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Abstract. An algorithm for generating interpolants for formulas which
are conjunctions of quadratic polynomial inequalities (both strict and
nonstrict) is proposed. The algorithm is based on a key observation that
quadratic polynomial inequalities can be linearized if they are concave.
A generalization of Motzkin’s transposition theorem is proved, which is
used to generate an interpolant between two mutually contradictory con-
junctions of polynomial inequalities, using semi-definite programming in
time complexity O(n3 + nm), where n is the number of variables and
m is the number of inequalities (This complexity analysis assumes that
despite the numerical nature of approximate SDP algorithms, they are
able to generate correct answers in a fixed number of calls.). Using the
framework proposed in [22] for combining interpolants for a combination
of quantifier-free theories which have their own interpolation algorithms,
a combination algorithm is given for the combined theory of concave
quadratic polynomial inequalities and the equality theory over uninter-
preted functions (EUF ).

Keywords: Program verification · Interpolant · Concave quadratic
polynomial · Motzkin’s theorem · SOS · Semi-definite programming

1 Introduction

It is well known that the bottleneck of existing verification techniques includ-
ing theorem proving, model-checking, abstraction and so on is the scalability.
Interpolation-based technique provide a powerful mechanism for local and mod-
ular reasoning, which provides an effective solution to this challenge. The study
of interpolation was pioneered by Kraj́ic̆ek [14] and Pudlák [19] in connection
with theorem proving, by McMillan in connection with model-checking [16], by
Graf and Säıdi [9], McMillan [17] and Henzinger et al. [10] in connection with
abstraction like CEGAR, by Wang et al. [11] in connection with machine-learning
c© Springer International Publishing Switzerland 2016
N. Olivetti and A. Tiwari (Eds.): IJCAR 2016, LNAI 9706, pp. 195–212, 2016.
DOI: 10.1007/978-3-319-40229-1 14



196 T. Gan et al.

based invariant generation. Since then, developing efficient algorithms for gener-
ating interpolants for various theories and their use in verification have become
an active research area [3,10,12,13,17,18,20,26,26]. In addition, D’Silva et al.
[6] investigated strengths of various interpolants.

Methods have been developed for generating interpolants for Presburger
arithmetic, decidable fragments of first-order logic, theory of equality over unin-
terpreted functions as well as their combination. However, in the literature, there
is little work on how to synthesize non-linear interpolants, although nonlinear
polynomials inequalities have been found useful to express invariants for software
involving number theoretic functions as well as hybrid systems [27,28]. In [5],
Dai et al. had a first try and gave an algorithm for generating interpolants for
conjunctions of mutually contradictory nonlinear polynomial inequalities based
on the existence of a witness guaranteed by Stengle’s Positivstellensatz [23] that
can be computed using semi-definite programming (SDP). Their algorithm is
incomplete in general but if every variable ranges over a bounded interval (called
Archimedean condition), then their algorithm is complete. A major limitation of
their work is that two mutually contradictory formulas α, β must have the same
set of variables.

We propose an algorithm to generate interpolants for quadratic polynomial
inequalities (including strict inequalities). Based on the insight that for analyz-
ing the solution space of concave quadratic polynomial inequalities, it suffices
to linearize them. A generalization of Motzkin’s transposition theorem is proved
to be applicable for concave quadratic polynomial inequalities (both strict and
nonstrict). Using this, we prove the existence of an interpolant for two mutually
contradictory conjunctions α, β of concave quadratic polynomial inequalities.
The proposed algorithm is recursive with the basis step of the algorithm relying
on an additional condition (called the NSC condition). In this case, an inter-
polant output by the algorithm is a strict or a nonstrict inequality similar to the
linear case. If NSC is not satisfied, then linear equalities on variables are derived
resulting in simpler interpolation problems over fewer variables; the algorithm
is recursively invoked on these smaller problem. The output of this recursive
algorithm is in general an interpolant that is a disjunction of conjunction of
polynomial inequalities. NSC can be checked in polynomial time by SDP algo-
rithms; even though such algorithms are not exact and produce numerical errors,
they often generate acceptable results in a few calls. It is proved that the inter-
polation algorithm is of polynomial time complexity in the number of variables
and polynomial inequalities given that the time complexity of SDP algorithms is
polynomial in the size of their input; this assumes that an SDP tool returns an
approximate answer sufficient to generate a correct interpolant in a fixed number
of calls.

Later, we develop a combination algorithm for generating interpolants for the
combination of quantifier-free theory of concave quadratic polynomial inequali-
ties and equality theory over uninterpreted function symbols (EUF ). We use the
hierarchical calculus framework proposed in [22] and used in [20] for combining
linear inequalities with EUF. We show that concavity condition on quadratic
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polynomials inequalities disallows derivation of nonlinear equalities of degree
≥ 2; further, under NSC on concave quadratic polynomial inequalities, only
linear inequalities can be used to derive possible linear equalities. As a result,
the algorithm for deducing equalities from linear inequalities in [20] as well as
the SEP algorithm for separating terms expressed in common symbols in α, β
can be used for interpolation generation for the combined theory of quadratic
polynomial inequalities and EUF.

A prototypical implementation indicates the scalability and efficiency of the
proposed approach.

The paper is organized as follows. After introducing some preliminaries in
the next section, Sect. 3 discusses the linearization of concave quadratic polyno-
mial. Section 4 presents an approach for computing an interpolant for two mutu-
ally contradictory conjunctions α, β of concave quadratic polynomial inequalities
using SDP. Section 5 extends this algorithm to the combined theory of concave
quadratic inequalities and EUF. Section 6 presents a preliminary implementation
of the proposed algorithms and gives some comparison with related work. We
draw a conclusion in Sect. 7. Because of space limit, we omit all proofs, please
refer to the full version [8] for the details.

2 Preliminaries

Let Q and R be the set of rational and real numbers, respectively. Let R[x] be the
polynomial ring over R with variables x = (x1, · · · ,xn). An atomic polynomial
formula ϕ is of the form p(x) � 0, where p(x) ∈ R[x], and � can be any of >,≥.
Let PT(R) be a first-order theory of polynomials with real coefficients. In this
paper, we are focusing on quantifier-free fragment of PT(R). Later we discuss
quantifier-free theory of equality of terms over uninterpreted function symbols
and its combination with the quantifier-free fragment of PT(R). Let Σ be a set
of (new) function symbols and PT(R)Σ be the extension of the quantifier-free
theory with uninterpreted function symbols in Σ.

