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Abstract    We launch PARF — a toolkit for adaptively tuning abstraction strategies of static program analyzers in a ful-

ly automated manner. PARF models various types of external parameters (encoding abstraction strategies) as random vari-

ables subject to probability distributions over latticed parameter spaces. It incrementally refines the probability distribu-

tions based on accumulated intermediate results generated by repeatedly sampling and analyzing, thereby ultimately yield-

ing a set of highly accurate abstraction strategies. PARF is implemented on top of FRAMA-C/EVA — an off-the-shelf open-

source static analyzer for C programs. PARF provides a web-based user interface facilitating the intuitive configuration of

static analyzers and visualization of dynamic distribution refinement of the abstraction strategies. It further supports the

identification of dominant parameters in FRAMA-C/EVA analysis. Benchmark experiments and a case study demonstrate the

competitive performance of PARF for analyzing complex, large-scale real-world programs.
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1    Introduction

Static  analysis  is  the  process  of  analyzing  a  pro-

gram without ever executing its source code. The goal

of  static  analysis  is  to  identify  and  help  users  elimi-

nate potential runtime errors (RTEs) in the program,

e.g.,  division  by  zero,  overflow  in  integer  arithmetic,

and invalid memory accesses. Identifying an appropri-

ate  abstraction  strategy  —  for  soundly  approximat-

ing the concrete semantics — is a crucial task to ob-

tain a delicate trade-off between the accuracy and ef-

ficiency of static analysis: a finer abstraction strategy

may  yield  fewer  false  alarms  (i.e.,  approximation-

caused alarms that do not induce RTEs) yet typical-

ly incurs less efficient analysis. State-of-the-art sound

static  analyzers,  such  as  FRAMA-C/EVA[1],  Astrée[2],

GOBLINT[3],  and  MOPSA[4],  integrate  abstraction  strate-

gies encoded by various external parameters, thereby

enabling  analysts  to  balance  accuracy  and  efficiency

by tuning these parameters.

Albeit  with  the  extensive  theoretical  study  of

sound  static  analysis[5, 6],  the  picture  is  much  less

clear on its parameterization front[7]: it is challenging

to  find  a  set  of  high-precision  parameters  to  achieve

low  false-positive  rates  within  a  given  time  budget.

The main reasons are two-fold. 1) Off-the-shelf static

analyzers  often  provide  a  wide  range  of  parameters

subject  to  a  huge and possibly  infinite  joint  parame-

ter space. For instance, the parameter setting in Table 1
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consists of 13 external parameters that are highly rel-

evant to the accuracy and efficiency of FRAMA-C/EVA,

among  which  eight  integer  parameters  have  infinite

value  spaces.  2)  The  process  of  seeking  highly  accu-

rate results typically requires multiple trials of param-

eter  setting  and  analysis,  which  generates  a  large

amount  of  intermediate  information  such  as  RTE

alarms and analysis time. Nevertheless, few static an-

alyzers  provide  a  fully  automated  approach  to  guid-

ing  the  refinement  of  abstraction  strategies  based on

such  information.  Therefore,  the  use  of  sound  static

analysis  tools  still  relies  heavily on expert  knowledge

and experience.

-eva-precision

Some advanced static analyzers attempt to address

the above challenges using various methods. FRAMA-C/

EVA[1] provides  the  meta  option ,

which  packs  a  predefined  group  of  valuations  to  the

parameters  listed  in Table 1,  thus  enabling  a  quick

setup of the analysis. Kästner et al.[8] summarized the

four  most  important  abstraction  strategies  in  Astrée
and recommended prioritizing the accuracy of related

abstract domains, which amounts to narrowing down

the parameter space. However, both FRAMA-C/EVA and

Astrée currently do not support automatic parameter

generation.  GOBLINT[3] implements  a  simple,  heuristic

autotuning  method  based  on  syntactical  criteria,

which  can  automatically  activate  or  deactivate  ab-

straction  techniques  before  analysis.  However,  this

method  only  generates  an  initial  analysis  configura-

tion  once  and  does  not  dynamically  adapt  to  refine

the  parameter  configuration.  See Section 6 for  de-

tailed related work.

Following this line of research, we have presented

PARF[9],  an  adaptive  and  fully  automated  parameter

refining  framework  for  sound  static  analyzers.  PARF

models  various  types  of  parameters  as  random  vari-

ables  subject  to  probability  distributions  over  lat-

ticed  parameter  spaces.  Within  a  given  time  budget,

PARF identifies  a  set  of  highly  accurate  abstraction

strategies  by  incrementally  refining  the  probability

distributions  based  on  accumulated  intermediate  re-

sults  generated  via  repeatedly  sampling  and  analyz-

ing. Preliminary experiments have demonstrated that

PARF outperforms  state-of-the-art  parameter-tuning

mechanisms  by  discovering  abstraction  strategies

leading  to  more  accurate  analysis,  particularly  for

programs of a large scale.

Contributions. This article presents the PARF arti-

fact,  whose  theoretical  underpinnings  have  been  es-

tablished in [9]. We focus on the design, implementa-

tion, and application of the PARF toolkit  and make—
in position to [9]—the following new contributions.

1)  We  present  design  principles  underneath  the

novel  abstraction-strategy  tuning  architecture  PARF

for  establishing  provable  incrementality  (monotonic

knowledge  retention)  and  adaptivity  (resource-aware

exploration)  to  achieve  accuracy-efficiency  trade-offs

in static analysis parameterization.

2) We develop a web-based user interface (UI) for

PARF which  facilitates  the  intuitive  configuration  of

static  analysis  and  visualizes  the  dynamic  distribu-

tion refinement of abstraction strategies.

3) We show via a post-hoc analysis that PARF sup-

ports the identification of the most influential param-

eters dominating the accuracy-efficiency trade-off.

4)  We  demonstrate  through  a  case  study  how

PARF can help eliminate false alarms and, in some cas-

es, certify the absence of RTEs. 

