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Abstract. Verification by simulation, based on covering the set of time-
bounded trajectories of a dynamical system evolving from the initial
state set by means of a finite sample of initial states plus a sensitiv-
ity argument, has recently attracted interest due to the availability of
powerful simulators for rich classes of dynamical systems. System mod-
els addressed by such techniques involve ordinary differential equations
(ODEs) and can readily be extended to delay differential equations
(DDEs). In doing so, the lack of validated solvers for DDEs, however,
enforces the use of numeric approximations such that the resulting veri-
fication procedures would have to resort to (rather strong) assumptions
on numerical accuracy of the underlying simulators, which lack formal
validation or proof. In this paper, we pursue a closer integration of
the numeric solving and the sensitivity-related state bloating algorithms
underlying verification by simulation, together yielding a safe enclosure
algorithm for DDEs suitable for use in automated formal verification.
The key ingredient is an on-the-fly computation of piecewise linear,
local error bounds by nonlinear optimization, with the error bounds uni-
formly covering sensitivity information concerning initial states as well as
integration error.

1 Introduction

Delayed coupling between state variables of dynamic systems occurs in many
domains. Prominent examples include population dynamics, where birth rate
follows changes in population size with a delay related to reproductive age,
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spreading of infectious diseases, where delay is induced by the incubation period,
exhaust gas control in internal combustion engines, where relevant sensors, like
the λ probe, are located downstream the exhaust system such that gas transport
induces a delay between the controlled combustion processes and sensing their
effect, or networked control systems with their associated transport delays when
forwarding data through the communication network, to name just a few. Most
examples feature feedback dynamics and it should be obvious that the presence
of feedback delays reduces controllability due to the impossibility of immediate
reaction and enhances likelihood of transient overshoot or even oscillation in the
feedback system. In fact, the introduction of delays into a feedback system may
reduce stabilization rates of or even destabilize an otherwise stable system, it
may provoke overshoot and drive the system to otherwise unreachable states,
it is likely to stretch dwell times, and it may induce residual error that never
cancels. As this implies that safety or stability certificates obtained on ideal-
ized, delay-free models of systems prone to delayed coupling may be erratic,
automated methods for system verification ought to address models of system
dynamics reflecting delays, rendering verification tools only addressing ordinary
differential equations (ODE) and their derived models, like hybrid automata,
vastly insufficient. It can well be argued that such tools should better address
delay differential equations (DDE), as introduced in [2].

Generalizing techniques developed for ODE to DDE is not as straightforward
as it may seem at first glance. The reason is that the future evolution of a
DDE is no longer governed by the current state instant only, but depends on a
chunk of its past trajectory, such that introducing a delay immediately renders
a system with finite-dimensional state into an infinite-dimensional dynamical
system. Consequently, approximate numerical methods for solving DDEs as well
as methods for stability analysis have well been developed in the field of control,
while in automatic verification, hitherto only few approaches address the effects
of delays due to the immediate impact of delays on the structure of the state
spaces to be traversed by state-exploratory methods.

In this paper, we address this problem by suitably adapting the paradigm of
verification by simulation to delay differential equations. Verification by simula-
tion provides bounded-time verification of dynamical systems based on covering
the full set of time-bounded trajectories of a dynamical system evolving from the
initial state set by means of a finite sample of initial states plus a sensitivity argu-
ment. To achieve this, a sufficiently dense sample of initial states is drawn from
the set of all possible initial states, numeric simulation is then used for obtain-
ing the trajectories originating from the sample points, and finally a quantitative
sensitivity argument permits to pessimistically over-approximate the “tube” of
trajectories originating from arbitrary start states by means of “bloating” the
individual simulated trajectories into a neighborhood of the radius given by the
bound on sensitivity on the start state, see e.g. [8,9,15,20]. If a validated numer-
ical solver is used for the simulations, the above procedure will immediately yield
a safe over-approximation of the set of possible trajectories; else, more aggressive
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bloating additionally covering the possible inaccuracies of numeric integration of
differential equations has to be employed to obtain a sound, validated method.

The class of systems we approach features delayed differential dynamics gov-
erned by DDE of the following form:{

ẋ (t) = f (x (t) ,x (t − r1) , . . . ,x (t − rk)) , t ∈ [0,∞)
x (t) = g(t), t ∈ [−rmax, 0] (1)

It thus involves a combination of ODE and DDE with multiple constant delays
ri > 0, i = 1, . . . , k. Here, rmax = max{r1, . . . , rk} is the maximal delay,
x : R≥−rmax �→ R

n is a trajectory, f : (Rn)k+1 �→ R
n a vector field, and

g : [−rmax, 0] �→ R
n is a continuous function providing the initial condition.

This form of equations has been successfully used to model various real world
systems in the fields of, e.g., biology, control theory, and economics.

