analyses to be conducted simultaneously

(⑥). Once the time budget for this step is exhausted,

PARF collects the intermediate results (e.g., the termi-

nation conditions and reported alarms) from each

analysis and proceeds to the next step.

4) Distribution Refining (Subsection 3.4). PAR-

Futilizes the intermediate results to refine the proba-

bility distribution (⑦). It then returns to step 2, us-

ing the updated distribution as input (⑧).

The frontend web-based UI enables intuitive and

flexible interaction between users and the backend

for, e.g., uploading target programs and configuring

numsample timebudget numprocesshyper-parameters (, , and).

Moreover, the UI visualizes the dynamic evolution of

parameter distributions during the analysis and dis-

plays the final analysis results along with the corre-

sponding abstraction strategy (⑨). Videos on access-

ing and using the UI are available online①②. Below,

we explain each function module of the artifact in de-

tail.

3.1 Value-Space Encoding

N

domains

domains

(false, false, true, true, false)

domains {false, true}5

Table 1 lists 13 parameters encoding FRAMA-

C/EVA's abstraction and analysis strategies, catego-

rized into four types with value spaces defined by

their type: 1) integer parameters range over ; 2)

Boolean parameters have a value space of {false,

true}; 3) string parameters have a value space de-

fined as a set of strings; and 4) , a unique set-

of-strings parameter takes values from a power set of

five abstract domains, namely, {“cvalues”, “octagon”,
“equality”, “gauges”, “symbolic-locations”}. A value

of can be represented as a quintuple consist-

ing of true or false, indicating whether the corre-

sponding domain is enabled. For example, the quintu-

ple corresponds to

{“equality”, “gauges”}. Thus, the value space of

 is .

(S, ⊑, ⊔, ⊓,
⊤, ⊥) S

⊑ S ⊔
⊓

⊤
⊥ S

PARF encodes the value spaces of parameters into

latticed sample spaces, represented as

, where denotes the value space of a parame-

ter, is the partial order over , denotes the join
(aka the least upper bound) operator, denotes the

meet (aka the greatest lower bound) operator, and

 stand for the greatest and least element in , re-

spectively. Table 2 instantiates these symbols for each

parameter type. Note that the two string-typed pa-

rameters of FRAMA-C/EVA (cf. Table 1) have only two

possible values corresponding to two abstraction

strategies with different precision levels, thus allow-

ing us to treat them as Boolean-typed parameters.

Table 2. Latticed Sample Spaces of Different Parameter Types

Type a ⊑ b a ⊔ b a ⊓ b ⊤ ⊥
Integer a ⩽ b max(a, b) min(a, b) ∞ 0

Boolean a ⇒ b a ∨ b a ∧ b true false
Set-of-strings a ⊆ b a ∪ b a ∩ b U ∅

a b a = 2, b = 5 a = false, b = true
a = {�equality�}, b = {�equality�, �gauges�}

Note: the elements and in each row are of their respective type, e.g., for integer parameters, for
Boolean parameters, and for set-of-strings parameters.

4 J. Comput. Sci. & Technol.

①https://doi.org/10.528 1/zenodo.13934703, Jun. 2025.

②https://jcst.ict.ac.cn/news/366, Jul. 2025.

https://doi.org/10.5281/zenodo.13934703
https://doi.org/10.5281/zenodo.13934703
https://doi.org/10.5281/zenodo.13934703
https://doi.org/10.5281/zenodo.13934703
https://doi.org/10.5281/zenodo.13934703
https://doi.org/10.5281/zenodo.13934703
https://jcst.ict.ac.cn/news/366

The lattice structure of the sample spaces serves as

the basis of the distribution refinement mechanism

described in Subsection 3.4.

P

PARF models each parameter as a composite ran-

dom variable in the novel form of:

P ≜ Pbase ⊕ Pdelta, (1)

Pbase

Pdelta

P Pbase

Pr[Pbase = p] = 1 p ∈ S

Pdelta

N P Pbase

Pdelta ⊕

where is a base random variable for retaining the

accumulated knowledge during the iterative analysis

whilst is a delta random variable for exploring

the parameter space; they share the same sample

space and range with . follows Dirac distribu-

tions, i.e., for some sample ;

 adopts different types of distributions as per the

parameter type: we use Bernoulli distributions for

Boolean-typed parameters and Poisson distributions

for integer-typed parameters (since the latter natural-

ly encodes infinite-support discrete distributions over

). The constructions of by combining and

 via the operator is given in Table 3.

Pdelta

λ

Remark. Determining appropriate distributions for

 presents a technical challenge. Boolean parame-

ters naturally match Bernoulli distributions due to

their binary support set. For integer parameters, we

utilize Poisson distributions for two key reasons:

1) the Poisson distributions offers an infinite support

set that aligns well with the nature of integers, and

2) the Poisson distributions is characterized by a

unique parameter .

3.2 Parameter Sampling

P

PARF repeatedly samples values for each parame-

ter represented as a random variable following the

composite distribution as in (1). For instance, the ini-

tial distributions employed by the artifact are collect-

ed in online appendix③.

p P

pbase pdelta

To generate a sample point for parameter ,

PARF first draws samples and independently

Pbase Pdelta

⊕
P p = pbase ⊕ pdelta

numsample

from the distributions of and , respectively,

and then applies the binary operation to construct

the sampled value for , i.e., (see

Table 3). Subsequently, PARF aggregates the sampled

values of all parameters into a complete analysis con-

figuration. The total number of generated configura-

tions in a sample-analyze-refine iteration is controlled

by the user-defined hyper-parameter . All the

configurations are maintained in an internal list struc-

ture.