For convenience, we use ⊥ to stand for false and � for true in what follows.
Craig showed that given two formulas φ and ψ in a first-order logic T s.t.

φ |= ψ, there always exists an interpolant I over the common symbols of φ and ψ
s.t. φ |= I, I |= ψ. In the verification literature, this terminology has been abused
following [17], where a reverse interpolant (coined by Kovács and Voronkov in
[13]) I over the common symbols of φ and ψ is defined by

Definition 1. Given φ and ψ in a theory T s.t. φ ∧ ψ |=T ⊥, a formula I is a
(reverse) interpolant of φ and ψ if (i) φ |=T I; (ii) I ∧ ψ |=T ⊥; and (iii) I only
contains common symbols and free variables shared by φ and ψ.

Clearly, φ |=T ψ iff φ ∧ ¬ψ |=T ⊥. Thus, I is an interpolant of φ and ψ iff I is
a reverse interpolant of φ and ¬ψ. We abuse the terminology by calling reverse
interpolants as interpolants.
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2.1 Motzkin’s Transposition Theorem

Motzkin’s transposition theorem [21] is one of the fundamental results about
linear inequalities; it also served as a basis of the interpolant generation algorithm
for the quantifier-free theory of linear inequalities in [20].

Theorem 1 (Motzkin’s transposition theorem [21]). Let A and B be
matrices and let α and β be column vectors. Then there exists a vector x with
Ax ≥ α and Bx > β, iff for all row vectors y, z ≥ 0:

(i) if yA + zB = 0 then yα + zβ ≤ 0;

(ii) if yA + zB = 0 and z �= 0 then yα + zβ < 0.

The following variant of Theorem 1 is used later.

Corollary 1. Let A ∈ Rr×n and B ∈ Rs×n be matrices and α ∈ Rr and β ∈ Rs

be column vectors, where Ai, i = 1, . . . , r is the ith row of A and Bj , j = 1, . . . , s
is the jth row of B. There does not exist a vector x with Ax ≥ α and Bx > β,
iff there exist real numbers λ1, . . . , λr ≥ 0 and η0, η1, . . . , ηs ≥ 0 s.t.

r∑

i=1

λi(Aix − αi) +
s∑

j=1

ηj(Bjx − βj) + η0 ≡ 0 with
s∑

j=0

ηj > 0. (1)

3 Concave Quadratic Polynomials and their Linearization

Given n × n-matrix A, we say A is negative semi-definite, written as A 	 0, if
for every vector x, xTAx ≤ 0, and positive semi-definite, written as A 
 0, if
for every vector x, xTAx ≥ 0. Let A = (aij) and B = (bij) be two matrices in
Rm×n, the inner product of A and B, denoted by 〈A,B〉, is defined as 〈A,B〉 =
m∑

i=1

n∑
j=1

aij × bij .

Definition 2 (Concave Quadratic). A polynomial f ∈ R[x] is called concave
quadratic (CQ) if the following two conditions hold:

(i) f has total degree at most 2, i.e., it has the form f = xTAx+2αTx+a, where
A is a real symmetric matrix, α is a column vector and a ∈ R;

(ii) the matrix A is negative semi-definite.

It is easy to see that if f ∈ R[x] is linear, then f is CQ because its total degree
is 1 and the corresponding A is 0 which is of course negative semi-definite.

A quadratic polynomial f(x) = xTAx + 2αTx + a can also be represented as

an inner product of matrices, i.e.,
〈

P,

(
1 xT

x xxT

)〉
, with P as

(
a αT

α A

)
.
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3.1 Linearization

Given a quadratic polynomial f(x) =
〈

P,

(
1 xT

x xxT

)〉
, its linearization is defined

as f(x) =
〈

P,

(
1 xT

x X

)〉
, where X is a symmetric matrix and

(
1 xT

x X

)

 0.

Let X = (X (1,1), X (2,1), X (2,2), . . . , X (k,1), . . . , X (k,k), . . . , X (n,1), . . . , X (n,n)) be
the vector variable with dimension n(n+1)

2
corresponding to the matrix X . Since

X is a symmetric matrix,
〈

P,

(
1 xT

x X

)〉
is a linear expression in x, X .

Consider quadratic polynomials fi and gj (i = 1, . . . , r, j = 1, . . . , s),

fi = xTAix + 2αT
i x + ai, gj = xTBjx + 2βT

j x + bj ,

where Ai, Bj are symmetric n × n matrices, αi, βj ∈ Rn, and ai, bj ∈ R. Then

fi(x) =

〈
Pi,

(
1 xT

x xxT

)〉
, gj(x) =

〈
Qj ,

(
1 xT

x xxT

)〉
,

where Pi =

(
ai αT

i

αi Ai

)
, Qj =

(
bj βT

j

βj Bj

)
are (n + 1) × (n + 1) matrices.

For CQ polynomials fis and gjs, let

K=̂{x ∈ R
n | f1(x) ≥ 0, . . . , fr(x) ≥ 0, g1(x) > 0, . . . , gs(x) > 0}, (2)

K1=̂ {x | ∃X .

(
1 xT

x X

)

 0 ∧

r∧
i=1

〈
Pi,

(
1 xT

x X

)〉
≥ 0 ∧

s∧
j=1

〈
Qj ,

(
1 xT

x X

)〉
> 0}. (3)

In [7,15], when K and K1 are defined only with fis without gjs, i.e., only
with nonstrict inequalities, it is proved that K = K1. By Theorem 2 below, we
show that K = K1 also holds even in the presence of strict inequalities when fi

and gj are CQ. So, when fis and gjs are CQ, the CQ polynomial inequalities
can be transformed equivalently to a set of linear inequality constraints and a
positive semi-definite constraint.

Theorem 2. Let f1, . . . , fr, g1, . . . , gs ∈ R[x] be CQ, K and K1 as above, then
K = K1.

