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Abstract. This paper introduces k-d PCPs – the class of probabilistic 
counter programs with k ∈ N counter variables inducing possibly infinite-
state Markov chains. We show that the universal (positive) almost-sure 
termination problem is undecidable for k-d PCPs in general, yet decidable 
for 1-d PCPs. We present an efficient decision procedure for the latter 
leveraging the technique of Markov chain finitization. Moreover, we iden-
tify several classes of k-d PCPs that are reducible to 1-d PCPs – thus 
their termination properties can be inferred automatically. Experiments 
demonstrate that our decision procedure can certify (positive) almost-
sure termination – without resorting to invariants or supermartingales – 
of non-trivial probabilistic programs beyond the scope of existing tools. 

Keywords: Probabilistic (counter) programs · (Positive) almost-sure 
termination · Decidability · Infinite-state Markov chains 

1 Introduction 

Probabilistic programming [ 3, 26, 34, 38, 47] is a widely adopted paradigm where 
programs can make probabilistic choices. Amongst others, the almost-sure ter-
mination (AST) problem, i.e., whether a program terminates with probability 1, 
is a fundamental property of probabilistic programs. Both AST and its refined 
notion called positive almost-sure termination (PAST) – whether an AST pro-
gram terminates within finite expected runtime – are undecidable in general. 
In fact, reasoning about the termination behavior of probabilistic programs is 
known to be harder than that for deterministic programs; see [ 35]. Known classes 
of probabilistic programs/models admitting decidable (P)AST problems include 
finite-state Markov chains [ 2], probabilistic pushdown automata [ 20], and proba-
bilistic counter programs [ 9]. However, these decidable fragments are not expres-
sive enough to model randomized algorithms featuring, e.g., infinite state spaces 
and/or nonlinear guards; see Example 1 in Sect. 2. 
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Fig. 1. The general workflow of our procedure for deciding (P)AST of 1-d PCPs. 

In this paper, we introduce k-d PCPs – the class of probabilistic counter 
programs with k ∈ N counter variables (Sect. 3). This class of programs 
is a restricted version of the imperative probabilistic programming language 
pGCL [ 45] by allowing only assignments of the form x := x + c, where  x is a 
counter variable and c is a constant. We show that k-d PCPs induce countable 
Markov chains with a regular structure and thereby admit an efficient analy-
sis using various techniques established for random walks, queueing processes, 
finite-state Markov chains, and graph theory. In particular, we show that such 
Markov chains can be finitized while preserving their (positive) almost-sure ter-
mination properties, which yields the decidability of both AST and PAST for 
one-dimensional PCPs (1-d PCPs, Sect. 4) on all inputs (i.e., universal termina-
tion). We further identify several classes of k-d PCPs that are reducible to 1-d 
PCPs (hence called essentially 1-d PCPs), and thus their termination properties 
can be inferred automatically (Sect. 5). These classes include non-trivial practi-
cal programs such as the bounded retransmission protocol [ 30] and the Zeroconf 
protocol [ 5]. Moreover, we show that AST and PAST problems are undecidable 
for k-d PCPs in general, which is established by modeling a two-counter pro-
gram within the 2-d PCP framework [ 18] ([  54, Appendix F]). Finally, we present 
Pastry, a tool implementing the decision procedure for essentially 1-d PCPs. 
Experimental results on a collection of benchmarks demonstrate that our deci-
sion procedure can certify (positive) almost-sure termination of non-trivial prob-
abilistic programs that remain out of reach for existing tools, without resorting 
to any form of invariants or supermartingales (Sect. 6). 
Main Contributions. Our main contributions are summarized as follows. 
– We introduce a new class of probabilistic programs called k-d PCPs. 
– We establish the decidability of universal (P)AST for 1-d PCPs and present 

an efficient decision procedure via Markov chain finitization. 
– We identify important classes of k-d PCPs that are reducible to 1-d PCPs. 
– We implement and conduct an extensive experimental evaluation of the pro-

posed decision procedure against existing termination analysis tools. 

2 A Bird’s-Eye Perspective 

This section outlines our procedure for deciding (P)AST of probabilistic pro-
grams with one counter. As depicted in Fig. 1, our algorithm takes a 1-d PCP
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x := 1�

while
(
x3 − 3x2 + 2x ≥ 0

) { 
if ( x mod 2 = 0 ) { 

{ x := x + 2  } [ 0.6 ]  { x := x − 1 } 
} else { 

{ x := x + 1  } [ 0.3 ]  { x := x − 2 } 
} 

} 

Prog. 1. The parity random walk. Fig. 2. The PCTS of Prog. 1. 

as input and converts it to an intermediate representation called probabilistic 
counter transition systems (PCTSs). Each PCTS induces a countable yet poten-
tially infinite-state Markov chain. Our key observation is that such Markov chain 
is highly regular : It can be decomposed into a finite component Mirreg and two 
infinite components M − 

reg,M  + 
reg featuring periodic behaviors. We then abstract 

the regular components leveraging the theory of quasi-birth-death processes [ 56], 
which yields finite-state MCs with labeled states. By combining these MCs with 
Mirreg, we obtain a single finite-state labeled MC. Finally, we conclude the ter-
mination of the original 1-d PCP by conducting a standard reachability analysis 
(via graph-theoretic techniques) over this MC. 

We use the following example to demonstrate our decision procedure. 