3.3 Program Analyzing

prog

numsample

Parmap

numprocess

In this step, PARF performs static analysis on the

target program leveraging FRAMA-C/EVA. The

analyses pertaining to the parameter set-

tings obtained in the previous step are mutually inde-

pendent and thus can be parallelized. However, FRA-

MA-C/EVA per se does not support the execution of

parallel tasks. Hence, we implement this functionality

using the OCaml module ④. The degree of par-

allelization, i.e., the number of processes, is deter-

mined by the user-defined hyper-parameter .

timebudget

P

Some analyses may fail to terminate within the

given time limit, which is constrained by the total

time budget (controlled by a hyper-parameter

) for all the sample-analyze-refine rounds.

For each analysis, PARF records whether it terminates

and, if yes, the so-reported alarms. These intermedi-

ate results are then utilized to refine the distribution

of .

3.4 Distribution Refining

Pbase

(S, ⊑, ⊔, ⊓, ⊤, ⊥)

slevel

PARF refines the distribution of based on its

latticed sample spaces , leverag-

ing all the collected intermediate results. Table 4

shows an example of such refinement for ,

which is a crucial parameter for controlling the capac-

P Pbase PdeltaTable 3. Distributions of , , and

Type S PbaseDistribution of PdeltaDistribution of P = Pbase ⊕ Pdelta

Integer N ∪ {∞} Pr[Pbase = a] = 1 Poisson(λ) a + Pdelta

Boolean {false, true} Pr[Pbase = b] = 1 Bernoulli(q) b ∨ Pdelta

Set-of-strings {false, true}c Pr[Pbase = (b1, . . . , bc)] = 1 Bernoulli(q1)× . . .× Bernoulli(qc) (b1 ∨ P 1
delta)× . . .× (bc ∨ P c

delta)

Pbase a b, b1, . . . , bc Pdelta
c

Pdelta (P 1
delta, . . . , P c

delta) ⊕
+ ∨

c ⊕ ∨ c

Note: follows a Dirac distribution where is an integer sample and are Boolean values. adopts one of the
following distributions, depending on the parameter type: Poisson distribution, Bernoulli distribution, or -dimensional independent
joint Bernoulli distribution (in this case, can be expressed as). The binary operator also varies based on
the parameter type: it corresponds to addition () and logical disjunction () for an integer or Boolean parameter, respectively; for
a set-of-strings parameter with cardinality , is defined as the point-wise lifting of to a -dimensional random vector.

Zhong-Yi Wang et al.: PARF: An Adaptive Abstraction-Strategy Tuner for Static Analysis 5

③Table A1 of Appendix A1, https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list, Jun. 2025.

④https://opam.ocaml.org/packages/parmap/, Jun. 2025.

https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://opam.ocaml.org/packages/parmap/

R ∈
m×n

m
n

m V

Vi

i

Pbase

ity of separate (unmerged) states during the static

analysis. The individual analyses as exemplified in

Table 4 are produced in parallel within a single itera-

tion. Our artifact then constructs a matrix {✔,

✘} , to represent the intermediate results (exclud-

ing failed analyses), where is the number of suc-
cessfully completed analyses and is the cardinality

of the universal set of reported alarms. We also use

an -dimensional vector to denote the parameter

values used in each analysis (signifies the parame-

ter value for the -th analysis). Next, PARF performs

Algorithm 1 to refine the distribution of .

PbaseAlgorithm 1. Refining the Distribution of

R m× n V m
Pbase

Input: : intermediate-result matrix; : -dimensional
 parameter value vector; : original distribution.

P
′

baseOutput: : refined distribution.

P
′

base ← Pbase;

▷ iterate over columns of R (alarms)for j ← 1 to n do

tmp← ⊤ ;

▷ scan rows of R (analyses) for i ← 1 to m do

Rij = tmp← tmp ⊓ Vi if ✘ then

tmp ̸= ⊤ P
′

base ← P
′

base ⊔ tmp if then ;

P
′

basereturn ;

j

R j

j

Pbase

Algorithm 1 employs two nested loops. For the -

th column of (w.r.t. Alarm), the inner loop com-

putes the greatest lower bound (for the lowest preci-

sion) of all sampled parameters which can eliminate

(false) Alarm . The outer loop casts the least upper

bound for eliminating all such false alarms with the

lowest precision. Considering the example in Table 4,

 is refined as:

P
′

base = Pbase ⊔ (⊤ ⊓ 58 ⊓ 103 ⊓ 104 ⊓ 1 000 ⊓ 9)

⊔ (⊤ ⊓ 58 ⊓ 103 ⊓ 104 ⊓ 1 000)

⊔ (⊤ ⊓ 104 ⊓ 1 000)
= Pbase ⊔ 9 ⊔ 58 ⊔ 104.

P
′

base

slevel
It follows that is the least precise parameter set-

ting (w.r.t.) that can eliminate all newly dis-

covered false alarms in the current iteration.