3.2 Motzkin’s Theorem in Matrix Form

If
〈

P,

(
1 xT

x X

)〉
is seen as a linear expression in x, X , then Corollary 1 can be

reformulated as:

Corollary 2. Let x be a column vector variable with dimension n and X be an
n × n symmetric matrix variable. Suppose P1, . . . , Pr and Q1, . . . , Qs are (n + 1) ×
(n + 1) symmetric matrices. Let

V =̂ {(x, X) |
r∧

i=1

〈
Pi,

(
1 xT

x X

)〉
≥ 0,

s∧
i=1

〈
Qj ,

(
1 xT

x X

)〉
> 0},
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then V = ∅ iff there exist λ1, . . . , λr ≥ 0 and η0, η1, . . . , ηs ≥ 0 such that
r∑

i=1

λi

〈
Pi,

(
1 xT

x X

)〉
+

s∑
j=1

ηj

〈
Qj ,

(
1 xT

x X

)〉
+ η0 ≡ 0, η0 + η1 + . . . + ηs > 0.

4 Interpolants for Concave Quadratic Polynomial
Inequalities

Problem 1: Given two formulas φ and ψ on n variables with φ ∧ ψ |= ⊥, where

φ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,

ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,

in which f1, . . . , fr, g1, . . . , gs are all CQ. Our goal is to develop an algorithm to
generate a (reverse) Craig interpolant I for φ and ψ, on the common variables
of φ and ψ, s.t. φ |= I and I ∧ ψ |= ⊥. We use x = (x1, . . . , xd) to stand for the
common variables appearing in both φ and ψ, y = (y1, . . . , yu) for the variables
appearing only in φ and z = (z1, . . . , zv) for the variables appearing only in ψ,
where d+u+v = n. We call the conjunctive theory of CQ polynomial inequalities
as CQI.

The proposed Algorithm IG-CQI in Sect. 4.5 is recursive: the base case is
when no sum of squares (SOS) polynomial can be generated by a nonpositive
constant combination of the polynomials in nonstrict inequalities in φ∧ψ. When
this condition is not satisfied, then identify variables which can be eliminated
by replacing them by linear expressions in terms of other variables and gener-
ate equisatisfiable problem with fewer variables on which the algorithm can be
recursively invoked.

4.1 NSC Condition and Generalization of Motzkin’s Theorem

Definition 3. Formulas φ and ψ in Problem 1 satisfy the non-existence of an
SOS polynomial condition (NSC) iff there do not exist δ1 ≥ 0, . . . , δr ≥ 0, s.t.
−(δ1f1 + . . . + δrfr) is a non-zero SOS.

Note that nonnegative quadratic polynomials are all SOS. So, the above con-
dition implies that there is no nonnegative constant combination of nonstrict
inequalities which is always nonpositive. If quadratic polynomials appearing in
φ and ψ are linearized, then the above condition is equivalent to requiring that
every nonnegative linear combination of the linearization of nonstrict inequalities
in φ and ψ is negative.

The following theorem is a generalization of Motzkin’s theorem to CQI and
gives a method when NSC is satisfied, for generating an interpolant by consid-
ering linearization of φ, ψ in Problem 1 and using Corollary 2.
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Theorem 3. Let f1, . . . , fr, g1, . . . , gs be CQ polynomials in Problem 1. If NSC
holds, then there exist λi ≥ 0 (i = 1, · · · , r), ηj ≥ 0 (j = 0, 1, · · · , s) and a quadratic
SOS polynomial h ∈ R[x,y, z] such that

r∑
i=1

λifi +

s∑
j=1

ηjgj + η0 + h ≡ 0, η0 + η1 + . . . + ηs = 1. (4)

4.2 Base Case: Generating Interpolant when NSC is Satisfied

Using Theorem 3, an interpolant for φ and ψ is generated from the SOS polyno-
mial h by splitting it into two SOS polynomials as shown below.

Theorem 4. Let φ and ψ be as in Problem 1 with φ∧ϕ |= ⊥, which satisfy NSC.
Then there exist λi ≥ 0 (i = 1, · · · , r), ηj ≥ 0 (j = 0, 1, · · · , s) and two quadratic
SOS polynomial h1 ∈ R[x,y] and h2 ∈ R[x, z] such that

r∑
i=1

λifi +

s∑
j=1

ηjgj + η0 + h1 + h2 ≡ 0, η0 + η1 + . . . + ηs = 1. (5)

Let I =
∑r1

i=1 λifi +
∑s1

j=1 ηjgj + η0 + h1. Then I ∈ R[x], and if
∑s1

j=0 ηj > 0, then
I > 0 is an interpolant otherwise I ≥ 0 is an interpolant.

Further, we can prove that h, h1, h2 have the following form:

(H) : h(x,y, z) = a1(y1 − l1(x, y2, . . . , yu))2 + · · · + au(yu − lu(x))2 +

au+1(z1 − lu+1(x, z2, . . . , zv))2 + · · · + au+v(zv − lu+v(x))2 + au+v+1(x1 −
lu+v+1(x2, . . . , xd))2 + · · · + au+v+d(xd − lu+v+d)2 + au+v+d+1,

(H1) : h1(x,y) = a1(y1 − l1(x, y2, . . . , yu))2 + · · · + au(yu − lu(x))2 +
au+v+1

2
(x1 −

lu+v+1(x2, . . . , xd))2 + · · · +
au+v+d

2
(xd − lu+v+d)2 +

au+v+d+1
2

,

(H2) : h2(x, z) = au+1(z1 − lu+1(x, z2, . . . , zv))2 + · · · + au+v(zv − lu+v(x))2 +
au+v+1

2
(x1 − lu+v+1(x2, . . . , xd))2 + · · · +

au+v+d

2
(xd − lu+v+d)

2 +
au+v+d+1

2
,

where ai ≥ 0 and lj ’s are linear expressions. These forms of h1, h2 are used to
generate equalities among variables later in the algorithm when NSC is not
satisfied.