2    Problem and Methodology

This  section  revisits  the  problem  of  abstraction-

strategy  tuning  and  outlines  the  general  idea  behind

our PARF framework. More technical details are in [9].

Analyze : (prog, p) 7→ Ap

prog

p

Ap

p

In abstraction-strategy tuning, a static analyzer is

modeled as a function , which

receives  a target  program  and a parameter  set-

ting  (encoding  an  abstraction  strategy  of  the  ana-

lyzer)  and  returns  a  set  of  RTE  alarms  emitted

under [9]. We assume, as is the case in most state-of-

the-art  static  analyzers[10],  that  the  analyzer  exhibits

monotonicity  over  parameters,  i.e.,  an  abstraction

strategy  of  higher  precision  (in  an  ordered  joint  pa-

rameter  space)  induces  fewer  alarms  and  thereby

 

Table  1.    Parameter Settings in FRAMA-C/EVA

Parameter Type Value Space

min-loop-unroll Integer N
auto-loop-unroll Integer N
widening-delay Integer N
partition-history Integer N
slevel Integer N
ilevel Integer N
plevel Integer N
subdivide-non-linear Integer N
split-return String {��, �auto�}
remove-redundant-alarms Boolean {false, true}
octagon-through-calls Boolean {false, true}
equality-through-calls String {�none�, �formals�}

domains Set-of-strings {false, true}5

domains
|domains| = 5
{false, true}5
Note:  For  the  set-of-strings  parameter  with

,  its  value  space  is  the  Cartesian  product
.

2 J. Comput. Sci. & Technol.



more accurate analysis.

prog

T ∈ R>0 Analyze

S Analyze

p ∈ S

Analyze(prog, p)

T

The  abstraction-strategy  tuning  problem  can  be

formally  defined  as:  given  a  target  program ,  a

time budget , a static analyzer , and

the  joint  space  of  parameter  settings  of ,

find  a  parameter  setting  such  that

 returns  as  few  alarms  as  possible

within [9].

Our  PARF framework[9] addresses  the  problem  as

follows.  It  models  external  parameters  of  the  static

analyzer  as  random  variables  subject  to  probability

distributions  over  parameter  spaces  equipped  with

complete  lattice  structures.  It  incrementally  refines

the probability distributions based on accumulated in-

termediate  results  generated  by  repeatedly  sampling

and  analyzing,  thereby  ultimately  yielding  a  set  of

highly  accurate  parameter  settings  within  a  given

time  budget.  More  concretely,  PARF adopts  a  multi-

round  iterative  mechanism.  In  each  iteration,  PARF

1) repeatedly samples parameter settings based on the

initial  or  refined  probability  distribution  of  parame-

ters, and then 2) uses these parameter settings as in-

puts  to  the  static  analyzer  to  analyze  the  program,

and finally 3) utilizes the analysis results to refine the

probability  distribution  of  parameters.  PARF contin-

ues  this  process  until  the  prescribed  time  budget  is

exhausted, upon which it  returns the analysis  results

of  the final  round together with the final  probability

distribution of parameters.

Pbase

Pdelta

Pbase Pdelta

Pbase

Pdelta

The core  technical  challenge  lies  in  designing  the

representation  of  probability  distributions  over  lat-

ticed  parameter  spaces  and  the  iterative  refinement

mechanism that jointly enforce 1)  incrementality:  re-

wardless analyses (i.e., no new false alarms are elimi-

nated)  with  low-precision  parameters  do  not  occur;

and  2)  adaptivity:  analysis  failures  can  be  avoided

while  enabling  the  effective  search  of  high-precision

parameters. Specifically, we model each parameter as

a  combination  of  dual  random  variables  (  and

)  with  type-specific  initialization.  Then  we  de-

sign  and  stratified refinement strategies, re-

spectively,  which guarantees:  1)  incremental  ex-

pectation to preserve the accumulated knowledge dur-

ing the iterative procedure, and 2) adaptive  ex-

pectation scaling to balance trade-offs of exploring the

uncharted  parameter  space  and  high-precision  analy-

sis  resource  costs.  Related  details  are  illustrated  in

Section 3.

Regarding  implementation,  we  are  primarily  con-

cerned  with  the  open-source  static  analyzer  FRAMA-

C/EVA[1] for  C  programs.  However,  since  PARF treats

the  underlying  analyzer  as  a  black-box  function,  it

can be integrated with any static analyzer exhibiting

monotonicity (e.g., MOPSA[4] as shown in [9]). 

3    PARF Architecture

This  section  elaborates  on  PARF artifact  that  im-
 

Frontend

Backend

①②

③

④

⑤
⑥

⑦⑧

⑨

⑨

Fig.1.  Architecture of the PARF artifact.
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plements  the aforementioned techniques.  As depicted

in Fig.1, the artifact is composed of two components:

the  backend  tuning  algorithm  and  the  frontend  web

UI. The former comprises about 1 500 lines of OCaml

code  and  the  latter  is  built  using  Next.js  and  Type-

Script.

The  workflow  of  the  backend  tuning  algorithm

comprises four main steps.

1) Value-Space  Encoding (Subsection 3.1).  PARF

encodes  the  value  spaces  of  parameters  as  sample

spaces  with  complete  lattice  structures  (①.  Mean-

while,  it  models  external  parameters  of  FRAMA-C/EVA

as  random  variables  subject  to  probability  distribu-

tions  over  those  latticed  spaces  (②).  This  step  aims

to  initialize  the  parameter  distribution  (③),  which

serves  as  the  basis  for  subsequent  sample-analyze-re-

fine iterations.

numsample

2) Parameter  Sampling (Subsection 3.2).  PARF re-

peatedly  samples  (④)  parameter  settings  as  per  ei-

ther  the  initial  distribution  (from  step  1)  or  the  re-

fined distribution (from step 4). The number of sam-

ples is determined by a user-defined hyper-parameter

.

prog

timebudget

3) Program Analyzing (Subsection 3.3). Using the

parameter settings generated in step 2, PARF performs

static  analysis  (⑤)  on  the  target  program  via

FRAMA-C/EVA within the given time budget .