Generally speaking, formal verification of temporally unbounded reachabil-
ity properties of system dynamics governed by Eq. (1) inherits undecidability
from similar properties for ODE. Therefore, and also due to our wish to use
simulation as an underlying mechanism of system analysis, we restrict ourselves
to time-bounded reachability problems. Such a time-bounded reachability prob-
lem for a given model of the form (1) is parameterized by a temporal horizon
(i.e., a time bound) set by the user, a set of initial states which in the case of
DDE generalizes to constant functions over the time frame [−rmax, 0] immedi-
ately preceding system start, and a set of unsafe states that system dynamics is
expected to avoid. The proof obligation is to determine whether there exists a
trajectory of the model starting in some initial state which reaches any unsafe
state within the time bound. In our approach, we first trigger a set of numerical
approximations of the behaviours from a finite sampling of the initial states.
Such a simulation does not yield a trajectory, but rather a timed trace, i.e., a
sequence of time-stamp value pairs. Along each simulation run, we bloat each
snapshot, i.e., each time-stamp value pair by a distance determined via an error
bound computed automatically on-the-fly, where the error bound incorporates
coverage and sensitivity information concerning the sampled start states as well
as the integration error incurred by numerical solving. The union of these bloat-
ings covers all time-bounded trajectories possibly evolving from all initial states,
and thus yields an over-approximation of the states reachable from the initial
set within the time bound. If this over-approximation proves safety in the sense
that the cover of the reachable states is disjoint from the unsafe states, or con-
versely if the simulation produces a valid counter-example in the sense that it
can prove that a trajectory inevitably hits the unsafe states, then the algorithm
generates the corresponding verdict. Otherwise, it refines the sample drawn from
the initial states, thus requiring less aggressive bloating of simulation runs, and
computes a more precise over-approximation.

Our approach is distinguished from competing approaches by providing a val-
idated verification-by-simulation paradigm for DDE. Given that validated meth-
ods for DDE enclosure are not readily available, it achieves this by pursuing a
closer than traditional integration of the numeric solving and the sensitivity-
related state bloating algorithms underlying verification by simulation, together
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yielding a safe enclosure algorithm for DDE guaranteed to contain the true solu-
tion. The key ingredient is an on-the-fly computation of piecewise linear, local
error bounds by nonlinear optimization, which provides an alternative to estab-
lished methods computing discrepancy bounds from Lipschitz constants and
Jacobians, as employed in [13]. Some experimental results obtained on several
benchmark systems involving delayed differential dynamics are further demon-
strated. Due to lack of space, the detailed proofs of theorems are available in [5].

Related Work. Zou et al. proposed in [27] a procedure for generating stability and
safety certificates for the simplest class of DDEs of the form ẋ(t) = f(x(t − r)).
This is achieved by iterating interval-based Taylor over-approximations of the
time-wise segments of the solution to a DDE, which depends essentially on the
fact that the interval coefficients of the solution over the time interval (n, n + 1]
can be represented as a function of those of the solution over (n−1, n]. Extracting
the operator mapping coefficients at one time frame to those of the next, one
obtains a time-invariant discrete-time dynamical system. Thus, stability analysis
and safety verification of the original DDE is reduced to appropriate counterparts
encoding these properties on the resulting time-invariant discrete-time dynamical
system. This approach does not immediately generalize to mixed ODE-DDE
forms as in Eq. (1), as the delayed parts of the dynamics would there function
as inputs to an ODE with input, rendering the above operator time-variant.
Though this is doable in principle, we have herein opted for the more immediate
approach of verification by simulation.

In [22], Pola et al. proposed an approach abstracting incrementally input-to-
state stable (δ-ISS) nonlinear control systems with constant and known delays
to finite-state symbolic models, and establish approximate bisimilarity between
them. In [21], they extended the work in [22] to incrementally-input-delay-to-
state stable (δ-IDSS) nonlinear control systems with time-varying and unknown
delays, and proved that the original δ-IDSS nonlinear control systems and the
corresponding symbolic models are alternating approximately bisimilar. The cru-
cial differences between their work and ours lie in, firstly, their approach being
confined to δ-ISS nonlinear control systems, while our approach being applica-
ble to any kind of nonlinear control systems with constant and known time
delays. So, our method relaxes a problematic applicability condition. Second,
their approach can do unbounded verification of time-delay systems, while our
approach currently can only conduct bounded verification. Third, their app-
roach can be applied to δ-IDSS nonlinear control systems with time-varying and
unknown delays, while our approach cannot yet. It is a crucial aspect of our
future work to extend our approach to nonlinear control systems with time-
varying and unknown delays, without sacrificing its applicability beyond δ-IDSS
systems.

Verifying delayless dynamical systems, in particular ODE, using numerical
simulations has well been studied, e.g., in [8,9,15,20], where similar concepts
based on sensitivity information provided by discrepancy functions or simulation
functions, respectively, have been presented to bloat the traces obtained from
simulations to “trajectory tubes” over-approximating time-bounded reach sets.
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While the first settings resorted to user-supplied sensitivity information, Fan
and Mitra in [13] proposed an algorithm for automatically computing piecewise
exponential discrepancy functions. This algorithm pessimistically estimates the
sensitivity of the ODE on its initial value, but also takes assumed error bounds
of the numerical simulation, which in that case is Matlab’s ode45 solver, into
account. This, however, renders the soundness of this algorithm dependent on
the assumption that Matlab’s built-in ODE solver can always guarantee those
numerical error bounds, while it is possible to find extremely stiff ODEs as
follows for which the solver returns very inaccurate results.