4.3 Computing Interpolant Using Semi-definite Programming

Let W =

⎛
⎜⎜⎝

1 xT yT zT

x xxT xyT xzT

y yxT yyT yzT

z zxT zyT zzT

⎞
⎟⎟⎠, fi = 〈Pi, W 〉, gj = 〈Qj , W 〉, where Pi and Qj are

(n + 1) × (n + 1) matrices, and h1 = 〈M, W 〉, h2 = 〈M̂, W 〉, M = (Mij)4×4, M̂ =

(M̂ij)4×4 with appropriate dimensions, e.g., M12 ∈ R1×d and M̂34 ∈ Ru×v. Then,
with NSC, by Theorem 4, computing the interpolant is reduced to the following
SDP feasibility problem.
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Find: λ1, . . . , λr, η1, . . . , ηs ∈ R and symmetric matrices M, M̂ ∈ R(n+1)×(n+1) s.t.⎧⎪⎪⎨
⎪⎪⎩

∑r
i=1 λiPi +

∑s
j=1 ηjQj + η0E(1,1) + M + M̂ = 0,

∑s
j=1 ηj = 1,

M41 = (M14)
T = 0, M42 = (M24)

T = 0, M43 = (M34)
T = 0, M44 = 0,

M̂31 = (M̂13)
T = 0, M̂32 = (M̂23)

T = 0, M̂33 = 0, M̂34 = (M̂43)
T = 0,

M 
 0, M̂ 
 0, λi ≥ 0, ηj ≥ 0, for i = 1, . . . , r, j = 1, . . . , s,

where E(1,1) is a (n+1)×(n+1) matrix, whose all entries are 0 except for (1, 1) = 1.
This standard SDP feasibility problem can be efficiently solved by SDP

solvers such as CSDP [1], SDPT3 [24], etc. A major weakness of these algorithms
is their incompleteness, however.

Approximate Nature of SDP Algorithms. Even though known SDP algo-
rithms are of polynomial complexity, they are numerical and are not guaranteed
to produce exact answers; they are however able to generate results within a very
small threshold in a fixed number of iterations. Such techniques are thus consid-
erably more attractive than solving the Problem 1 using exact symbolic methods
of high complexity. This is especially critical for scaling our approach. To guar-
antee the soundness of our approach, we check results produced by approximate
numerical algorithms by symbolic checking [4] and numeric-symbolic method
[25] to verify whether an interpolant so computed does indeed satisfy the con-
ditions in Definition 1. If not, we can tone down the threshold of the SDP and
repeat the above procedure.

4.4 General Case

The case of Var(φ) ⊂ Var(ψ) is easy: φ itself serves as an interpolant of φ and ψ.
We thus assume that Var(φ) � Var(ψ). If φ and ψ do not satisfy NSC, then an
SOS polynomial h(x,y, z) = −(

∑r
i=1 λifi) can be computed which can be split

into two SOS polynomials h1(x,y) and h2(x, z) as discussed in Subsect. 4.2. Then
an SOS polynomial f(x) s.t. φ |= f(x) ≥ 0 and ψ |= −f(x) ≥ 0 can be constructed
by setting f(x) = (

∑r1
i=1 δifi) + h1 = −(

∑r
i=r1+1 δifi) − h2, δi ≥ 0. We show below

how “simpler” interpolation subproblems φ′, ψ′ are constructed from φ and ψ
using f .

Lemma 1. If NSC is not satisfied, then there exists f ∈ R[x] s.t. φ ⇔ φ1 ∨ φ2

and ψ ⇔ ψ1 ∨ ψ2, where,

φ1 = (f > 0 ∧ φ), φ2 = (f = 0 ∧ φ), ψ1 = (−f > 0 ∧ ψ), ψ2 = (f = 0 ∧ ψ). (6)

It easily follows that an interpolant I for φ and ψ can be constructed from an
interpolant I2,2 for φ2 and ψ2.

Theorem 5. Let φ, ψ, φ1, φ2, ψ1, ψ2 be same as in Lemma 1, I2,2 be an inter-
polant for φ2 and ψ2, then I := (f > 0) ∨ (f ≥ 0 ∧ I2,2) is an interpolant for φ
and ψ.
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If h and hence h1, h2 have a positive constant au+v+d+1 > 0, then f cannot
be 0, implying that φ2 and ψ2 are ⊥. We thus have

Theorem 6. With φ, ψ, φ1, φ2, ψ1, ψ2 as in Lemma 1 and h has au+v+d+1 > 0,
then f > 0 is an interpolant for φ and ψ.

In case h does not have a constant, i.e., au+v+d+1 = 0, from the fact that h1

is an SOS and has the form (H1), each nonzero square term in h1 is identically
0. This implies that some of the variables in x,y can be linearly expressed in
term of other variables; the same argument applies to h2 as well. In particular,
at least one variable is eliminated in both φ2 and ψ2, reducing the number of
variables appearing in φ and ψ, which ensures the termination of the algorithm.

Theorem 7. If h above does not have a constant, i.e., if au+v+d+1 = 0, by elim-
inating (at least one) variables in φ and ψ in terms of other variables as derived
from h1 = 0, h2 = 0, mutually contradictory formulas φ′, ψ′ with fewer variables
are derived by

φ′ =
∧r1

i=1
f̂i ≥ 0 ∧

∧s1

j=1
ĝj > 0, ψ′ =

∧r

i=r1+1
f̂i ≥ 0 ∧

∧s

j=s1+1
ĝj > 0,

where f̂is and ĝjs are derived from the respective fi and gi by replacing the
eliminated variable(s) with the corresponding resulting expression(s).

The following simple example illustrates how the above construction works.

Example 1. Let f1 = x1, f2 = x2, f3 = −x2
1 − x2

2 − 2x2 − z2, g1 = −x2
1 + 2x1 − x2

2 +

2x2 −y2. Two formulas φ := (f1 ≥ 0)∧ (f2 ≥ 0)∧ (g1 > 0), ψ := (f3 ≥ 0). φ∧ψ |= ⊥.
NSC does not hold, since h = −(0f1 +2f2 +f3) = x2

1 +x2
2 + z2 is an SOS; h is split

into h1 = 1
2
x2
1+ 1

2
x2
2, h2 = 1

2
x2
1+ 1

2
x2
2+z2. Thus f = 0f1+2f2+h1 = 1

2
x2
1+ 1

2
x2
2+2x2.

For the recursive call, we construct φ′ from φ by adding x1 = 0, x2 = 0 derived
from h1 = 0; similarly ψ′ is constructed from ψ by adding x1 = x2 = 0, z = 0

derived from h2 = 0. That is, φ′ = 0 ≥ 0 ∧ 0 ≥ 0 ∧ −y2 > 0 = ⊥, ψ′ = 0 ≥ 0 = �.
Thus, I(φ′, ψ′) := (0 > 0) = ⊥ is an interpolant for (φ′, ψ′).