The  artifact  supports  parallelization  and  thus  allows

multiple  analyses  to  be  conducted  simultaneously

(⑥). Once the time budget for this step is exhausted,

PARF collects the intermediate results (e.g., the termi-

nation  conditions  and  reported  alarms)  from  each

analysis and proceeds to the next step.

4) Distribution  Refining (Subsection 3.4).  PAR-

Futilizes  the  intermediate  results  to  refine  the  proba-

bility distribution (⑦). It then returns to step 2, us-

ing the updated distribution as input (⑧).

The  frontend  web-based  UI  enables  intuitive  and

flexible  interaction  between  users  and  the  backend

for,  e.g.,  uploading  target  programs  and  configuring

numsample timebudget numprocesshyper-parameters ( , , and ).

Moreover, the UI visualizes the dynamic evolution of

parameter  distributions  during  the  analysis  and  dis-

plays  the  final  analysis  results  along  with  the  corre-

sponding abstraction strategy (⑨). Videos on access-

ing  and  using  the  UI  are  available  online①②.  Below,

we explain each function module of the artifact in de-

tail. 

3.1    Value-Space Encoding

N

domains

domains

(false, false, true, true, false)

domains {false, true}5

Table 1 lists  13  parameters  encoding  FRAMA-

C/EVA's  abstraction  and  analysis  strategies,  catego-

rized  into  four  types  with  value  spaces  defined  by

their  type:  1)  integer  parameters  range  over ;  2)

Boolean  parameters  have  a  value  space  of {false,

true};  3)  string  parameters  have  a  value  space  de-

fined as a set of strings; and 4) , a unique set-

of-strings parameter takes values from a power set of

five abstract domains, namely, {“cvalues”, “octagon”,
“equality”, “gauges”, “symbolic-locations”}.  A  value

of  can be represented as a quintuple consist-

ing  of  true  or  false,  indicating  whether  the  corre-

sponding domain is enabled. For example, the quintu-

ple  corresponds  to

{“equality”, “gauges”}.  Thus,  the  value  space  of

 is .

(S, ⊑, ⊔, ⊓,
⊤, ⊥) S

⊑ S ⊔
⊓

⊤
⊥ S

PARF encodes  the  value  spaces  of  parameters  into

latticed  sample  spaces,  represented  as 

, where  denotes the value space of a parame-

ter,  is the partial order over ,  denotes the join
(aka the least  upper  bound) operator,  denotes  the

meet (aka the greatest lower bound) operator,  and

 stand for  the  greatest  and least  element  in ,  re-

spectively. Table 2 instantiates these symbols for each

parameter  type.  Note  that  the  two  string-typed  pa-

rameters of FRAMA-C/EVA (cf. Table 1) have only two

possible  values  corresponding  to  two  abstraction

strategies  with  different  precision  levels,  thus  allow-

ing  us  to  treat  them  as  Boolean-typed  parameters.
 

Table  2.    Latticed Sample Spaces of Different Parameter Types

Type a ⊑ b a ⊔ b a ⊓ b ⊤ ⊥
Integer a ⩽ b max(a, b) min(a, b) ∞ 0

Boolean a ⇒ b a ∨ b a ∧ b true false
Set-of-strings a ⊆ b a ∪ b a ∩ b U ∅

a b a = 2, b = 5 a = false, b = true
a = {�equality�}, b = {�equality�, �gauges�}

Note: the elements  and  in each row are of their respective type, e.g.,  for integer parameters,  for
Boolean parameters, and  for set-of-strings parameters.

4 J. Comput. Sci. & Technol.
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The  lattice  structure  of  the  sample  spaces  serves  as

the  basis  of  the  distribution  refinement  mechanism

described in Subsection 3.4.

P

PARF models  each  parameter  as  a  composite  ran-

dom variable  in the novel form of:
 

P ≜ Pbase ⊕ Pdelta, (1)

Pbase

Pdelta

P Pbase

Pr[Pbase = p] = 1 p ∈ S

Pdelta

N P Pbase

Pdelta ⊕

where  is a base random variable for retaining the

accumulated  knowledge  during  the  iterative  analysis

whilst  is  a  delta  random  variable  for  exploring

the  parameter  space;  they  share  the  same  sample

space and range with .  follows Dirac distribu-

tions,  i.e.,  for  some  sample ;

 adopts different types of distributions as per the

parameter  type:  we  use  Bernoulli  distributions  for

Boolean-typed  parameters  and  Poisson  distributions

for integer-typed parameters (since the latter natural-

ly  encodes  infinite-support  discrete  distributions  over

).  The  constructions  of  by  combining  and

 via the operator  is given in Table 3.

Pdelta

λ

Remark. Determining appropriate distributions for

 presents a technical challenge. Boolean parame-

ters  naturally  match  Bernoulli  distributions  due  to

their  binary  support  set.  For  integer  parameters,  we

utilize  Poisson  distributions  for  two  key  reasons:

1) the Poisson distributions offers an infinite support

set  that  aligns  well  with  the  nature  of  integers,  and

2)  the  Poisson  distributions  is  characterized  by  a

unique parameter . 

3.2    Parameter Sampling

P

PARF repeatedly  samples  values  for  each  parame-

ter represented as a random variable  following the

composite distribution as in (1). For instance, the ini-

tial distributions employed by the artifact are collect-

ed in online appendix③.

p P

pbase pdelta

To  generate  a  sample  point  for  parameter ,

PARF first draws samples  and  independently

Pbase Pdelta

⊕
P p = pbase ⊕ pdelta

numsample

from the distributions of  and , respectively,

and then applies the binary operation  to construct

the  sampled  value  for ,  i.e.,  (see

Table 3).  Subsequently,  PARF aggregates  the  sampled

values of all parameters into a complete analysis con-

figuration.  The  total  number  of  generated  configura-

tions in a sample-analyze-refine iteration is controlled

by the user-defined hyper-parameter . All the

configurations are maintained in an internal list struc-

ture. 