ẋ(t) = 1 + δa(x −
√

2), with δa(y) =
1

a
√

π
e−y2/a2

(2)

δa(y) approximates the Dirac δ function [7] modelling a tall narrow spike around
y = 0, where the spike shrinks as a → 0. When Eq. (2) is simulated with a =
10−3 by Matlab’s ODE solver ode45, results show that the solver can detect
the sharp increment of the derivative with a user-specified MaxStep as 0.01,
while not the case with 0.1. Furthermore, adjusting the simulation step width
could not essentially cure the problem, yet just shifts it to a smaller a for which
the solver fails to identify the leaping trajectory and instead follows straight-
line dynamics. This motivates us to address the issue of numerical errors in
discrepancy computation. Moreover, the method in [13] requires computations of
a global Lipschitz constant as well as a bound on the eigenvalues of the Jacobians
within a region, which may not be feasible in some dynamical systems.

2 Problem Formulation

Notations. For a vector x ∈ R
n, xi refers to its ith component, and ‖x‖ denotes

the �2-norm. The notation ‖ · ‖ extends to an n × n real matrix A ∈ R
n×n

with ‖A‖ =
√

λmax(ATA), where λmax(A) is the largest eigenvalue of A. For
x,x′ ∈ R

n, ‖x′ −x‖ is the Euclidean distance between the points, and we define
for δ ≥ 0, Bδ(x) = {x′ ∈ R

n|‖x′ −x‖ ≤ δ} as the closed ball of radius δ centered
at x. For a set S ⊆ R

n, Bδ(S) = ∪x∈SBδ(x). The diameter of a compact set S
is dia(S) = supx,x′∈S ‖x − x′‖, and a δ-cover of S is a finite collection of points
X such that S ⊆ ∪x∈X Bδ(x). For a set S ⊆ R

n, its convex hull is denoted as
conv(S).

Delayed Dynamical Systems. We consider a timed-bounded delayed dynamical
system of the form

{
ẋ (t) = f (x (t) ,x (t − r1) , . . . ,x (t − rk)) , t ∈ [0,∞)
x (t) ≡ x0 ∈ Θ, t ∈ [−rk, 0] , (3)
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1where x is the time-dependent state vector in R
n, ẋ denotes its temporal deriv-

ative dx/dt, and t is a real variable modelling time. The discrete delays are
assumed to be ordered as rk > . . . > r1 > 0, and the initial states are general-
ized to a constant function over [−rk, 0] taking values from a compact set Θ.

Let the vector-valued function f : (Rn)k+1 �→ R
n be continuous and contin-

uously differentiable in the first argument, which implies that the system has
a unique maximal solution (or trajectory) from each constant initial condition
valued x0 ∈ R

n, denoted as ξx0(t) : [−rk, �) �→ R
n, where � = ∞ holds if f is

Lipschitz.

Example 1 (Gene Regulation [12,24]). The control of gene expression in cells is
often modelled with time delays in equations of the form

{
ẋ1(t) = g(xn(t − rn)) − α1x1(t)
ẋj(t) = g(xj−1(t − rj−1)) − αjxj(t), 1 < j ≤ n,

(4)

where the gene is transcribed producing mRNA (x1), which is translated into
enzyme x2 that turn produces another enzyme x3 and so on. The end product xn

acts to repress the transcription of the gene by ġ < 0. Time delays are introduced
to account for time involved in transcription, translation, and transport. The
αj > 0 represent decay rates of the species. The dynamic described in Eq. (4)
falls exactly into the scope of systems considered in this paper, and in fact, it
instantiates a more general family of systems known as monotone cyclic feedback
systems (MCFS) [19], which includes neural networks, testosterone control, and
many other effects in systems biology.

Safety Verification Problem. Given a set U ⊆ R
n of unsafe or otherwise bad

states, a delayed dynamical system of shape (3) is said to be (time-bounded)
safe iff all the trajectories originating from any x0 ∈ Θ do not intersect with U
(within the given time bound T ), otherwise it is called unsafe.

3 Verification of Delayed Dynamical Systems
via Simulation

Generating formal guarantees for DDEs of the form (3) tends to be challenging
due to unavailability of guaranteed for solving them. We are trying to alleviate
that problem by adopting approximate numeric methods, enhancing them with
methods for rigorous error tracking, thus rendering them validated numerical
methods, and adding sensitivity information for being able to cover sets of initial
states based on simulating and bloating the trajectories originating from finitely
many samples. This approach has been inspired by similar approaches for ODE,
in particular the discrepancy functions of [13].
1 In general, the initial condition is represented by x(t) = ξ0(t), for t ∈ [−rk, 0], where

ξ0 ∈ X ⊆ C0([−rk, 0] ,Rn), C0([−rk, 0] ,Rn) stands for all continuous functions
mapping from [−rk, 0] to R

n, X is compact and bounded. So, we can let Θ =
∪ξ∈X ξ([−rk, 0]). Clearly, Θ is compact and bounded.
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We will now expose in detail the overall procedure of simulation by verifica-
tion, which hinges on the validated simulation of DDE that we will turn to in
Sect. 4. For the sake of simplifying the exposition, we first consider the special
case of delayed dynamical systems featuring a single delay, as in

{
ẋ (t) = f (x (t) ,x (t − r)) , t ∈ [0,∞)
x (t) ≡ x0 ∈ Θ, t ∈ [−r, 0] . (5)

In this case, the differential dynamics is a function f(x,u) of two states, namely
the current state x and the past state u.