An interpolant for φ and ψ is thus (f(x) > 0) ∨ (f(x) = 0 ∧ I(φ′, ψ′)), which is
1
2
x2
1 + 1

2
x2
2 + 2x2 > 0.

4.5 Algorithms

The above recursive approach is formally described as Algorithm 2. For the base
case when φ, ψ satisfy NSC, it invokes Algorithm 1 using known SDP algorithms.
For a predefined threshold, an SDP problem can be solved in polynomial time, say
g(k), where k is the input size [7]. Further its solution can be checked to determine
whether a formula thus generated is indeed an interpolant; in case of failure, the
process is repeated typically leading to convergence in a few iterations.
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Algorithm 1. Interpolation Generation for NSC Case (IG-NSC)

input : φ and ψ satisfying NSC, and φ ∧ ψ |= ⊥, where
φ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,
ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,
f1, . . . , fr, g1, . . . , gs are all CQ polynomials,
f1, . . . , fr1 , g1, . . . , gs1 ∈ R[x,y], fr1+1, . . . , fr, gs1+1, . . . , gs ∈ R[x, z]

output: A formula I to be an interpolant for φ and ψ

1 Find λ1, . . . , λr ≥ 0, , η0, η1, . . . , ηs ≥ 0, h1 ∈ R[x,y], h2 ∈ R[x, z] by SDP s.t.

r∑
i=1

λifi +
s∑

j=1

ηjgj + η0 + h1 + h2 ≡ 0, η0 + η1 + . . . + ηs = 1,

where h1, h2 are SOS polynomials;

2 f :=
∑r1

i=1 λifi +
∑s1

j=1 ηjgj + η0 + h1;

3 if
∑s1

j=0 ηj > 0 then I := (f > 0); else I := (f ≥ 0);

4 return I

Algorithm 2. Interpolation Generation for CQ Formulas (IG-CQI)

input : φ and ψ with φ ∧ ψ |= ⊥, where
φ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,
ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,
f1, . . . , fr, g1, . . . , gs are all CQ polynomials,
f1, . . . , fr1 , g1, . . . , gs1 ∈ R[x,y], and
fr1+1, . . . , fr, gs1+1, . . . , gs ∈ R[x, z]

output: A formula I to be an interpolant for φ and ψ

1 if Var(φ) ⊆ Var(ψ) then I := φ; return I;
2 Find δ1, . . . , δr ≥ 0, h ∈ R[x,y, z] by SDP s.t.

∑r
i=1 δifi + h ≡ 0 and h is SOS;

/* Check the condition NSC */

3 if no solution then I := IG-NSC(φ, ψ); return I;
/* NSC holds */

4 Construct h1 ∈ R[x,y] and h2 ∈ R[x, z] with the forms (H1) and (H2);
5 f :=

∑r1
i=1 δifi + h1 = −

∑r
i=r1+1 δifi − h2;

6 Construct φ′ and ψ′ using Theorems 6 & 7 by eliminating variables due to
h1 = h2 = 0;

7 I ′ := IG-CQI(φ′, ψ′) ;
8 I := (f > 0) ∨ (f ≥ 0 ∧ I ′);
9 return I

Theorem 8 (Soundness and Completeness). Algorithm 2 computes an
interpolant I if it exists for any given φ and ψ with φ ∧ ψ |= ⊥.
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Theorem 9. The complexity of IG-NSC and IG-CQI are O(g(r + s + n2))1, and
O(ng(r + s + n2)), respectively, where r is the number of nonstrict inequalities, s

is the number of strict inequalities, and n is the number of variables.

5 Combination: CQI with EUF

This section combines the conjunctive theory of concave quadratic polynomial
inequalities (CQI ) with the theory of equality over uninterpreted function sym-
bols (EUF ). Algorithm 4 for generating interpolants for the combined theo-
ries is patterned after the algorithm INTERLI(Q)Σ in Fig. 3 in [20] following the
hierarchical reasoning and interpolation generation framework in [22] with the
following key differences2:

1. To generate interpolants for CQI, Algorithm 2 is called.
2. If NSC is satisfied by nonstrict polynomial inequalities, linear equalities

are deduced only from the linear inequalities; it is thus possible to use
INTERLI(Q)Σ in Fig. 3 in [20] for deducing equalities; separating terms for
mixed equalities are computed in the same way as in the algorithm SEP in
[20]. Further, it can be proved that a nonlinear polynomial equality of degree
≥ 2 cannot be generated from CQI.

3. If NSC is not satisfied, as in Algorithm 2, a polynomial f(x) s.t. φ |= f(x) ≥ 0

and ψ |= −f(x) ≥ 0 can be constructed by letting f(x) = (
∑r1

i=1 δifi) + h1 =

−(
∑r

i=r1+1 δifi) − h2, δi ≥ 0, as discussed in Sect. 4.4. Using Lemma 1, reduce
the interpolation problem for φ and ψ to a simpler interpolation problem for
φ′ and ψ′ with fewer variables.

5.1 Problem Formulation

Let Ω = Ω1 ∪ Ω2 ∪ Ω3 be a finite set of uninterpreted function symbols in EUF;

further, denote Ω1∪Ω2 by Ω12 and Ω1∪Ω3 by Ω13. Let R[x,y, z]Ω be the extension
of R[x,y, z] in which polynomials can have terms built using function symbols in
Ω and variables in x,y, z.

Problem 2: Suppose two formulas φ and ψ with φ ∧ ψ |= ⊥, where φ =

f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0, ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥
0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0, in which f1, . . . , fr, g1, . . . , gs are all CQ polynomi-
als, f1, . . . , fr1 , g1, . . . , gs1 ∈ R[x,y]Ω12 , fr1+1, . . . , fr, gs1+1, . . . , gs ∈ R[x, z]Ω13 , the
goal is to generate an interpolant I for φ and ψ, over the common symbols x, Ω1,
i.e., I contains only polynomials in R[x]Ω1 .

1 Under the assumption that SDP tool returns an approximate but correct answer in
a fixed number of calls.

2 The proposed algorithm and its way of handling of combined theories do not crucially
depend upon using algorithms in [20]; however, adopting their approach makes proofs
and presentation totally on CQI.



206 T. Gan et al.

Flatten and Purify: Flatten and purify φ and ψ by introducing fresh vari-
ables for each term starting with uninterpreted symbols as well as for the terms
containing uninterpreted symbols. Keep track of new variables introduced exclu-
sively for φ and ψ as well as new common variables.