3.3    Program Analyzing

prog

numsample

Parmap

numprocess

In  this  step,  PARF performs static  analysis  on  the

target  program  leveraging  FRAMA-C/EVA.  The

analyses  pertaining  to  the  parameter  set-

tings obtained in the previous step are mutually inde-

pendent  and  thus  can  be  parallelized.  However,  FRA-

MA-C/EVA per  se  does  not  support  the  execution  of

parallel tasks. Hence, we implement this functionality

using the OCaml module ④. The degree of par-

allelization,  i.e.,  the  number  of  processes,  is  deter-

mined by the user-defined hyper-parameter .

timebudget

P

Some  analyses  may  fail  to  terminate  within  the

given  time  limit,  which  is  constrained  by  the  total

time  budget  (controlled  by  a  hyper-parameter

)  for  all  the  sample-analyze-refine  rounds.

For each analysis, PARF records whether it terminates

and,  if  yes,  the  so-reported  alarms.  These  intermedi-

ate results are then utilized to refine the distribution

of . 

3.4    Distribution Refining

Pbase

(S, ⊑, ⊔, ⊓, ⊤, ⊥)

slevel

PARF refines  the  distribution  of  based  on  its

latticed  sample  spaces ,  leverag-

ing  all  the  collected  intermediate  results. Table 4

shows  an  example  of  such  refinement  for ,

which is a crucial parameter for controlling the capac-
 

P Pbase PdeltaTable  3.    Distributions of , , and 

Type S PbaseDistribution of PdeltaDistribution of P = Pbase ⊕ Pdelta

Integer N ∪ {∞} Pr[Pbase = a] = 1 Poisson(λ) a + Pdelta

Boolean {false, true} Pr[Pbase = b] = 1 Bernoulli(q) b ∨ Pdelta

Set-of-strings {false, true}c Pr[Pbase = (b1, . . . , bc)] = 1 Bernoulli(q1)× . . .× Bernoulli(qc) (b1 ∨ P 1
delta)× . . .× (bc ∨ P c

delta)

Pbase a b, b1, . . . , bc Pdelta
c

Pdelta (P 1
delta, . . . , P c

delta) ⊕
+ ∨

c ⊕ ∨ c

Note:  follows a Dirac distribution where  is an integer sample and  are Boolean values.  adopts one of the
following distributions, depending on the parameter type: Poisson distribution, Bernoulli distribution, or -dimensional independent
joint Bernoulli distribution (in this case,  can be expressed as ). The binary operator  also varies based on
the parameter type: it corresponds to addition ( ) and logical disjunction ( ) for an integer or Boolean parameter, respectively; for
a set-of-strings parameter with cardinality ,  is defined as the point-wise lifting of  to a -dimensional random vector.
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③Table A1 of Appendix A1, https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list, Jun. 2025.
 

④https://opam.ocaml.org/packages/parmap/, Jun. 2025.
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R ∈
m×n

m
n

m V

Vi

i

Pbase

ity  of  separate  (unmerged)  states  during  the  static

analysis.  The  individual  analyses  as  exemplified  in

Table 4 are produced in parallel within a single itera-

tion.  Our  artifact  then  constructs  a  matrix {✔,

✘} , to represent the intermediate results (exclud-

ing  failed  analyses),  where  is  the  number  of  suc-
cessfully  completed  analyses  and  is  the  cardinality

of  the  universal  set  of  reported  alarms.  We  also  use

an -dimensional vector  to denote the parameter

values used in each analysis (  signifies the parame-

ter  value  for  the -th  analysis).  Next,  PARF performs

Algorithm 1 to refine the distribution of .

PbaseAlgorithm 1. Refining the Distribution of 

R m× n V m
Pbase

Input: :  intermediate-result matrix; : -dimensional
         parameter value vector; : original distribution.

P
′

baseOutput: : refined distribution.

P
′

base ← Pbase;

▷ iterate over columns of R (alarms)for j ← 1 to n do     

tmp← ⊤     ;

▷ scan rows of R (analyses)    for i ← 1 to m do    

Rij = tmp← tmp ⊓ Vi        if ✘ then 

tmp ̸= ⊤ P
′

base ← P
′

base ⊔ tmp    if  then ;

P
′

basereturn ;

j

R j

j

Pbase

Algorithm 1 employs two nested loops. For the -

th column of  (w.r.t. Alarm ), the inner loop com-

putes the greatest lower bound (for the lowest preci-

sion)  of  all  sampled  parameters  which  can  eliminate

(false) Alarm . The outer loop casts the least upper

bound  for  eliminating  all  such  false  alarms  with  the

lowest precision. Considering the example in Table 4,

 is refined as:
 

P
′

base = Pbase ⊔ (⊤ ⊓ 58 ⊓ 103 ⊓ 104 ⊓ 1 000 ⊓ 9)

⊔ (⊤ ⊓ 58 ⊓ 103 ⊓ 104 ⊓ 1 000)

⊔ (⊤ ⊓ 104 ⊓ 1 000)
= Pbase ⊔ 9 ⊔ 58 ⊔ 104.

P
′

base

slevel
It follows that  is the least precise parameter set-

ting (w.r.t. ) that can eliminate all newly dis-

covered false alarms in the current iteration.

Pdelta

ηc
numsample

Pdelta η=2ηc+

(1/numsample) η > 1 ηc ⩾ 0.5

η

Pdelta

For refining the distribution of , PARF uses the

so-called completion rate , i.e., the ratio of success-

fully completed analyses to all the  analyses.

 is  then  refined  via  the  scaling  factor 

 as  per Table 5 (  for ).  A

larger  value  of  indicates  that  more  analyses  have

been completed within the allocated time budget, sug-

gesting  that  a  more  extensive  exploration  of  the  pa-

rameter  space  (by  scaling  up )  is  possible,  and

vice versa.
 