The basic idea of simulation-based verification of a DDE (5), as implemented
by Algorithm 1, can be sketched as follows:
First, we build on a validated simulation procedure Simulation, whose design is
shown in Sect. 4. Given a delayed dynamical system as above, a subset X0 ⊂ Θ
of the initial states, and a time bound T , Simulation yields a simulation trace
(t0,y0), . . . , (tn,yn) consisting of pairs of time stamps ti ∈ [0, T ] and states yi ∈
R

n with y0 = x0, as well as a sequence of local error bounds d0, d1, . . . , dn ≥ 0
providing a validation of this trace observing the following two properties:

P1: 0 = t0 < t1 < . . . < tn = T , i.e., the time stamps in the trace are ascending
and cover the temporal horizon of interest.

P2: For each of the trajectories ξx0(t) of (5) starting from any point x0 ∈ X0,
the validation property

(ξx0(t), t) ∈ conv
(
(Bdi

(yi) × {ti}) ∪ (Bdi+1(yi+1) × {ti+1})
)

(6)

holds for each t ∈ [ti, ti+1], i = 0, 1, . . . , n−1. I.e., the reported error bounds
di span a piecewise linear tube around the points (yi, ti) in the simulation
trace such that ξx0(t) is properly enclosed for any x0 ∈ X0 and any t ∈ [0, T ].

Then, time-bounded safety verification of system (5) can be obtained as follows:

1. At the beginning, we cover the given initial set X0 by a finite set of balls of
radius δ; so, δ-Partition(X0) in line 2 of Algorithm 1 returns a finite δ-cover
of the compact set X0. We then call Simulation to each of these balls. For
each ball B, we collect all states contained in the bloating of the N -step
simulation trace y as Bd(y) =

⋃N−1
n=0 conv(Bdn

(yn)∪Bdn+1(yn+1)), cf. line 8.
This yields an over-approximation of the states reachable from B following
(5) within time up to T .

2. If the over-approximation of the reachable set thus obtained is disjoint to the
unsafe set (line 9), then (5) is safe when starting in B; otherwise, if there
exists a sampling point in the simulation which has its full bloating with
the corresponding local error bound being contained in the unsafe set (line
11), then (5) is definitely unsafe. If none of these two conditions applies, we
compute a finer partition of B (line 14), and we repeat the above procedure
until the granularity of the partition becomes finer than the given threshold.
In this case, we cannot give an answer whether or not (5) is safe and terminate
with the inconclusive result unknown.
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Algorithm 1. Simulation-based Verification for Delayed Dynamical Sys-
tems

input : The dynamics f(x,u), delay term r, initial set X0, unsafe set U , time bound T , precision ε.
/* initialization */

1 R ← ∅; δ ← dia(X0)/2; τ ← τ0;
2 X ← δ-Partition(X0);
3 while X �= ∅ do
4 if δ < ε then
5 return (UNKNOWN, R);

6 for Bδ(x0) ∈ X do
7 〈t,y,d〉 ← Simulation(Bδ(x0), f(x,u), r, τ, T );

8 T ←
⋃N−1

n=0 conv(Bdn (yn) ∪ Bdn+1 (yn+1));

9 if T ∩ U = ∅ then
10 X ← X\Bδ(x0); R ← R ∪ T ;

11 else if ∃i. Bdi
(yi) ⊆ U then

12 return (UNSAFE, T );
13 else
14 X ← X\Bδ(x0); X ← X ∪ δ

2 -Partition(Bδ(x0));

15 δ ← δ/2;

16 return (SAFE, R);

Obviously, our approach is different from existing approaches providing
simulation-based verification for dynamical systems modeled by ordinary differ-
ential equations, like [8,9]. In our approach, the simulation procedure provides
a rigorous validation of the above property P2, rather than relying on assump-
tions concerning numerical accuracy of the underlying simulator. Second, our
approach covers rigorous simulation-based formal verification of DDE rather
than just ODE. The correctness of the resulting algorithm is captured by the
following theorem:

Theorem 1 (Correctness). If Simulation satisfies above properties P1 and
P2 (which will be verified in the next section), then Algorithm1 terminates and
its outputs are guaranteed to satisfy the following soundness properties:

– it reports (SAFE,R) only if the system is safe.
– it reports (UNSAFE, T ) only if the system is unsafe and T is a counter-

example.

The general case of multiple different delays in Eq. (3) can be dealt with analo-
gously to the case (5) of a single delay: we only need to allowu to have more compo-
nents, meanwhile, we need to revise Algorithm 2 accordingly by introducing mul-
tiple different mi as m1 ← r1/τ, . . . ,mk ← rk/τ . Thus, the delayed states yn−mi

s
can be exactly located when computing yn+1 by f(yn, yn−m1 , . . . , yn−mk

) (line 6
in Algorithm 2) as well as when finding the minimal e (line 7 in Algorithm 2).