Pdelta

ηc
numsample

Pdelta η=2ηc+

(1/numsample) η > 1 ηc ⩾ 0.5

η

Pdelta

For refining the distribution of , PARF uses the

so-called completion rate , i.e., the ratio of success-

fully completed analyses to all the analyses.

 is then refined via the scaling factor

 as per Table 5 (for). A

larger value of indicates that more analyses have

been completed within the allocated time budget, sug-

gesting that a more extensive exploration of the pa-

rameter space (by scaling up) is possible, and

vice versa.

PdeltaTable 5. Refining the Distribution of

Type PdeltaOriginal PdeltaRefined

Integer Poisson(λ) Poisson(λ× η)

Boolean Bernoulli(q) Bernoulli(1− (1− q)η)

Set-of-strings B(q1)× . . .× B(qc) B(1− (1− q1)η)× . . .×
B(1− (1− qc)η)

Note: B(q) is shorthand for Bernoulli(q).

4 Empirical Evaluation

In this section, we evaluate the PARF artifact⑤ to

answer the following research questions.

RQ1 (Consistency). Can the artifact reproduce ex-

perimental results as reported in [9] (given the inher-

ent randomness of PARF due to the sampling module)?

RQ2 (Verification Capability). Can PARF improve

FRAMA-C in verification competitions?

RQ3 (Dominancy). Which are the dominant (i.e.,

most influential) parameters in FRAMA-C/EVA?

RQ4 (Interpretability). How does PARF help elimi-

nate false alarms or even certify the absence of RTEs?

4.1 Experimental Setup

Benchmarks. We evaluate PARF over two bench-

mark suites.

1) The first suite is FRAMA-C Open Source Case

Study (OSCS) Benchmarks⑥ (as per [9]), comprising

37 real-world C code bases, such as the “X509” pars-

er project (a FRAMA-C-verified parser)[11] and “chrony”
(a versatile implementation of the Network Time Pro-

tocol). The benchmark details are provided in Table 6.

2) The second suite is collected from the verifica-

Pbase slevelTable 4. Example of Refining for

Analysis Value Alarm 1 Alarm 2 Alarm 3 Alarm 4

1 58 ✘ ✘ ✔ ✔

2 103 ✘ ✘ ✔ ✔

3 104 ✘ ✘ ✘ ✔

4 1 000 ✘ ✘ ✘ ✔

5 9 ✘ ✔ ✔ ✔

6 9 999 – – – –

slevel
(j + 2)

j −

Note: The second column lists the values of parameter .
✔ and ✘ in the -th column indicate whether the
analysis produces Alarm (✔) or not (✘), and marks a
failed analysis.

6 J. Comput. Sci. & Technol.

⑤https://hub.docker.com/repository/docker/parfdocker/parf-jcst/general, Jun. 2025.

⑥https://git.frama-c.com/pub/open-source-case-studies, Jun. 2025.

https://hub.docker.com/repository/docker/parfdocker/parf-jcst/general
https://hub.docker.com/repository/docker/parfdocker/parf-jcst/general
https://hub.docker.com/repository/docker/parfdocker/parf-jcst/general
https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies

tion tasks of SV-COMP 2024[12], where FRAMA-C par-

ticipated in the NoOverflows category with a specific

version called FRAMA-C-SV[13].

-eva-precision
Baselines. We compare PARF against four parame-

ter-tuning mechanisms: 0, DEFAULT, EX-

PERT, and OFFICIAL. The former two adopt the lowest-

precision and default abstraction strategies of FRAMA-

C/EVA, respectively. EXPERT dynamically adjusts

the precision of abstraction strategies by sequentially

-eva-precisionincreasing the meta-option from 0 to

11 until the given time budget is exhausted or the

highest precision level is reached. The OFFICIAL

mechanism uses the tailored strategies provided by

FRAMA-C/EVA for the OSCS benchmarks, which can be

regarded as “high-quality” configurations.

Configurations. All experiments are performed on

a system equipped with two AMD EPYC 7542 32-

core processors and 128 GB RAM running Ubuntu

Table 6. Experimental Results in Terms of RQ1 (Consistency)

OSCS Benchmark Details #Alarms of Baselines #Alarms of PARF

Benchmark Name LOC #Statements -eva-precision -eva-precision 0 DEFAULT EXPERT OFFICIAL
PARF_
OPT