 

PdeltaTable  5.    Refining the Distribution of 

Type PdeltaOriginal PdeltaRefined 

Integer Poisson(λ) Poisson(λ× η)

Boolean Bernoulli(q) Bernoulli(1− (1− q)η)

Set-of-strings B(q1)× . . .× B(qc) B(1− (1− q1)η)× . . .×
B(1− (1− qc)η)

Note: B(q) is shorthand for Bernoulli(q).
  

4    Empirical Evaluation

In this  section,  we evaluate the PARF artifact⑤ to

answer the following research questions.

RQ1 (Consistency). Can the artifact reproduce ex-

perimental results as reported in [9] (given the inher-

ent randomness of PARF due to the sampling module)?

RQ2  (Verification  Capability).  Can  PARF improve

FRAMA-C in verification competitions?

RQ3 (Dominancy). Which are the dominant (i.e.,

most influential) parameters in FRAMA-C/EVA?

RQ4 (Interpretability). How does PARF help elimi-

nate false alarms or even certify the absence of RTEs? 

4.1    Experimental Setup

Benchmarks. We  evaluate  PARF over  two  bench-

mark suites.

1)  The  first  suite  is  FRAMA-C  Open  Source  Case

Study (OSCS)  Benchmarks⑥ (as  per  [9]),  comprising

37 real-world C code bases, such as the “X509” pars-

er project (a FRAMA-C-verified parser)[11] and “chrony”
(a versatile implementation of the Network Time Pro-

tocol). The benchmark details are provided in Table 6.

2) The second suite is collected from the verifica-

 

Pbase slevelTable  4.    Example of Refining  for 

Analysis Value Alarm 1 Alarm 2 Alarm 3 Alarm 4

1 58 ✘ ✘ ✔ ✔

2 103 ✘ ✘ ✔ ✔

3 104 ✘ ✘ ✘ ✔

4 1 000 ✘ ✘ ✘ ✔

5 9 ✘ ✔ ✔ ✔

6 9 999 – – – –

slevel
(j + 2)

j −

Note: The second column lists the values of parameter .
✔ and  ✘ in  the  -th  column  indicate  whether  the
analysis  produces  Alarm  (✔)  or  not  (✘),  and  marks  a
failed analysis.
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⑤https://hub.docker.com/repository/docker/parfdocker/parf-jcst/general, Jun. 2025.
 

⑥https://git.frama-c.com/pub/open-source-case-studies, Jun. 2025.
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tion tasks of  SV-COMP 2024[12],  where FRAMA-C par-

ticipated in the NoOverflows category with a specific

version called FRAMA-C-SV[13].

-eva-precision
Baselines. We compare PARF against four parame-

ter-tuning mechanisms:  0, DEFAULT, EX-

PERT,  and OFFICIAL.  The former  two adopt  the  lowest-

precision and default  abstraction strategies  of  FRAMA-

C/EVA,  respectively.  EXPERT  dynamically  adjusts

the precision of abstraction strategies by sequentially

-eva-precisionincreasing the  meta-option from 0 to

11  until  the  given  time  budget  is  exhausted  or  the

highest  precision  level  is  reached.  The  OFFICIAL

mechanism  uses  the  tailored  strategies  provided  by

FRAMA-C/EVA for the OSCS benchmarks, which can be

regarded as “high-quality” configurations.

Configurations. All experiments are performed on

a  system  equipped  with  two  AMD  EPYC  7542  32-

core  processors  and  128  GB  RAM  running  Ubuntu

 

Table  6.    Experimental Results in Terms of RQ1 (Consistency)

OSCS Benchmark Details #Alarms of Baselines #Alarms of PARF

Benchmark Name LOC #Statements -eva-precision -eva-precision 0 DEFAULT EXPERT OFFICIAL
PARF_
OPT