Let φ∧ψ∧
∧

D be obtained from φ∧ψ by flattening and purification where D
consists of unit clauses of the form ω(c1, . . . , cn) = c, where c1, . . . , cn are variables
and ω ∈ Ω. Following [20,22], using the axiom of an uninterpreted function
symbol, a set N of Horn clauses are generated as follows, N = {

∧n
k=1 ck = bk →

c = b | ω(c1, . . . , cn) = c ∈ D, ω(b1, . . . , bn) = b ∈ D}. The set N is partitioned
into Nφ, Nψ, Nmix with all symbols in Nφ, Nψ appearing in φ, ψ, respectively, and
Nmix consisting of symbols from both φ, ψ. It is easy to see that for every Horn
clause in Nmix, each of equalities in the hypothesis as well as the conclusion is
also mixed.

φ ∧ ψ |= ⊥ iff φ ∧ ψ ∧ D |= ⊥ iff (φ ∧ Nφ) ∧ (ψ ∧ Nψ) ∧ Nmix |= ⊥. (7)

Notice that (φ ∧ Nφ) ∧ (ψ ∧ Nψ) ∧ Nmix |= ⊥ has no uninterpreted function
symbols. If Nmix can be replaced by Nφ

sep and Nψ
sep as in [20] using separating

terms, then IG-CQI can be applied. An interpolant generated for this problem3

can be used to generate an interpolant for φ, ψ after uniformly replacing all new
symbols by their corresponding expressions from D.

5.2 Combination Algorithm

If Nmix is empty, Algorithm 4 invokes Algorithm 2 (IG-CQI) on a finite set of sub-
problems generated from a disjunction of conjunction of polynomial inequalities
by expanding Horn clauses in Nφ and Nψ, and applying De Morgan’s rules. The
resulting interpolant is a disjunction of conjunction of the interpolants generated
for each subproblem.

The case when Nmix is nonempty has the same structure as the algorithm
INTERLI(Q)Σ in [20]. The following lemma proves that if a conjunction of polyno-
mial inequalities satisfies NSC and an equality on variables can be deduced from
it, then it suffices to consider only linear inequalities in the conjunction. This
property enables us to use Algorithm INTERLI(Q)Σ in Fig. 3 in [20] for deduc-
ing equalities; separating terms for the constants appearing in mixed equalities
are computed in the same way as in Algorithm SEP in [20] (Lines 2 and 3 in
Algorithm 3 where INTERp, a modified version of INTERLI(Q)Σ , is used solely
to deduce equalities and separating terms and not interpolants, thus generating
Nφ

sep, Nψ
sep). Then Algorithm 4 is called.

3 After properly handling Nmix since Horn clauses have symbols both from φ and ψ.
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Algorithm 3. IG-CQI-EUF

input : φ and ψ constructed respective from φ and ψ by flattening and purification,

D : definitions of fresh variables introduced during flattening and purifying φ, ψ,

N : instances of functionality axioms for functions in D,

φ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,

ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,
where φ ∧ ψ |= ⊥, f1, . . . , fr, g1, . . . , gs are all CQ polynomials,

f1, . . . , fr1 , g1, . . . , gs1 ∈ R[x,y], and fr1+1, . . . , fr, gs1+1, . . . , gs ∈ R[x, z]
output: A formula I to be a Craig interpolant for φ and ψ

1 if NSC holds then

2 L1 := LP(φ); L2 := LP(ψ);

3 INTERp(L1, L2, N, ∅, ∅, D, ∅);

/* INTERp is a modified version of the INTERΣ
LI(Q) algorithm given in Figure 3 in

[20] which is used here to separate every mixed Horn clause in N of the form

∧n
i=1ci = di ⇒ c = d into ∧n

i=1ci = t+i ⇒ c = f(t+1 , · · · , t+n ),
∧n

i=1di = t+i ⇒ d = f(t+1 , · · · , t+n ). It does not call INTERLI(Q) to generate

an interpolant (line 29 of INTERΣ
LI(Q)). When INTERp terminates Nmix with

initial value N is separated into Nφ and Nψ with entailed equalities in Δ.

Because of space limitations, we are not reproducing lines 1-28 of the code in

INTERΣ
LI(Q). */

4 I := IG-NMIX(φ, ψ, Nφ, Nψ);
5 else

6 Find δ1, . . . , δr ≥ 0 and an SOS polynomial h by SDP s.t.
∑r

i=1 δifi + h ≡ 0;
7 Construct h1 ∈ R[x,y] and h2 ∈ R[x, z] with form (H1) and (H2);

8 f :=
∑r1

i=1 δifi + h1 = −
∑r

i=r1+1 δifi − h2;

9 Construct φ′ and ψ′ by Theorem 7 by eliminating variables from h1 = h2 = 0;

10 I ′ := IG-CQI-EUF(φ′, ψ′, D, N0); Ī := (f > 0) ∨ (f ≥ 0 ∧ I ′);
11 end

12 Obtain I from I; return I

Algorithm 4. Invariant Generation without Nmix (IG-NMIX)

input : φ and ψ, constructed respectively from φ and ψ by flattening and
purification,
Nφ : instances of functionality axioms for functions in Dφ,
Nψ : instances of functionality axioms for functions in Dψ,
where φ ∧ ψ ∧ Nφ ∧ Nψ |= ⊥

output: A formula I to be a Craig interpolant for φ and ψ

1 Transform φ ∧ Nφ to a DNF ∨iφi;

2 Transform ψ ∧ Nψ to a DNF ∨jψj ;
3 return I := ∨i ∧j IG-CQI(φi, ψj)

Lemma 2. Let φ and ψ be obtained as above satisfying NSC. If φ ∧ ψ is sat-
isfiable, φ ∧ ψ |= ck = bk, then LP(φ) ∧ LP (ψ) |= ck = bk, where LP(θ) is the
conjunction of the linear constraints in θ.
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If NSC is not satisfied, then linear equalities from SOS polynomials h, h1, h2

and f as explained above and discussed in Sect. 4.4 (Lines 6–8 in Algorithm 3) are
used to generate simpler subproblems φ′ and ψ′ from φ and ψ, and Algorithm 3
is recursively called (Lines 9–10 in Algorithm 3).