PARF_
AVG

2048 440 329 6 13 7 5 7 4 4.33

chrony 37 177 41 11 9 9 7 8 7 7.00

debie1 8 972 3 243 2 33 33 3 1 2 3.33

genann 1 183 1 042 10 236 236 69 77 69 69.00

gzip124 8 166 4 835 0 885 884 885 866 807 836.00

hiredis 7 459 87 11 9 9 0 9 0 0.00

icpc 1 302 424 11 9 9 1 1 1 1.00

jsmn-ex1 1 016 1 219 11 58 58 1 1 1 1.00

jsmn-ex2 1 016 311 11 68 68 1 1 1 1.00

kgflags-ex1 1 455 474 11 11 11 0 11 0 0.00

kgflags-ex2 1 455 736 10 33 33 19 33 19 19.00

khash 1 016 206 11 14 14 2 14 2 2.00

kilo 1 276 1 078 2 523 523 445 688 419 421.67

libspng 4 455 2 377 7 186 186 122 122 126 145.33

line-following-robot 6 739 857 10 1 1 1 1 1 1.00

microstrain 51 007 3 216 6 1 177 1 177 616 646 601 606.00

mini-gmp 11 706 628 6 83 83 71 83 65 68.67

miniz-ex1 10 844 3 659 1 2 291 2 291 1832 2 291 1 763.67

miniz-ex2 10 844 5 589 1 2 748 2 742 2 220 2 742 2 219 2 475.33

miniz-ex3 10 844 3 747 1 585 577 552 577 432 510.67

miniz-ex4 10 844 1 246 4 264 258 217 258 188 206.67

miniz-ex5 10 844 3 430 2 431 425 371 425 385 389.00

miniz-ex6 10 844 2 073 2 220 220 190 220 175 183.33

monocypher 25 263 4 126 2 606 606 564 568 572 577.67

papabench 12 254 36 11 1 1 1 1 1 1.00

qlz-ex1 1 168 229 11 68 68 11 68 11 21.33

qlz-ex2 1 168 75 11 8 8 8 8 8 8.00

qlz-ex3 1 168 294 8 94 94 82 94 82 82.00

qlz-ex4 1 168 164 11 17 17 13 17 13 13.00

safestringlib 29 271 13 029 7 855 855 256 300 263 268.33

semver 1 532 728 9 29 29 22 25 22 23.00

solitaire 338 396 11 216 216 18 213 18 18.00

stmr 781 500 6 63 63 58 59 58 58.00

tsvc 5 610 5 478 4 413 413 355 379 354 356.00

tutorials 325 89 11 5 5 1 5 0 0.00

tweetnacl-usable 1 204 659 11 126 126 25 30 25 25.00

x509-parser 9 457 3 112 3 208 208 198 198 181 185.33

Overall (tied-best+exclusively best) 3/37 3/37 24/37 9/37 33/37 (89.2%) –

Overall (exclusively best) 0/37 0/37 2/37 1/37 11/37 (29.7%) –

-eva-precision
Note: The benchmark details include: 1) name of each benchmark; 2) LOC (lines of code): size of each benchmark's source files;
3) #Statements: the number of statements covered during analysis for each benchmark; 4) : the highest precision
level identified by EXPERT under the experimental configuration. #Alarms is the number of alarms generated by different parameter-
tuning mechanisms (baselines and PARF).

Zhong-Yi Wang et al.: PARF: An Adaptive Abstraction-Strategy Tuner for Static Analysis 7

numsample = 4

timebudget = 1

22.04.5 LTS. To attain consistency, we adopt the

same hyper-parameters as in [9] (with

and hour for each benchmark).

4.2 RQ1: Consistency

> 1%

⩽ 1%

Table 6 reports the analysis results in terms of the

number of emitted alarms. For PARF, due to its inher-

ent randomness, we repeat each experiment three

times and report both the best result (PARF_OPT) and

the averaged result (PARF_AVG). Since the former is al-

so adopted in [9], we primarily compare PARF_OPT

against the four baselines. We mark results with the

exclusively fewest alarms (with difference) as

exclusively best and results with the same least num-

ber of alarms (modulo a difference of) as tied-

best.

-eva-precision

Overall, PARF achieves the least number of alarms

on 33/37 (89.2%) benchmarks with exclusively best

results on 11/37 (29.7%) cases, significantly outper-

forming its four competitors. These results are consis-

tent with those obtained in [9] (best: 34/37; exclusive-

ly best: 12/37). The minor differences stem primarily

from the inherent randomness of PARF and changes in

hardware configurations. We observe a special case

for “miniz-ex1”, where #alarms reduces from 1 828 as

in [9] to 1. This correlates with the fact that PARF

finds an abstraction strategy that triggers a drastic

decrease in FRAMA-C's analysis coverage[1]. Moreover,

as is observed in [9], PARF is particularly suitable for an-

alyzing complex, large-scale real-world programs (i.e.,

benchmarks featuring low levels of).

4.3 RQ2: Verification Capability

Static analyzers, such as FRAMA-C, can be applied

in verification scenarios[12]. Table 7 shows that PARF

can improve the performance of FRAMA-C in SV-

COMP. The detailed scoring schema is presented in

online appendix⑦, as per [12]. Since the analysis re-

source for each verification task is limited to 15 min-

FRAMA-C-SVprecision11

-eva-precision11

timebudget numprocess numsample

utes of CPU time, the strategy

uses a fixed highest parameter for

analysis (as per [13]). We set the hyper-parameters

, , and of FRAMA-C-SVPARF

to 7.5 minutes, 2, and 4, respectively.

FRAMA-C-SVprecision11

The experimental results demonstrates PARF's

methodological robustness in enhancing verification

capacity of FRAMA-C. Specifically, PARF eliminates all

104 analysis failures (due to the timeout) and verifies

39 more tasks, thereby improving the total score from 1 006

to 1 084. Fig.2 illustrates that PARF adaptively identi-

fies 42 high-accuracy analysis results among the 104

failure cases, thus successfully verifying them. Fur-

thermore, among all the 1 057 true correct cases veri-

fied by , PARF misses only 3.

4.4 RQ3: Dominancy

FRAMA-C EVA

-eva-precision

-eva-precision

-eva-precision

We show via a post-hoc analysis that PARF sup-

ports the identification of the most influential param-

eters dominating the performance of / .