PARF_
AVG

2048 440 329 6 13 7 5 7 4 4.33

chrony 37 177 41 11 9 9 7 8 7 7.00

debie1 8 972 3 243 2 33 33 3 1 2 3.33

genann 1 183 1 042 10 236 236 69 77 69 69.00

gzip124 8 166 4 835 0 885 884 885 866 807 836.00

hiredis 7 459 87 11 9 9 0 9 0 0.00

icpc 1 302 424 11 9 9 1 1 1 1.00

jsmn-ex1 1 016 1 219 11 58 58 1 1 1 1.00

jsmn-ex2 1 016 311 11 68 68 1 1 1 1.00

kgflags-ex1 1 455 474 11 11 11 0 11 0 0.00

kgflags-ex2 1 455 736 10 33 33 19 33 19 19.00

khash 1 016 206 11 14 14 2 14 2 2.00

kilo 1 276 1 078 2 523 523 445 688 419 421.67

libspng 4 455 2 377 7 186 186 122 122 126 145.33

line-following-robot 6 739 857 10 1 1 1 1 1 1.00

microstrain 51 007 3 216 6 1 177 1 177 616 646 601 606.00

mini-gmp 11 706 628 6 83 83 71 83 65 68.67

miniz-ex1 10 844 3 659 1 2 291 2 291 1832 2 291 1 763.67

miniz-ex2 10 844 5 589 1 2 748 2 742 2 220 2 742 2 219 2 475.33

miniz-ex3 10 844 3 747 1 585 577 552 577 432 510.67

miniz-ex4 10 844 1 246 4 264 258 217 258 188 206.67

miniz-ex5 10 844 3 430 2 431 425 371 425 385 389.00

miniz-ex6 10 844 2 073 2 220 220 190 220 175 183.33

monocypher 25 263 4 126 2 606 606 564 568 572 577.67

papabench 12 254 36 11 1 1 1 1 1 1.00

qlz-ex1 1 168 229 11 68 68 11 68 11 21.33

qlz-ex2 1 168 75 11 8 8 8 8 8 8.00

qlz-ex3 1 168 294 8 94 94 82 94 82 82.00

qlz-ex4 1 168 164 11 17 17 13 17 13 13.00

safestringlib 29 271 13 029 7 855 855 256 300 263 268.33

semver 1 532 728 9 29 29 22 25 22 23.00

solitaire 338 396 11 216 216 18 213 18 18.00

stmr 781 500 6 63 63 58 59 58 58.00

tsvc 5 610 5 478 4 413 413 355 379 354 356.00

tutorials 325 89 11 5 5 1 5 0 0.00

tweetnacl-usable 1 204 659 11 126 126 25 30 25 25.00

x509-parser 9 457 3 112 3 208 208 198 198 181 185.33

Overall (tied-best+exclusively best) 3/37 3/37 24/37 9/37 33/37 (89.2%) –

Overall (exclusively best) 0/37 0/37 2/37 1/37 11/37 (29.7%) –

-eva-precision
Note:  The  benchmark details  include:  1)  name of  each benchmark;  2)  LOC (lines  of  code):  size  of  each benchmark's  source  files;
3)  #Statements:  the  number  of  statements  covered  during  analysis  for  each  benchmark;  4) :  the  highest  precision
level identified by EXPERT under the experimental configuration. #Alarms is the number of alarms generated by different parameter-
tuning mechanisms (baselines and PARF).
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numsample = 4

timebudget = 1

22.04.5  LTS.  To  attain  consistency,  we  adopt  the

same  hyper-parameters  as  in  [9]  (with 

and  hour for each benchmark). 

4.2    RQ1: Consistency

> 1%

⩽ 1%

Table 6 reports the analysis results in terms of the

number of emitted alarms. For PARF, due to its inher-

ent  randomness,  we  repeat  each  experiment  three

times and report both the best result (PARF_OPT) and

the averaged result (PARF_AVG). Since the former is al-

so  adopted  in  [9],  we  primarily  compare  PARF_OPT

against  the  four  baselines.  We mark results  with the

exclusively  fewest  alarms  (with  difference )  as

exclusively best and results with the same least num-

ber of  alarms (modulo a difference of )  as tied-

best.

-eva-precision

Overall, PARF achieves the least number of alarms

on  33/37  (89.2%)  benchmarks  with  exclusively  best

results  on  11/37  (29.7%)  cases,  significantly  outper-

forming its four competitors. These results are consis-

tent with those obtained in [9] (best: 34/37; exclusive-

ly best: 12/37). The minor differences stem primarily

from the inherent randomness of PARF and changes in

hardware  configurations.  We  observe  a  special  case

for “miniz-ex1”, where #alarms reduces from 1 828 as

in  [9]  to  1.  This  correlates  with  the  fact  that  PARF

finds  an  abstraction  strategy  that  triggers  a  drastic

decrease  in  FRAMA-C's  analysis  coverage[1].  Moreover,

as is observed in [9], PARF is particularly suitable for an-

alyzing complex, large-scale real-world programs (i.e.,

benchmarks featuring low levels of ). 

4.3    RQ2: Verification Capability

Static analyzers,  such as FRAMA-C, can be applied

in  verification  scenarios[12]. Table 7 shows  that  PARF

can  improve  the  performance  of  FRAMA-C  in  SV-

COMP.  The  detailed  scoring  schema  is  presented  in

online  appendix⑦,  as  per  [12].  Since  the  analysis  re-

source for each verification task is limited to 15 min-

FRAMA-C-SVprecision11

-eva-precision11

timebudget numprocess numsample

utes  of  CPU  time,  the  strategy

uses  a  fixed  highest  parameter  for

analysis (as  per  [13]).  We  set  the  hyper-parameters

, ,  and  of FRAMA-C-SVPARF

to 7.5 minutes, 2, and 4, respectively.

FRAMA-C-SVprecision11

The  experimental  results  demonstrates  PARF's

methodological  robustness  in  enhancing  verification

capacity  of  FRAMA-C.  Specifically,  PARF eliminates  all

104 analysis failures (due to the timeout) and verifies

39 more tasks, thereby improving the total score from 1 006

to 1 084. Fig.2 illustrates that PARF adaptively identi-

fies  42  high-accuracy  analysis  results  among  the  104

failure  cases,  thus  successfully  verifying  them.  Fur-

thermore, among all the 1 057 true correct cases veri-

fied by , PARF misses only 3. 

4.4    RQ3: Dominancy

FRAMA-C EVA

-eva-precision

-eva-precision

-eva-precision

We  show  via  a  post-hoc  analysis  that  PARF sup-

ports the identification of the most influential param-

eters  dominating  the  performance  of / .

To  this  end,  we  conduct  13  pairs  (each  for  a  single

parameter)  of  controlled  experiments  for  each  OSCS

benchmark⑧. For instance, Fig.3 depicts the results of

13  pairs  of  analyses  for  the “2048” benchmark.  The

analyses  using  the  PARF_OPT  configuration  (report-

ing  four  alarms)  and  0  configuration

(reporting  13  alarms)  signify  a  high-precision  upper

bound and a low-precision lower bound, respectively.