4 Validated Simulation

In this section, we elaborate on simulation and on computation of rigor-
ous local error bounds to guarantee the enclosure property P2. Instead of
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directly computing the error bounds d0, . . . , dn accompanying the simulation
trace (t0,y0), . . . , (tn,yn), we compute an initial error bound d0 and a sequence
e1, . . . , en of error slopes recursively defining error bounds E(t) for each t ∈
[0, T ] — and thus not only for time stamps in the simulated trace — as follows:

E(t) =

{
d0, if t = 0,

E(ti) + (t − ti)ei+1, if t ∈ [ti, ti+1].
(7)

The validation property (P2) can thus be rewritten as

P2’: For each of the trajectories ξx0(t) of system (5) starting from any point
x0 ∈ X0, the validation property

ξx0(t) ∈ BE(t)

(
(t − ti)yi + (ti+1 − t)yi+1

ti+1 − ti

)
(8)

holds for each t ∈ [ti, ti+1].

I.e., the ei’s provide the slopes of piecewise conic enclosures around the linear
interpolations between the points (ti,yi) in the simulation trace.

The Simulation Algorithm. Inferring formal proofs from simulations essentially
attributes to a validated numerical solver which can produce rigorous error
bounds on the generated sampling points. We present in Algorithm2 a pro-
cedure2 Simulation that provides a trace of sampling points bundled with their
local error bounds thus giving an over-approximation of the reachable set in
terms of an initial state space.

The algorithm is provided with an initial ball Bδ(x0) and it proceeds with
a discrete simulation starting from x0 paced by a fixed stepsize τ . Three list
structures (denoted as �·�) with the same length are introduced respectively
as (1) t: storing a sequence of time stamps on which the approximations are
computed, (2) y: keeping a sequence of sampling points that approximates the
trajectory starting from x0, and (3) d: capturing the corresponding sequence
of local error bounds. Due to the nature of DDEs where the evolving of states
may refer to those ahead of time t0 = 0, we index the lists beginning from −1
and assume that all the evaluations of y and d with a negative index return the
element at −1, namely y<0 = y−1

3, and analogously for d.
At t0 = 0, the corresponding local error is initialized with the radius of the ini-

tial set d0 = δ (line 1). An offest m is computed in line 2 such that yn−m locates
the delayed approximation at tn − r. In each iteration of the simulation loop,
the state is extrapolated in line 6 using the well-known forward Euler method,
which computes yn+1 explicitly from previous points yn and yn−m. Higher-order

2 For ease of presentation, we demonstrate the approach on DDEs with one single
delay, and it readily extends to that with multiple delays as discussed in Sect. 3.

3 For a general initial condition g(t), y is initialized as y ← �g(−r), g(−r +
τ), . . . , g(0)�.
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Algorithm 2. Simulation: a validated DDE solver producing rigorous
bounds

input : The initial set Bδ(x0), dynamics f(x,u), delay term r, stepsize τ , time bound T .
output: A triple 〈t,y,d〉, where the components represent lists, with the same length, respectively for

the time points, numerical approximations (possibly multi-dimensional), and the rigorous local
error bounds.

/* initializing the lists, whose indices start from -1 */
1 t ← �−τ, 0�; y ← �x0,x0�; d ← �0, δ�;

/* r has to be divisible by τ (in FP numbers) */
2 n ← 0; m ← r/τ ;
3 while tn < T do
4 tn+1 ← tn + τ ;

/* approximating yn+1 using forward Euler method */
5 yn+1 ← yn + f(yn,yn−m) ∗ τ ;

/* computing error slope by constrained optimization, where σ is a positive slack
constant */

6 en ← Find minimum e s.t.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

‖f(x + t ∗ f ,u + t ∗ g) − f(yn,yn−m)‖ ≤ e − σ, for

∀t ∈ [0, τ ]
∀x ∈ Bdn (yn)
∀u ∈ Bdn−m

(yn−m)

∀f ∈ Be(f(yn,yn−m))
∀g ∈ Ben−m

(f(yn−m,yn−2m));

(9)

7 dn+1 ← dn + τen;
/* updating the lists by appending the extrapolation */

8 t ← �t, tn+1�; y ← �y, yn+1�; d ← �d, dn+1�;
9 n ← n + 1;

10 return 〈t,y,d〉;

Runge-Kutta methods [1] could be employed here to obtain more precise approx-
imations. Line 7 derives a local error bound dn+1 based on the local error slope
en satisfying the enclosure property (P2’). The computation of en is reduced to
a constrained optimization problem (line 6).

Correctness of Simulation. Note that the constrained optimization problem (9)
need not have a finite solution, in which case our algorithm fails to provide a
useful enclosure. Straightforward continuity arguments do, however, show that
for small enough stepsize τ , it will always have a solution, which motivated us
to implement stepsize control, as discussed below. When being able to compute
useful, i.e., finite error slopes, the simulation delivers a safe enclosure satisfying
(P2):

Theorem 2 (Correctness). Suppose the maximum index of the lists generated
by Algorithm2 is N , then ∀t ∈ [0, T ] and ∀x ∈ Bδ(x0),

ξx(t) ⊆
⋃N−1

n=0
conv(Bdn

(yn) ∪ Bdn+1(yn+1)).