Theorem 10 (Soundness and Completeness). IG-CQI-EUF computes an
interpolant I of mutually contradictory φ, ψ with CQ polynomial inequalities and
EUF if it exists.

Example 2. Let φ := (f1 = −(y1 − x1 + 1)2 − x1 + x2 ≥ 0) ∧ (y2 = α(y1) + 1) ∧
(g1 = −x2

1 − x2
2 − y2

2 + 1 > 0), ψ := (f2 = −(z1 − x2 + 1)2 + x1 − x2 ≥ 0) ∧
(z2 = α(z1) − 1) ∧ (g2 = −x2

1 − x2
2 − z2

2 + 1 > 0). Flattening and purification gives
φ := (f1 ≥ 0 ∧ y2 = y + 1 ∧ g1 > 0), ψ := (f2 ≥ 0 ∧ z2 = z − 1 ∧ g2 > 0), where
D = {y = α(y1), z = α(z1)}, N = (y1 = z1 → y = z).

NSC is not satisfied, since h = −f1 − f2 = (y1 − x1 + 1)2 + (z1 − x2 + 1)2 is an
SOS. We follow the steps given in Sect. 4.4 (Lines 6–8 of IG-CQI-EUF) and obtain
h1 = (y1−x1+1)2 , h2 = (z1−x2+1)2. This gives f := f1+h1 = −f2−h2 = −x1+x2.

By Lemma 1, an interpolant for φ, ψ is an interpolant of ((φ∧f > 0)∨ (φ∧f =

0)) and ((ψ ∧ −f > 0) ∨ (φ ∧ f = 0)), that is (f > 0) ∨ (f ≥ 0 ∧ I2), where I2 is
an interpolant for φ ∧ f = 0 and ψ ∧ f = 0. It is easy to see that φ ∧ f = 0 |=
y1 = x1 − 1 , ψ ∧ f = 0 |= z1 = x2 − 1. Thus, it follows φ′ : −x1 + x2 ≥ 0 ∧ y2 =

y + 1 ∧ g1 > 0 ∧ y1 = x1 − 1, and ψ′ : x1 − x2 ≥ 0 ∧ z2 = z − 1 ∧ g2 > 0 ∧ z1 = x2 − 1.
At Line 10, recursively call IG-CQI-EUF. Now NSC holds (Line 1); from

linear inequalities in φ′ and ψ′, y1 = z1 is deduced. Separating terms for y1, z1
are constructed by: φ′ |= x1 − 1 ≤ y1 ≤ x2 − 1, ψ′ |= x2 − 1 ≤ z1 ≤ x1 − 1.
Let t = α(x2 − 1), then y1 = z1 → y = z is separated into two parts, i.e.,
y1 = t+ → y = t and t+ = z1 → t = z. Add them to φ′ and ψ′ respectively,
we have φ′

1 = −x1 + x2 ≥ 0 ∧ y2 = y + 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ y1 = x2 − 1 → y = t,
ψ′

1 = x1 − x2 ≥ 0 ∧ z2 = z − 1 ∧ g2 > 0 ∧ z1 = x2 − 1 ∧ x2 − 1 = z1 → t = z. Then
φ′

1 = −x1+x2 ≥ 0∧y2 = y+1∧g1 > 0∧y1 = x1−1∧(x2−1 > y1∨y1 > x2−1∨y = t),
ψ′

1 = x1 −x2 ≥ 0∧z2 = z−1∧g2 > 0∧z1 = x2 −1∧ t = z. Thus, φ′
1 = φ′

2 ∨φ′
3 ∨φ′

4,
where φ′

2 = −x1 + x2 ≥ 0 ∧ y2 = y + 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ x2 − 1 > y1,
φ′

3 = −x1 +x2 ≥ 0∧ y2 = y +1∧ g1 > 0∧ y1 = x1 − 1∧ y1 > x2 − 1, φ′
4 = −x1 +x2 ≥

0 ∧ y2 = y + 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ y = t. Since φ′
3 = ⊥, it follows φ′

1 =

φ′
2 ∨ φ′

4. Find interpolants I(φ′
2, ψ

′
1) and I(φ′

4, ψ
′
1), then I(φ′

2, ψ
′
1) ∨ I(φ′

4, ψ
′
1)

is an interpolant.

6 Implementation and Experimental Results

We are currently developing a state of the art implementation of the above
algorithms using C. In the meantime, for experimentation purposes, we have
developed a prototype for putting together existing tools in Mathematica. An
optimization library AiSat [5] built on CSDP [1] is used for solving SOS and
SDP problems. We give some performance data about this prototype on some
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Table 1. The output formulas in the last column have been verified using the approach
given in [4] to be the true interpolants w.r.t. their corresponding problems in the third
column.