To this end, we conduct 13 pairs (each for a single

parameter) of controlled experiments for each OSCS

benchmark⑧. For instance, Fig.3 depicts the results of

13 pairs of analyses for the “2048” benchmark. The

analyses using the PARF_OPT configuration (report-

ing four alarms) and 0 configuration

(reporting 13 alarms) signify a high-precision upper

bound and a low-precision lower bound, respectively.

For each parameter, we devise two types of con-

trolled experiments: 1) SELECTED. The parameter is

selected and retained from the PARF_OPT configura-

tion, while the other 12 parameters are taken from

the 0 configuration. This controlled

experiment assesses the impact of the parameter

w.r.t. the lower-bound baseline. 2) EXCLUDED. The

parameter is excluded from the PARF_OPT configura-

tion and replaced with its counterpart from

 0, while the remaining 12 parameters

are retained from the PARF_OPT configuration. This

controlled experiment evaluates the parameter's influ-

Table 7. SV-COMP Verification Results in Terms of RQ2 (Verification Capability)

Setting Verification Result Score

Correct Incorrect Invalid

+2True () +1False () −32True () −16False () 0Unknown () 0Failure () 0Error ()

FRAMA-C-SVprecision11 1 057 12 35 0 564 104 48 1 006

FRAMA-C-SVPARF 1 096 12 35 0 629 0 48 1 084

8 J. Comput. Sci. & Technol.

⑦Appendix A2, https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list, Jun. 2025.

⑧Trivial benchmarks where all parameter-tuning mechanisms yield identical performance (e.g., “papabench”) are excluded.

https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list

ence w.r.t. the upper-bound baseline.

s

We then devise for each parameter a scoring func-

tion to quantitatively characterize its influence:

s ≜ 0.5× a + 0.5× b

d
,

a b d

-eva-precision

-eva-precision
13 a = 13−

8 = 5 b = 5− 4 = 1 d = 13− 4 = 9

where , , and capture the difference in #alarms

respectively between three cases: 1) the

0 baseline and the SELECTED experiment, 2) the EXCLUD-

ED experiment and the PARF_OPT baseline, and 3) the

 0 baseline and the PARF_OPT baseline.

For instance, for Para. in Fig.3, we have

, , and .

The influence score for all parameters across the

OSCS benchmark are collected in online appendix⑨.

For each benchmark, we mark the parameter with the

highest score as the dominant parameter. It follows

slevel

domains

slevel domains

that, overall, (Para.5) is the most influential

parameter in FRAMA-C/EVA (with an averaged score of

0.490) and (Para.13) is the second most in-

fluential parameter (with an averaged score of 0.258).

This observation conforms to the crucial roles of

 and in static analysis: the former re-

stricts the number of abstract states at each control

point, and the latter determines the types of abstract

representations.

auto-loop-
unroll min-loop-unroll

Nonetheless, the dominant parameter can vary for

different target programs, e.g., the dominant parame-

ters for “debie1” and “miniz-ex6” are

 (Para.2) and (Para.1), respec-

tively. This suggests that many false alarms emitted

for these benchmarks can be eliminated through loop

unrolling. Notably, “miniz-ex6” contains multiple

nested loops that require extensive iterations to be

fully unwound.

-eva-precision

An unexpected observation is that certain param-

eters exhibit negative influence scores on a few bench-

marks, such as Para.8 on “jsmn-ex2” and most pa-

rameters on “qlz-ex3”. These negative scores arise

when the SELECTED experiments produce more alarms

than the 0 baseline, or when the

EXCLUDED experiments result in fewer alarms than the

PARF_OPT baseline⑩. This phenomenon suggests that

FRAMA-C-SVPARF FRAMA-C-SVprecision11

42 31 054

FRAMA-C-SVPARF FRAMA-C-SVprecision11

Fig.2. Venn-diagram depicting the sets of true correct verifica-
tion tasks by and , re-
spectively.

12

10

8

6

4

2

0

#
A
la
rm
s

Parameter

Pa
ra.
1

Pa
ra.
2

Pa
ra.
3

Pa
ra.
4

Pa
ra.
5

Pa
ra.
6

Pa
ra.
7

Pa
ra.
8

Pa
ra.
9

Pa
ra.
10

Pa
ra.
11

Pa
ra.
12

Pa
ra.
13

PARF_OPT -eva-precision 0 SELECTED EXCLUDED

a

d

b

-eva-precision
Fig.3. Number of alarms (#Alarms) of analyses on benchmark “2048” upon tuning individual parameters based on the abstraction
strategies produced by 0 and PARF_OPT. Para.n refers to the n-th parameter listed in Table 1.

Zhong-Yi Wang et al.: PARF: An Adaptive Abstraction-Strategy Tuner for Static Analysis 9

⑨Table A2 of Appendix A3, https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list, Jun. 2025.

⑩Fig.A1 of Appendix A3, https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list, Jun. 2025.

https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list
https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list

FRAMA-C/EVA is not strictly monotonic in certain cas-

es. Nevertheless, our refinement mechanism equips

PARF with the potential to handle these corner cases

effectively. One such case is examined by the FRAMA-C

community⑪ as well as discussed in Subsection 4.5.

4.5 RQ4: Interpretability

We show how PARF helps eliminate false alarms or

even certify the absence of RTEs through a case

study. Fig.4 gives a simplified version of the “tutori-

als” benchmark — a toy program used to calculate

differences between the ID of each parent process and

its children.