The completeness result can be formally stated as follows:

Theorem 3 (Completeness). Suppose the function f in Eq. (5) is continu-
ously differentiable in both arguments and the dynamical system is solvable for
time interval [0, T ], then for any ε > 0, there exists δ, τ and σ such that the
optimization problem (9) has a solution en for all n ≤ T

τ , and moreover dn ≤ ε.



Validated Simulation-Based Verification of Delayed Differential Dynamics 147

Algorithm 3. Simulation: a simulation procedure with local stepsize con-
trol

input : Bδ(x0), f(x,u), r, τ0, T .
output: 〈t,y,d〉

1 t ← �−τ0, 0�; y ← �x0,x0�; d ← �0, δ�;
2 n ← 0;
3 while tn < T do
4 τ ← τ0; m ← r/τ ;

/* relocating the bias m by a backward search */
5 for j ← Length(t); j ≥ 1; j − − do
6 if tn − r ∈ (tj−1, tj ] then
7 m ← n − j;
8 Break;

9 while True do
10 tn+1 ← tn + τ ; yn+1 ← yn + f(yn,yn−m) ∗ τ ;
11 if minimal e satisfying Eq. (10) under the constraints of (9) is found then
12 en ← e; dn+1 ← dn + τen;
13 Break;

14 else
15 τ ← τ/2;

/* Smaller e, tighter the bloating. */

16 t ← �t, tn+1�; y ← �y, yn+1�; d ← �d, dn+1�;
17 n ← n + 1;

18 return 〈t,y,d〉;

Extension to Variable Stepsize. Local stepsize control reducing the current step-
size whenever Eq. (9) has no finite solution seems natural. An improved simula-
tion procedure with flexible stepsize control is presented in Algorithm3, where
in each step of simulation, the procedure first tries to find a finite upper bound e
satisfying Eq. (9) with an initial stepsize τ0. If it fails, the current interval is split
into two (line 15) and the above operations repeat. Termination of refining the
stepsize is guaranteed by the continuous differentiability of f in both of its argu-
ments. Along with variation of τ , the bias locating the delayed state within the
list of sampling points need to be recomputed in each step by a backward search
(line 8). This may generate extra error, as the nearest sampling point yn−m may
not feature exactly the desired delay. This additional error is accounted for by
modifying the first line of the constrained optimization (9) into

‖(x + t1 ∗ f ,u + t2 ∗ g) − f(yn,yn−m)‖ ≤ e − σ (10)

for any t1, t2 ∈ [0, τ ]. The correctness and completeness arguments for
Algorithm 3 are akin to Theorem 2.

5 Implementation and Experimental Results

To evaluate the approach of verification along simulations, we have implemented
the proposed algorithms with local stepsize control as a prototype4 in Matlab. It
takes a time-bounded safety verification problem of delayed dynamical systems
4 Available from http://lcs.ios.ac.cn/∼chenms/tools/DDEChecker v1.0.tar.bz2.

http://lcs.ios.ac.cn/~chenms/tools/DDEChecker_v1.0.tar.bz2
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as input, and it terminates with one of the three results SAFE, UNSAFE, or
UNKNOWN, reflecting the fact that a fine enough over-approximation has been
found to prove the system safe or unsafe, respectively, or that the maximum per-
mitted density of covering the initial set was insufficient for obtaining a definite
answer.

As our algorithm relies on solving the constrained optimization problems (9)
or (10), resp., for determining validated bounds, we have tried different solvers for
discharging that optimization problem, namely the numerical (and thus devoid of
formal guarantees concerning completeness and soundness) procedure fmincon
provided by Matlab and the optimization-modulo-theory procedure offered by
the nonlinear SAT-modulo theory solver HySAT II5 [16]. The constrained opti-
mization problems (9) and (10) involve a universally quantified constraint of the
shape

find min{e ≥ 0 | ∀x : φ(x, e) =⇒ ψ(x, e)}, (11)

which is outside the scope of the above solving procedures, as these handle exis-
tential constraints only. We therefore have substituted (11) by the existentially
constrained optimization problem

find max{e ≥ 0 | ∃x : φ(x, e) ∧ ¬ψ(x, e)}. (12)

Due to the linear ordering on R≥0, problem (12) is guaranteed to yield an upper
bound on the solution of (11), which is safe in our context. Both fmincon and
HySAT II proved to be able to efficiently solve (9) and (10) in the formula-
tion (12), with HySAT II being able to provide a validated solution due to
global search based on a combination of interval constraint propagation with
optimization-modulo-theory solving.

HySAT II [16] is a sat-modulo-theory (SMT) solver accepting formulas con-
taining arbitrary boolean combinations of theory atoms involving linear, polyno-
mial and transcendental functions. It internally rewrites these formulae into an
equi-satisfiable conjunctive normal form by means of a definitional translation
introducing auxiliary propositional and numeric variables representing the truth
values of sub-formulae and the numeric values of subexpressions, resp., thus
generalizing the well-known Tseitin transformation [25]. HySAT II then solves
the resulting CNF through a tight integration of the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [6] in its conflict-driven clause learning (CDCL)
variant with interval constraint propagation (ICP) [3]. Details of the algorithm,
which operates on interval valuations for both the Boolean and the numeric
variables and alternates between choice steps splitting such intervals and deduc-
tion steps narrowing them based on logical deductions computed through ICP
or Boolean constraint propagation (BCP), can be found in [14]. Implementing
a branch-and-prune search in interval lattices and conflict-driven learning of
clauses comprising irreducible atoms in those lattices, it can be classified as an
early implementation of abstract conflict-driven clause learning (ACDCL) [4].