For  each  parameter,  we  devise  two  types  of  con-

trolled experiments: 1) SELECTED. The parameter is

selected  and  retained  from  the  PARF_OPT configura-

tion,  while  the  other  12  parameters  are  taken  from

the  0  configuration.  This  controlled

experiment  assesses  the  impact  of  the  parameter

w.r.t. the lower-bound baseline. 2) EXCLUDED. The

parameter is excluded from the PARF_OPT configura-

tion  and  replaced  with  its  counterpart  from

 0, while the remaining 12 parameters

are  retained  from  the  PARF_OPT  configuration.  This

controlled experiment evaluates the parameter's influ-
 

Table  7.    SV-COMP Verification Results in Terms of RQ2 (Verification Capability)

Setting Verification Result Score

Correct Incorrect Invalid

+2True ( ) +1False ( ) −32True ( ) −16False ( ) 0Unknown ( ) 0Failure ( ) 0Error ( )

FRAMA-C-SVprecision11 1 057 12 35 0 564 104 48 1 006

FRAMA-C-SVPARF 1 096 12 35 0 629 0 48 1 084
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⑦Appendix A2, https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list, Jun. 2025.
 

⑧Trivial benchmarks where all parameter-tuning mechanisms yield identical performance (e.g., “papabench”) are excluded.
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ence w.r.t. the upper-bound baseline.

s

We then devise for each parameter a scoring func-

tion  to quantitatively characterize its influence:
 

s ≜ 0.5× a + 0.5× b

d
,

a b d

-eva-precision

-eva-precision
13 a = 13−

8 = 5 b = 5− 4 = 1 d = 13− 4 = 9

where , ,  and  capture  the  difference  in  #alarms

respectively between three cases: 1) the 

0 baseline and the SELECTED experiment, 2) the EXCLUD-

ED experiment and the PARF_OPT baseline, and 3) the

 0 baseline and the PARF_OPT baseline.

For  instance,  for  Para.  in Fig.3,  we  have 

, , and .

The  influence  score  for  all  parameters  across  the

OSCS  benchmark  are  collected  in  online  appendix⑨.

For each benchmark, we mark the parameter with the

highest  score  as  the  dominant  parameter.  It  follows

slevel

domains

slevel domains

that,  overall,  (Para.5)  is  the  most  influential

parameter in FRAMA-C/EVA (with an averaged score of

0.490) and  (Para.13) is  the second most in-

fluential parameter (with an averaged score of 0.258).

This  observation  conforms  to  the  crucial  roles  of

 and  in static analysis: the former re-

stricts  the  number  of  abstract  states  at  each  control

point, and the latter determines the types of abstract

representations.

auto-loop-
unroll min-loop-unroll

Nonetheless, the dominant parameter can vary for

different target programs, e.g., the dominant parame-

ters  for “debie1” and “miniz-ex6” are 

 (Para.2) and  (Para.1), respec-

tively.  This  suggests  that  many  false  alarms  emitted

for these benchmarks can be eliminated through loop

unrolling.  Notably, “miniz-ex6” contains  multiple

nested  loops  that  require  extensive  iterations  to  be

fully unwound.

-eva-precision

An unexpected observation is that certain param-

eters exhibit negative influence scores on a few bench-

marks,  such  as  Para.8  on “jsmn-ex2” and  most  pa-

rameters  on “qlz-ex3”.  These  negative  scores  arise

when  the  SELECTED experiments  produce  more  alarms

than  the  0  baseline,  or  when  the

EXCLUDED experiments result in fewer alarms than the

PARF_OPT baseline⑩.  This  phenomenon  suggests  that

 

FRAMA-C-SVPARF FRAMA-C-SVprecision11

42 31 054

FRAMA-C-SVPARF FRAMA-C-SVprecision11

Fig.2.  Venn-diagram depicting the sets of true correct verifica-
tion  tasks  by  and ,  re-
spectively.
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Fig.3.  Number of alarms (#Alarms) of analyses on benchmark “2048” upon tuning individual parameters based on the abstraction
strategies produced by  0 and PARF_OPT. Para.n refers to the n-th parameter listed in Table 1.
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⑨Table A2 of Appendix A3, https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list, Jun. 2025.
 

⑩Fig.A1 of Appendix A3, https://jcst.ict.ac.cn/article/doi/10.1007/s11390-025-5140-6#Supplements-list, Jun. 2025.
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FRAMA-C/EVA is not strictly monotonic in certain cas-

es.  Nevertheless,  our  refinement  mechanism  equips

PARF with  the  potential  to  handle  these  corner  cases

effectively. One such case is examined by the FRAMA-C

community⑪ as well as discussed in Subsection 4.5. 

4.5    RQ4: Interpretability

We show how PARF helps eliminate false alarms or

even  certify  the  absence  of  RTEs  through  a  case

study. Fig.4 gives a simplified version of  the “tutori-

als” benchmark  —  a  toy  program  used  to  calculate

differences between the ID of each parent process and

its children.
  

Fig.4.  Simplified version of the benchmark “tutorials”.
 

c_id < MAX_PROCESS_NUM

slevel
c_id

slevel

Table 6 shows  that  PARF suffices  to  eliminate  all

alarms, yet EXPERT reports one false alarm. This alarm

corresponds to the assertion 

in line 32, signifying a potential out-of-bound RTE. A

typical  way to eliminate this  false  alarm is  by main-

taining  a  sufficiently  large  number  of  abstract  states

at this control point (loop condition in line 30) by set-

ting a high  to prevent an over-approximation

of  the  value  of .  This  trick,  unfortunately,  does

not  work  for  this  specific  program  (EXPERT sets

 to 5 000,  as  is  similar  to  PARF).  The  reason

why PARF can eliminate the false alarm lies in its con-

partition-history
partition-history

n ⩾ 1

n

slevel
partition-history

slevel partition-
history

figuration of :  EXPERT sets  it  to 2,

yet PARF sets it  to 0.  When  is  set

to , it delays the application of join operation on

abstract  domains,  leading  to  an  exponential  increase

(in )  of  the  number  of  abstract  states  required  to

avoid  over-approximations  at  control  points.  Conse-

quently, EXPERT using both high-precision  and

 fails  to  eliminate  the  false  alarm

in  question,  whilst  PARF succeeds  by  pairing  a  high-

precision  with  a  low-precision 

.

partition-history

slevel

Pbase

Pbase

The  effectiveness  of  PARF roots  in  its  ability  to

maintain low-precision distributions for disturbing pa-

rameters  (those  with  negative  contributions  to  elimi-

nating  false  alarms  for  specific  programs,  e.g.,

 for “tutorials”)  while  achieving

high-precision  distributions  for  dominant  parameters

(e.g.,  for “tutorials”)  during  the  refinement

procedure.  This  ingenuity  can  be  attributed  to  two

key factors. 1) Unlike EXPERT, which groups and binds

all  parameters  into  several  fixed configuration  packs,

PARF models  each  parameter  as  an  independent  ran-

dom  variable.  2)  The “meet-and-join” refinement

strategy  (described  in Algorithm 1)  restrains  the

growth  of  for  disturbing  parameters  while  in-

creasing  for dominant parameters. In a nutshell,

despite  its  assumption  on  monotonic  analyzers  (cf.