Fig.4. Simplified version of the benchmark “tutorials”.

c_id < MAX_PROCESS_NUM

slevel
c_id

slevel

Table 6 shows that PARF suffices to eliminate all

alarms, yet EXPERT reports one false alarm. This alarm

corresponds to the assertion

in line 32, signifying a potential out-of-bound RTE. A

typical way to eliminate this false alarm is by main-

taining a sufficiently large number of abstract states

at this control point (loop condition in line 30) by set-

ting a high to prevent an over-approximation

of the value of . This trick, unfortunately, does

not work for this specific program (EXPERT sets

 to 5 000, as is similar to PARF). The reason

why PARF can eliminate the false alarm lies in its con-

partition-history
partition-history

n ⩾ 1

n

slevel
partition-history

slevel partition-
history

figuration of : EXPERT sets it to 2,

yet PARF sets it to 0. When is set

to , it delays the application of join operation on

abstract domains, leading to an exponential increase

(in) of the number of abstract states required to

avoid over-approximations at control points. Conse-

quently, EXPERT using both high-precision and

 fails to eliminate the false alarm

in question, whilst PARF succeeds by pairing a high-

precision with a low-precision

.

partition-history

slevel

Pbase

Pbase

The effectiveness of PARF roots in its ability to

maintain low-precision distributions for disturbing pa-

rameters (those with negative contributions to elimi-

nating false alarms for specific programs, e.g.,

 for “tutorials”) while achieving

high-precision distributions for dominant parameters

(e.g., for “tutorials”) during the refinement

procedure. This ingenuity can be attributed to two

key factors. 1) Unlike EXPERT, which groups and binds

all parameters into several fixed configuration packs,

PARF models each parameter as an independent ran-

dom variable. 2) The “meet-and-join” refinement

strategy (described in Algorithm 1) restrains the

growth of for disturbing parameters while in-

creasing for dominant parameters. In a nutshell,

despite its assumption on monotonic analyzers (cf.

Section 2), PARF exhibits strong potential to improve

the performance of static analyzers that lack strict

monotonicity.

5 Limitations and Future Work

We pinpoint several scenarios for which PARF is in-

adequate and provide potential solutions thereof.

partition-history
slevel

domains slevel

First, PARF models different parameters of a static

analyzer as independent random variables. However,

the interactions between parameters can potentially

lead to complex parameter dependencies. For in-

stance, 1) larger requires (expo-

nentially) larger to delay approximations for

all conditional structures[1], and 2) the modification of

 can unpredictably interact with [1].

Taking into account the dependencies between pa-

rameters is expected to reduce the search space and

thereby accelerate the parameter refining process. To

this end, we need to extend PARF to admit the repre-

10 J. Comput. Sci. & Technol.

⑪https://stackoverflow.com/q/79 497 136/15 322 410, Jun. 2025.

https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410
https://stackoverflow.com/q/79497136/15322410

sentation of stochastic dependencies, such as condi-

tional random variable models.

Second, parameter initialization in PARF relies on

fixed heuristically-defined distributions, without lever-

aging historical experience (e.g., expert knowledge on

configuring typical programs) or program-specific fea-

tures (e.g., the syntactic or semantic characteristics of

the source program) to optimize initial configurations.

While neural networks or fine-tuned large language

models could automate this process, their deploy-

ment requires balanced training data pairing pro-

grams with optimal parameters — a dataset tradi-

tionally requiring expert curation. Notably, PARF's au-

tomated configuration generation capability paves the

way for constructing such datasets at scale, enabling

data-driven initialization as promising future work.

Third, while PARF enhances static analyzers' ca-

pacity, it cannot fully eliminate false positives due to

the fundamental precision-soundness trade-offs of

static analysis. As shown in Table 6, residual alarms

require manual inspection. A promising direction in-

volves integrating PARF with formal verification tools

(e.g., proof assistants or SMT solvers) to classify

alarm validity.

6 Related Work

Abstraction Strategy Refinement. Beyer et al.[14]

proposed CPA+, a framework that augments the pro-

gram verifier CPA[15] with deterministic abstraction-

strategy tuning schemes based on intermediate analy-

sis information (e.g., predicates and abstract states).

CPA+ aims to enhance the scalability and efficiency

of verification, such as predicate abstraction-based

model checking, while PARF focuses on improving the

accuracy of static analysis leveraging the alarm infor-

mation. Zhang et al.[10] introduced BinGraph, a

framework for learning abstraction selection in

Bayesian program analysis. Yan et al.[16] proposed a

framework that utilizes graph neural networks to re-

fine abstraction strategies for Datalog-based program

analysis. These data-driven methods[10, 16] require

datasets for training a Bayesian/neural network,

while PARF requires no pre-training effort. The theo-

retical underpinnings of PARF were established in [9].

In this paper, we focus on the design, implementation,

and application of PARF and make new contributions

detailed in Section 1.

Improving Static Analyzers. Modern static analyz-

ers employ diverse parameterization strategies to bal-

ance precision and performance. Kästner et al.[8] sum-

marized the four most important abstraction mecha-

nisms in Astrée and recommended prioritizing the ac-

curacy of related abstract domains, which amounts to

narrowing down the parameter space. However, these

mechanisms need hand-written directives and thus are

not fully automated. MOPSA[4] adopts a fixed sequence

of increasingly precise configurations akin to FRAMA-

C/EVA's EXPERT mechanism when participating SV-

COMP 2024. PARF can be generalized to MOPSA by

modeling its specific parameters, thus helping to de-

cide the best configuration to analyze a given pro-

gram. Saan et al.[3] implemented in GOBLINT a simple,

heuristic autotuning method based on syntactical cri-

teria, which can activate or deactivate abstraction

techniques before analysis. However, this method on-

ly generates an initial analysis configuration once and

does not dynamically adapt to refine the parameter

configuration.