By this ACDCL proof search, HySAT II will successively construct a cover
of the actual solution set of the constraint problem by tiny interval boxes, a
5 Available from https://www.uni-oldenburg.de/en/hysat/.

https://www.uni-oldenburg.de/en/hysat/
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sequence of so-called candidate solution boxes together enclosing all solutions.
Optimization then is based on a branch-and-prune search over the candidate
solution boxes, which is straightforward to integrate into the ACDCL proof
search by biasing the ACDCL splitting rule to better values when splitting along
the variable representing the optimization criterion, plus learning bounds that
impose blocking on any solutions worse than the best value up-to-now found.

The soundness of this procedure for solving the optimization problems (9) or
(10) in the formulation (12) follows immediately from the soundness properties
of ICP, which narrows the search space by chopping off regions not containing
any solution, but will never remove solutions [3]. It consequently is an invariant
of the iSAT algorithm’s proof search, as implemented in HySAT II, that its
residual search space internally represented by interval boxes plus the already
reported solution boxes together safely over-approximate the actual solution
space [14]. This in turn implies that the maximum found by HySAT II always
is a safe upper bound of the actual maximum, irrespective of possible non-
convexity of the optimization problem at hand. We can conclude that solving
the optimization problems (9) or (10) in the formulation (12) with HySAT II
will provide a safe upper bound on the actual optimal value of (12), which in
turn is an upper bound on (9) or (10), resp., in the original form (11). As any
upper bound renders the enclosure in Algorithms 2 or 3, resp., correct, we can
conclude that HySAT II’s optimization procedure guarantees soundness of the
overall algorithm. The possible failure of HySAT II’s optimization procedure in
determining a sharp over-approximation of the optimal value will at most impact
performance, as it may enforce an unnecessarily dense cover by simulation traces
due to overly pessimistic bloating of the original traces.

In the following, we demonstrate our approach by verification of some
quintessential DDEs.

Delayed Logistic Equation. In 1948, G. Hutchinson [17] introduced the delayed
logistic equation

ṅ(t) = a[1 − n(t − T )/K]n(t)

to model a single population whose percapita rate of growth at time t

ṅ(t)/n(t) = a[1 − n(t − T )/K]

depends on the population size T times units in the past. This would be a
reasonable model for a population that features a significant minimum repro-
ductive age or depends on a resource, like food, needing time to grow and those
to recover its availability. If we let N(t) = n(t)/K and rescale time, then we get
the discrete-delay logistic equation

Ṅ(t) = N(t)[1 − N(t − r)], t ≥ 0. (13)

Arguments in [24] established that for any initial function N0 > 0, there exists
a unique non-negative solution N(φ, t) defined for all t > 0. Wright’s conjecture
[26], still unsolved, is that if r ≤ π/2 then N(φ, t) → 1 as t → ∞ for all solutions
of Eq. (13) satisfying N0 > 0.
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Fig. 1. Over-approximation of the
solutions of Eq. (13) originating from
region B0.01(1.49) under delay r = 1.3.
Initial stepsize τ0 = 0.01, time bound
T = 10 s.
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Fig. 2. Over-approximation rigorously
proving Eq. (13) unsafe, with r = 1.7,
X0 = B0.025(0.425), τ0 = 0.1, T = 5 s
and U = {N |N > 1.6}.
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(a) An initial over-approximaion of trajectories start-
ing from B0.225(1.25). It overlaps with the unsafe set
(s. circle). Initial set is consequently split (cf. Figs. 3b,
3c).
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(b) All trajectories starting from B0.125(1.375)
are proven safe within the time bound, as the over-
approximation does not intersect with the unsafe set.
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(c) Initial state setB0.125(1.125) is verified to be safe
as well.
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(d) B0.25(0.75) yields overlap w. unsafe; the ball is
partitioned again (Figs. 3e, 3f).
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(e) All trajectories originating from B0.125(0.875)
are provably safe.
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(f) All trajectories originating from B0.125(0.625)
are provably safe as well.

Fig. 3. The logistic system (13) is proven safe through 6 rounds of simulation with
base stepsize τ0 = 0.1. Delay r = 1.3, initial state set X0 = {N |N ∈ [0.5, 1.5]}, time
bound T = 5 s, unsafe set {N |N > 1.6}.

Figure 1 illustrates an over-approximation of trajectories of Eq. (13) in terms
of a specific initial set. It provides an intuitive description of our simulation
approach equipped with computation of on-the-fly linear local error bounds. To
investigate Wright’s conjecture, we further explore the safety verification frame-
work based upon validated simulations with a delay r = 1.3 < π/2, for which
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the trajectories are expected to converge within a time interval. The detailed
verification process is elaborated in Fig. 3. Meanwhile, we also successfully fal-
sified an unsafe case with r = 1.7 where the over-approximation of a diverging
trajectory can be rigorously shown to violate the safety property (see Fig. 2).