Section 2),  PARF exhibits  strong  potential  to  improve

the  performance  of  static  analyzers  that  lack  strict

monotonicity. 

5    Limitations and Future Work

We pinpoint several scenarios for which PARF is in-

adequate and provide potential solutions thereof.

partition-history
slevel

domains slevel

First, PARF models different parameters of a static

analyzer  as  independent  random  variables.  However,

the  interactions  between  parameters  can  potentially

lead  to  complex  parameter  dependencies.  For  in-

stance,  1)  larger  requires  (expo-

nentially)  larger  to  delay  approximations  for

all conditional structures[1], and 2) the modification of

 can  unpredictably  interact  with [1].

Taking  into  account  the  dependencies  between  pa-

rameters  is  expected  to  reduce  the  search  space  and

thereby accelerate the parameter refining process. To

this end, we need to extend PARF to admit the repre-

10 J. Comput. Sci. & Technol.
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sentation  of  stochastic  dependencies,  such  as  condi-

tional random variable models.

Second,  parameter  initialization  in  PARF relies  on

fixed heuristically-defined distributions, without lever-

aging historical experience (e.g., expert knowledge on

configuring typical programs) or program-specific fea-

tures (e.g., the syntactic or semantic characteristics of

the source program) to optimize initial configurations.

While  neural  networks  or  fine-tuned  large  language

models  could  automate  this  process,  their  deploy-

ment  requires  balanced  training  data  pairing  pro-

grams  with  optimal  parameters  —  a  dataset  tradi-

tionally requiring expert curation. Notably, PARF's au-

tomated configuration generation capability paves the

way for  constructing such datasets  at  scale,  enabling

data-driven initialization as promising future work.

Third,  while  PARF enhances  static  analyzers'  ca-

pacity, it cannot fully eliminate false positives due to

the  fundamental  precision-soundness  trade-offs  of

static  analysis.  As  shown in Table 6,  residual  alarms

require  manual  inspection.  A  promising  direction  in-

volves  integrating  PARF with  formal  verification  tools

(e.g.,  proof  assistants  or  SMT  solvers)  to  classify

alarm validity. 

6    Related Work

Abstraction  Strategy  Refinement. Beyer et  al.[14]

proposed CPA+, a framework that augments the pro-

gram  verifier  CPA[15] with  deterministic  abstraction-

strategy tuning schemes based on intermediate analy-

sis  information  (e.g.,  predicates  and  abstract  states).

CPA+ aims to enhance the scalability and efficiency

of  verification,  such  as  predicate  abstraction-based

model  checking,  while  PARF focuses  on improving the

accuracy of static analysis leveraging the alarm infor-

mation.  Zhang et  al.[10] introduced  BinGraph,  a

framework  for  learning  abstraction  selection  in

Bayesian  program  analysis.  Yan et  al.[16] proposed  a

framework that  utilizes  graph neural  networks  to  re-

fine abstraction strategies for Datalog-based program

analysis.  These  data-driven  methods[10, 16] require

datasets  for  training  a  Bayesian/neural  network,

while  PARF requires  no  pre-training  effort.  The  theo-

retical  underpinnings  of  PARF were  established  in  [9].

In this paper, we focus on the design, implementation,

and  application  of  PARF and  make  new contributions

detailed in Section 1.

Improving Static Analyzers. Modern static analyz-

ers employ diverse parameterization strategies to bal-

ance precision and performance. Kästner et al.[8] sum-

marized  the  four  most  important  abstraction  mecha-

nisms in Astrée and recommended prioritizing the ac-

curacy of related abstract domains, which amounts to

narrowing down the parameter space. However, these

mechanisms need hand-written directives and thus are

not fully automated. MOPSA[4] adopts a fixed sequence

of  increasingly  precise  configurations  akin  to  FRAMA-

C/EVA's EXPERT mechanism when participating SV-

COMP  2024.  PARF can  be  generalized  to  MOPSA by

modeling  its  specific  parameters,  thus  helping  to  de-

cide  the  best  configuration  to  analyze  a  given  pro-

gram. Saan et al.[3] implemented in GOBLINT a simple,

heuristic autotuning method based on syntactical cri-

teria,  which  can  activate  or  deactivate  abstraction

techniques before analysis.  However,  this method on-

ly generates an initial analysis configuration once and

does  not  dynamically  adapt  to  refine  the  parameter

configuration. 

7    Conclusions

We presented the PARF toolkit for adaptively tun-

ing abstraction strategies of static program analyzers.

It is — to the best of our knowledge — the first fully

automated approach that supports incremental refine-

ment  of  such  strategies.  The  effectiveness  of  PARF is

demonstrated through a case study where it certified

the  absence  of  RTEs  in  a  special  case,  alongside

benchmark evaluations showing that it enhanced Fra-

ma-C's  performance  in  SV-COMP  2024  by  verifying

39  additional  tasks.  Interesting  future  directions  in-

clude  extending  PARF to  cope  with  dependencies  be-

tween  parameters,  neural  network-based  parameter

initialization, and combining formal verification tools. 
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