Ex Type Problem Synthesized interpolant

5 NLA

φ : −y1 + x1 − 2 ≥ 0 ∧ 2x2 − x1 − 1 > 0

∧ − y2
1 − x2

1 + 2x1y1 − 2y1 + 2x1 ≥ 0

∧ − y2
2 − y2

1 − x2
2 − 4y1 + 2x2 − 4 ≥ 0

ψ : −z1 + 2x2 + 1 ≥ 0 ∧ 2x1 − x2 − 1 > 0

∧ − z2
1 − 4x2

2 + 4x2z1 + 3z1 − 6x2 − 2 ≥ 0

∧ − z2
2 − x2

1 − x2
2 + 2x1 + z1 − 2x2 − 1 ≥ 0

−x1 + x2 > 0

6 NLA
φ : 4 − x2 − y2 ≥ 0 ∧ y ≥ 0 ∧ x + y − 1 > 0

ψ : x ≥ 0 ∧ 1 − x2 − (y + 1)2 ≥ 0

1
2 (x

2 + y2 + 4y) > 0

7 LA
φ : z − x ≥ 0 ∧ x − y ≥ 0 ∧ −z > 0

ψ : x + y ≥ 0 ∧ −y ≥ 0
−0.8x − 0.2y > 0

8 LA+EUF
φ : f(x) ≥ 0 ∧ x − y ≥ 0 ∧ y − x ≥ 0

ψ : −f(y) > 0
f(y) ≥ 0

9 Ellipsoid

φ : −x1
2 + 4x1 + x2 − 4 ≥ 0

∧ − x1 − x2 + 3 − y2 > 0

ψ : −3x1
2 − x2

2 + 1 ≥ 0 ∧ x2 − z2 ≥ 0

−3 + 2x1 + x1
2 + 1

2x2
2 > 0

10 Ellipsoid
φ : 4 − (x − 1)2 − 4y2 ≥ 0 ∧ y − 1

2 ≥ 0

ψ : 4 − (x + 1)2 − 4y2 ≥ 0 ∧ x + 2y 0

−15.93 + 19.30x − 9.65x2

+91.76y − 38.60y2 > 0

11 Octagon

φ : −3 ≤ x ≤ 1 ∧ −2 ≤ y ≤ 2 ∧ −4 ≤ x − y ≤ 2

∧ − 4 ≤ x + y ≤ 2 ∧ x + 2y + 1 ≤ 0

ψ : −1 ≤ x ≤ 3 ∧ −2 ≤ y ≤ 2 ∧ −2 ≤ x − y ≤ 4

∧ − 2 ≤ x + y ≤ 4 ∧ 2x − 5y + 6 ≤ 0

−88.08 − 649.94x

−1432.44y > 0

12 Octagon

φ : 2 ≤ x ≤ 7 ∧ 0 ≤ y ≤ 3 ∧ 0 ≤ x − y ≤ 6

∧3 ≤ x + y ≤ 9 ∧ 23 − 3x − 8y 0

ψ : 0 ≤ x ≤ 5 ∧ 2 ≤ y ≤ 5 ∧ −4 ≤ x − y ≤ 2

∧3 ≤ x + y ≤ 9 ∧ y − 3x − 2 0

562.10 + 1244.11x

−869.83y > 0

examples (see Table 1), which have been evaluated on a 64-bit Linux computer
with a 2.93 GHz Intel Core-i7 processor and 4 GB of RAM.

The performance of the prototype is compared on the same platform to those
of three publicly available interpolation procedures for linear-arithmetic cases,
i.e. Rybalchenko’s tool CLP-Prover in [20], McMillan’s procedure Foci in [17],
and Beyer’s tool CSIsat in [2]. As Table 2 shows, our approach can successfully
solve all these examples rather efficiently. It is especially the completeness and
generality that makes the approach competitive for synthesizing interpolants.
In particular, the prototype performs, in linear cases, with the same complexity
as CSIsat and even better than CLP-Prover and Foci. Whilst in nonlinear
cases, the method developed in [5] is limited and incomplete even though it works
for nonlinear polynomials (using SDP) since it requires bounds on variables as
well as uncommon variables are not allowed.

≤

≥

≥
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Table 2. Evaluation results of the presented examples

Example Type Time (sec)

CLP-prover Foci CSIsat Our approach

Example 1 NLA – – – 0.003

Example 2 NLA+EUF – – – 0.036

Example 5 NLA – – – 0.014

Example 6 NLA – – – 0.003

Example 7 LA 0.023 × 0.003 0.003

Example 8 LA+EUF 0.025 0.006 0.007 0.003

Example 9 Ellipsoid – – – 0.002

Example 10 Ellipsoid – – – 0.002

Example 11 Octagon 0.059 × 0.004 0.004

Example 12 Octagon 0.065 × 0.004 0.004

– means interpolant generation fails, and × specifies particularly
wrong answers (satisfiable).

7 Conclusion

The paper proposes a polynomial time algorithm for generating interpolants from
mutually contradictory conjunctions of concave quadratic polynomial inequali-
ties over the reals. Under a technical condition that if no nonpositive constant
combination of nonstrict inequalities is a sum of squares polynomials, then such
an interpolant can be generated essentially using the linearization of concave
quadratic polynomials. Otherwise, if this condition is not satisfied, then the
algorithm is recursively called on smaller problems after deducing linear equali-
ties relating variables. The resulting interpolant is a disjunction of conjunction
of polynomial inequalities.

Using the hierarchical calculus framework proposed in [22], we give an inter-
polation algorithm for the combined quantifier-free theory of concave quadratic
polynomial inequalities and equality over uninterpreted function symbols. The
combination algorithm is patterned after a combination algorithm for the com-
bined theory of linear inequalities and equality over uninterpreted function
symbols.

A prototype has been built, and experimental results indicate our approach
is applicable to all existing abstract interpretation domains widely used in ver-
ification for programs and hybrid systems like octagon, polyhedra, ellipsoid and
so on, which is encouraging for using this approach in the state of the art of
verification techniques based on interpolation4.

4 The tool and all case studies can be found at http://lcs.ios.ac.cn/∼chenms/tools/
InterCQI v1.1.tar.bz2.

http://lcs.ios.ac.cn/~chenms/tools/InterCQI_v1.1.tar.bz2
http://lcs.ios.ac.cn/~chenms/tools/InterCQI_v1.1.tar.bz2


Interpolant Synthesis for Quadratic Polynomial 211

Acknowledgement. The first three authors are supported partly by NSFC under
grants 11290141, 11271034 and 61532019; the fourth and sixth authors are supported
partly by “973 Program” under grant No. 2014CB340701, by NSFC under grant
91418204, by CDZ project CAP (GZ 1023), and by the CAS/SAFEA International
Partnership Program for Creative Research Teams; the fifth author is supported partly
by NSF under grant DMS-1217054 and by the CAS/SAFEA International Partnership
Program for Creative Research Teams.

References

1. CSDP. http://projects.coin-or.org/Csdp/
2. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: interpolation for LA+EUF. In:

Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer,
Heidelberg (2008)

3. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satis-
fiability modulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)

4. Dai, L., Gan, T., Xia, B., Zhan, N.: Barrier certificate revisited. J. Symbolic Com-
put. (2016, to appear)

5. Dai, L., Xia, B., Zhan, N.: Generating non-linear interpolants by semidefinite pro-
gramming. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
364–380. Springer, Heidelberg (2013)

6. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–
145. Springer, Heidelberg (2010)

7. Fujie, T., Kojima, M.: Semidefinite programming relaxation for nonconvex
quadratic programs. J. Global Optim. 10(4), 367–380 (1997)

8. Gan, T., Dai, L., Xia, B., Zhan, N., Kapur, D., Chen, M.: Interpolation syn-
thesis for quadratic polynomial inequalities and combination with EUF. CoRR,
abs/1601.04802 (2016)
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