Delayed Microbial Growth. Ellermeyer et al. [10,11] introduced a delay in the
standard bacterial growth model in a chemostat which, after scaling time and
the dependent variables, can be written as

Ṡ(t) = 1 − S(t) − f(S(t))x(t) ,
ẋ(t) = e−rf(S(t − r))x(t − r) − x(t) ,

(14)

where f(S) = αS/(β + S), and S(t) denotes the substrate (food for bacteria)
concentration, while x(t) is the biomass concentration of bacteria. The delay r
reflects the assumption that whereas cellular absorption of substrate is assumed
to be an instantaneous process, a resulting increase in microbial biomass reflect-
ing assimilation is assumed to lag by a fixed amount of time r. A specific verifica-
tion problem of Eq. (14) is shown in Fig. 4, where different rounds of simulation
are depicted together in the phase space of S and x, and for a clear presenta-
tion, we only sketch the over-approximations around those numerically computed
sampling points.

Fig. 4. Equation (14) is proven safe by 17 rounds of simu-
lation w. τ0 = 0.45. The simulated trajectories start from
within a cover of X0 (the red dashed circle on the right)
and converge eventually to a basin of attraction (marked
by a small blue rectangle). Here, α = 2e, β = 1, r = 0.9,
X0 = B0.3((1; 0.5)), U = {(S; x)|S + x < 0}, T = 8 s.
(Colour figure online)

Gene Regulation. To fur-
ther investigate the scal-
ability of our approach
to high dimensions, we
recall an instantiation
of Example 1 by set-
ting n = 5, namely
with 5 state components
x = (x1;x2; . . . ;x5) and
5 delay terms r =
(r1; r2; . . . ; r5) involved.
This essentially yields,
in each step of simu-
lation, an optimization
procedure of the form
(10) with 23 scalar vari-
ables, i.e., e, t1, t2 and
x,u, f ,g ∈ R

5. By fur-
ther setting r = (0.1;
0.2; 0.4; 0.8; 1.6), X0 =
B0.2((1; 1; 1; 1; 1)), U =
{x|x1 < 0}, and T = 2 s,
the system of Eq. (4) is
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rigorously proven unsafe, which means that the dosage of mRNA might degrade
to negative in this hypothetical setting.

As an intuitive observation, the verification time consumed by our prototype
is fairly sensitive to the specific setting of the verification problem, including
the initial set X0, the delays r, the unsafe set U , and the time bound T as
well. However, the optimization routine proved well scalable to high dimensions,
and particularly, verifications of the above benchmark systems all completed
successfully in a handful of minutes.

6 Conclusion and Future Work

We have exposed an approach for automated formal verification of time-bounded
reachability properties of a class of systems that feature delayed differential
dynamics governed by delay differential equations (DDEs) with multiple differ-
ent delays (including 0, i.e., direct feedback). This class of system models has
successfully been used to model various real-world systems in the field of biology,
control theory, economics, and other domains. Our approach is based on adapting
the paradigm of verification-by-simulation to DDEs. It provides bounded-time
verification by covering the full set of time-bounded trajectories of a dynami-
cal system evolving from the initial state set by means of investigating a finite
sample of initial states plus generalization via a sensitivity argument. Initially,
it triggers a finite set of numerically approximate simulations of the dynamic
behaviors, thereby generating a finite set of approximate simulation traces origi-
nating from a finite sample of the initial states. As the sample does not cover all
initial states, and as simulation is only approximate, we bloat each time-stamp
value pair returned from the simulation by a distance determined via an error
bound computed automatically on-the-fly during simulation. This error bound
incorporates both sensitivity information concerning start states and rigorous
bounds on integration error incurred by numerical solving. Hence, the union of
the state sets reached by all the individual bloated trajectories provides a safe
over-approximation of the states actually reachable from the initial set within
the time bound. If this over-approximation proves safety in the sense that the
reachable states do not intersect the unsafe states, or conversely if the simulation
produces a valid counter-example in the sense that it can prove that a trajectory
hits the unsafe states, then the algorithm generates the corresponding verdict.
Otherwise, our algorithm refines its sample of initial states and repeats the pre-
vious steps to compute a more precise over-approximation.

Based on that approach, we have implemented a prototype of a validated
solver for DDE. Using it, we have successfully demonstrated the method on
several benchmark systems involving delayed differential dynamics.

As a future work, we plan to replace Euler’s direct method by high-order
Runge-Kutta methods [1] in order to obtain more precise approximations. Fur-
thermore, the method of Zou et al. [27] can be extended to provide a safe enclo-
sure algorithm for the class of systems (3) suitable for use in unbounded formal
verification, based on the fact that the iSAT constraint solver [14] used therein



Validated Simulation-Based Verification of Delayed Differential Dynamics 153

supports unbounded verification by means of Craig interpolation. In addition,
it could be quite interesting to investigate how to combine the technique of
conformance testing for hybrid systems [18,23] with our approach. The poten-
tial merits of such combination is twofold: on the one hand, it can extend the
conformance testing technique to deal with hybrid systems with delays; on the
other hand, it may improve the efficiency of the conformance testing technique by
using simulation-based approach to over-approximate the reachable set instead
of directly computing.
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