7 Conclusions

We presented the PARF toolkit for adaptively tun-

ing abstraction strategies of static program analyzers.

It is — to the best of our knowledge — the first fully

automated approach that supports incremental refine-

ment of such strategies. The effectiveness of PARF is

demonstrated through a case study where it certified

the absence of RTEs in a special case, alongside

benchmark evaluations showing that it enhanced Fra-

ma-C's performance in SV-COMP 2024 by verifying

39 additional tasks. Interesting future directions in-

clude extending PARF to cope with dependencies be-

tween parameters, neural network-based parameter

initialization, and combining formal verification tools.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Bühler D, Cuoq P, Yakobowski B. The Eva plug-in for

Frama-C 27.1 (Cobalt). 2023. https://www.frama-c.com/

download/frama-c-eva-manual.pdf, Jul. 2025.

[1]

 Kästner D, Wilhelm R, Ferdinand C. Abstract interpreta-

tion in industry-experience and lessons learned. In Lec-

ture Notes in Computer Science 14284, Hermenegildo M

V, Morales J F (eds.), Springer, 2023, pp.10–27. DOI: 10.

1007/978-3-031-44245-2_2.

[2]

 Saan S, Schwarz M, Erhard J, Pietsch M, Seidl H, Tilsch-[3]

Zhong-Yi Wang et al.: PARF: An Adaptive Abstraction-Strategy Tuner for Static Analysis 11

https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://www.frama-c.com/download/frama-c-eva-manual.pdf
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-031-44245-2_2

er S, Vojdani V. GOBLINT: Autotuning thread-modular

abstract interpretation. In Lecture Notes in Computer

Science 13994, Sankaranarayanan S, Sharygina N (eds.),

Springer, 2023, pp.547–552. DOI: 10.1007/978-3-031-30820-

8_34.
 Monat R, Milanese M, Parolini F, Boillot J, Ouadjaout A,

Miné A. Mopsa-C: Improved verification for C programs,

simple validation of correctness witnesses (competition

contribution). In Lecture Notes in Computer Science

14572, Finkbeiner B, Kovács L (eds.), Springer, 2024,

pp.387–392. DOI: 10.1007/978-3-031-57256-2_26.

[4]

 Cousot P, Cousot R. Abstract interpretation: A unified

lattice model for static analysis of programs by construc-

tion or approximation of fixpoints. In Proc. the 4th ACM

SIGACT-SIGPLAN Symposium on Principles of Pro-

gramming Languages, Jan. 1977, pp.238–252. DOI: 10.

1145/512950.512973.

[5]

 Venet A J. The gauge domain: Scalable analysis of linear

inequality invariants. In Proc. the 24th International Con-

ference on Computer Aided Verification, Jul. 2012,

pp.139–154. DOI: 10.1007/978-3-642-31424-7_15.

[6]

 Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L,

Miné A, Monniaux D, Rival X. A static analyzer for large

safety-critical software. In Proc. the 2003 ACM SIG-

PLAN Conference on Programming Language Design and

Implementation, Jun. 2003, pp.196–207.

[7]

 Kaestner D, Wilhelm S, Mallon C, Schank S, Ferdinand

C, Mauborgne L. Automatic sound static analysis for in-

tegration verification of AUTOSAR software. SAE Tech-

nical Paper 2023-01-0591. SAE, 2023, pp.65–68. https://

saemobilus.sae.org/papers/automatic-sound-static-analy-

sis-integration-verification-autosar-software-2023-01-0591,

Jun. 2025.

[8]

 Wang Z, Yang L, Chen M, Bu Y, Li Z, Wang Q, Qin S,

Yi X, Yin J. Parf: Adaptive parameter refining for ab-

stract interpretation. In Proc. the 39th IEEE/ACM Inter-

national Conference on Automated Software Engineering,

Nov. 2024, pp.1082–1093.

[9]

 Zhang Y, Shi Y, Zhang X. Learning abstraction selection

for Bayesian program analysis. Proceedings of the ACM

on Programming Languages, 2024, 8(OOPSLA1):

954–982. DOI: 10.1145/3649845.

[10]

 Ebalard A, Mouy P, Benadjila R. Journey to a RTE-free

X. 509 parser. SSTIC 2019. https://www.sstic.org/media/

SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-pars-

er/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-

ebalard_mouy_benadjila_3cUxSCv.pdf, Jul. 2025.

[11]

 Beyer D. State of the art in software verification and wit-

ness validation: SV-COMP 2024. In Proc. the 30th Inter-

national Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, Apr. 2024, pp.299–329.

DOI: 10.1007/978-3-031-57256-2_15.

[12]

 Beyer D, Spiessl M. The static analyzer Frama-C in SV-

COMP (competition contribution). In Proc. the 28th In-

ternational Conference on Tools and Algorithms for the

[13]

Construction and Analysis of Systems, Apr. 2022,

pp.429–434. DOI: 10.1007/978-3-030-99527-0_26.
 Beyer D, Henzinger T A, Théoduloz G. Program analysis

with dynamic precision adjustment. In Proc. the 23rd

IEEE/ACM International Conference on Automated Soft-

ware Engineering, Sept. 2008, pp.29–38. DOI: 10.1109/

ASE.2008.13.

[14]

 Beyer D, Henzinger T A, Théoduloz G. Configurable soft-

ware verification: Concretizing the convergence of model

checking and program analysis. In Proc. the 19th Interna-

tional Conference on Computer Aided Verification, Jul.

2007, pp.504–518. DOI: 10.1007/978-3-540-73368-3_51.

[15]

 Yan Z, Zhang X, Di P. Scaling abstraction refinement for

program analyses in datalog using graph neural networks.

Proceedings of the ACM on Programming Languages,

2024, 8(OOPSLA2): 1532–1560. DOI: 10.1145/3689765.

[16]

Zhong-Yi Wang received his B.S.

degree in bioinformatics from Shang-

hai Jiao Tong University, Shanghai, in

2023. He is currently pursuing his

Ph.D. degree in software engineering

at Zhejiang University, Hangzhou. His

research interests include static pro-

gram analysis and automated verification.

Ming-Shuai Chen received his

Ph.D. degree in computer science from

Institute of Software, Chinese Acade-

my of Sciences, Beijing, in 2019. He

then worked as a postdoctoral re-

searcher at RWTH Aachen University,

Aachen. Since 2023, he joined the Col-

lege of Computer Science and Technology at Zhejiang

University, Hangzhou, as an assistant professor (ZJU100

Young Professor). His research interests include formal

verification, programming theory, and logical aspects of

computer science.

Teng-Jie Lin received his B.E. de-

gree in computer science and technolo-

gy from Xidian University, Xi’an, in

2025. He is currently a master stu-

dent in software engineering at Zhe-

jiang University, Hangzhou. His re-

search interests include static analysis,

automated verification, and LLM+SE+FM.

12 J. Comput. Sci. & Technol.

https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://saemobilus.sae.org/papers/automatic-sound-static-analysis-integration-verification-autosar-software-2023-01-0591
https://doi.org/10.1145/3649845
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://www.sstic.org/media/SSTIC2019/SSTIC-actes/journey-to-a-rte-free-x509-parser/SSTIC2019-Article-journey-to-a-rte-free-x509-parser-ebalard_mouy_benadjila_3cUxSCv.pdf
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1145/3689765

Lin-Yu Yang received his B.E. de-

gree in information engineering from

Nanjing University of Information Sci-

ence and Technology (NUIST), Nan-

jing, in 2024. He is currently a Ph.D.

candidate at Zhejiang University

(ZJU), Hangzhou. He is a member of

FICTION, the Formal Verification Group in the Col-

lege of Computer Science and Technology at ZJU. His

research interests include programming language theory,

static analysis, and theorem proving.

Jun-Hao Zhuo is currently an un-

dergraduate student majoring in com-

puter science and technology at Zhe-

jiang University, Hangzhou. His re-

search interests include deep learning

and the deployment of large-scale pre-

trained models in production-level sys-

tems and real-life scenarios.

Qiu-Ye Wang received his Ph.D.

degree from the Institute of Software,

Chinese Academy of Sciences

(ISCAS), Beijing, in 2022, working on

formal method research. He joined

Huawei after that to seek the applica-

tion of formal methods in the industri-

al world. His major focus is on formal-method-related

software engineering.

Sheng-Chao Qin received his B.Sc.

degree and Ph.D. degree from Peking

University, Beijing. He is currently a

Chair Professor at Xidian University,

Guangzhou, and his research interests

include formal methods and their ap-

plications, software engineering, pro-

gramming languages, as well as AI+FM.

Xiao Yi received his B.E. degree in

software engineering from Xi’an Jiao-

tong University, Xi’an, his M.S. de-

gree in computer science from Boston

University, Boston, and his Ph.D. de-

gree in information engineering from

the Chinese University of Hong Kong,

Hong Kong. His research interests during Ph.D. study

focus on vulnerability analysis and detection in

blockchain systems. He is currently a researcher in pro-

gram verification at Fermat Labs, Huawei Hong Kong

Research Center.

Jian-Wei Yin received his Ph.D.

degree in computer science from Zhe-

jiang University, Hangzhou, in 2001.

He was a visiting scholar with the

Georgia Institute of Technology, At-

lanta. He is currently a full professor

at the College of Computer Science

and Technology at Zhejiang University, Hangzhou. His

research interests include software theory and engineer-

ing for emerging computing paradigms. He is an asso-

ciate editor of the IEEE Transactions on Services Com-

puting.

Zhong-Yi Wang et al.: PARF: An Adaptive Abstraction-Strategy Tuner for Static Analysis 13

	1 Introduction
	2 Problem and Methodology
	3 PARF Architecture
	3.1 Value-Space Encoding
	3.2 Parameter Sampling
	3.3 Program Analyzing
	3.4 Distribution Refining

	4 Empirical Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Consistency
	4.3 RQ2: Verification Capability
	4.4 RQ3: Dominancy
	4.5 RQ4: Interpretability

	5 Limitations and Future Work
	6 Related Work
	7 Conclusions
	Conflict of Interest
	References