Example 1 (Parity Random Walk). Consider the 1-d PCP Prog. 1 that models 
a one-dimensional asymmetric random walk subject to two phases (based on 
the parity of its current position). This program is adapted from [ 13] by adding 
features of nonlinear guards and the modulo operation (mod). These features 
– together with the unbounded nature of x – render it infeasible to analyze 
the termination behavior using existing procedures such as Amber [ 52] and  
KoAT [ 41]. We show below how our decision procedure sketched in Fig. 1 can 
be employed to certify positive almost-sure termination of Prog. 1 in steps. �

1) Convert 1-d PCP to 1-d PCTS We first adopt a standard procedure to 
mechanically convert the probabilistic counter program to a probabilistic counter 
transition system by recursively traversing the underlying syntax tree. The so-
obtained 1-d PCTS of Prog. 1 is shown in Fig. 2, where  s⊥ denotes the terminal 
state and a dashed edge denotes a condensed transition of consecutive counting 
steps, e.g., s3 

p=0.6, x:=x+2������������ s4 abbreviates s3 
p=0.6, x:=x+1 −−−−−−−−−→ s′ x:=x+1−−−−−→ s4 for 

some omitted intermediate state s′. To demonstrate the correspondence between 
the PCTS and the Markov chain(s) it induces (in later steps), we use colors in 
Fig. 2 to indicate transitions between different states. 

2) Transform 1-d PCTS to Partitioned Infinite-State MC Each 1-d PCTS with 
state space S induces a countable Markov Chain M over the infinite state space
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Fig. 3. The partitioned infinite-state MC induced by Prog. 1. Transition probabilities 
are omitted for clarity. and mark the initial and terminal state, respectively. We 
artificially chain the states associated with s⊥ to ensure that the MC has a unique exit 
state (s⊥, 0) (see Sect. 3). 

Fig. 4. An illustration of regular MC finitization using transient (τ), positive-recurrent 
(ρ), and null-recurrent (η) states. A transient state is an abstract state from which a 
random walk on the MC gets trapped in the regular part (signified by the artificial 
sink state ↑) with a positive probability. A positive-recurrent state is an abstract state 
from which the random walk crosses the boundary and enters the irregular part with 
probability 1 in a finite expected number of steps. In contrast, from a null-recurrent 
state, a random walk visits the irregular side with probability 1 but in an infinite 
expected number of steps. 

S × Z; see Fig. 3 for the induced MC of Prog. 1. We then exploit the regularity 
of this Markov chain: Except for finitely many “middle” states around the initial 
counter value, the behavior of the Markov chain exhibits periodicity, i.e., the 
transitions form specific patterns ad infinitum. We can thus decompose the MC 
into a finite irregular component and two infinite regular components: 1

M = M − 
reg � Mirreg � M + 

reg , (†) 

where � denotes a disjoint union. We identify the decomposition (†) by means  
of guard analysis over the PCTS. Such an analysis produces (i) the thresholds 
δ− and δ+ where to partition M ; and (ii) the periods T − and T + for M − 

reg and 
M + 

reg, respectively. Such information will be used to finitize M in the later step.

1 The components may share states at the intersections for cross-boundary transitions. 
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3) Finitize the Partitioned MC Next, we finitize the infinite-state Markov chain 
M by abstracting its regular components M − 

reg and M + 
reg respectively into their 

finite-state counterparts Ṁ − 
reg and Ṁ + 

reg, where every state is labeled with one of 
the three labels: transient, positive-recurrent, and  null-recurrent ; see Fig. 4 for an 
illustration. These labels are designed to preserve termination-relevant informa-
tion about M whilst the rest ingredients in the regular components M +,− 

reg , e.g., 
concrete probabilities and specific states or transitions, are abstracted away from 
the finitized counterparts Ṁ +,− 

reg . By integrating these components, we obtain a 
finite-state labeled Markov chain Ṁ : 

Ṁ = Ṁ − 
reg � Mirreg � Ṁ + 

reg . (‡) 

Note that we drop all the explicit transition probabilities in Ṁ and keep track 
of only their positivity, i.e., zero or non-zero. This is because the (P)AST nature 
of finite-state MCs does not depend on the concrete probabilities thereof. 

Fig. 5. Finitized labeled MC for Prog. 1. 

Our core labeling algorithm is 
inspired by the queueing theory [ 4] 
since the regular MCs M +,− 

reg fall into 
the scope of quasi-birth-death pro-
cesses (QBDs) [ 56]. The main tech-
nical challenge is that, in queueing 
theory, it is common to assume that 
a QBD is strongly connected (i.e., 
the underlying Markov chain is irre-
ducible, cf. [ 8]), which is however 
not always the case for M +,− 

reg . We  
address this challenge by extending 
QBD analysis techniques with the 
identification of strongly connected components (SCCs) and reachability analysis 
between SCCs for infinite regular graphs (see Sect. 4). The resulting finite-state 
labeled Markov chain for Prog. 1 is depicted in Fig. 5. 
4) Decide Termination via Reachability Analysis of the Finite-State Labeled MC. 
Our finitization technique guarantees that the finite-state labeled Markov chain 
Ṁ obtained in the previous step preserves the (positive) almost-sure termination 
nature of the original 1-d PCP in the following sense: The program is non-AST 
(and thus non-PAST) if there is a path from the initial state to a bottom SCC 
(distinct from the terminal state (s⊥, 0)), i.e., an SCC that cannot be escaped 
once entered; the sink state ↑ is per se a bottom SCC. Otherwise, if any null-
recurrent state is reachable from the initial state, the program is AST but non-
PAST. The program is necessarily PAST if none of the above cases holds. 

As per the above decision rules, we conclude that the parity random walk 
modeled by Prog. 1 is PAST (and thus AST), because no bottom SCC (dis-
tinct from the terminal state (s⊥, 0)) nor null-recurrent state is reachable from 
the initial state (s1, 1); see Fig. 5. We note that, due to the finiteness and non-
probabilistic nature of Ṁ (as concrete probabilities are abstracted away), the
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underlying qualitative reachability analysis can be done effectively through stan-
dard graph-theoretic techniques. 

Fig. 6. Syntax of k-d PCPs and possibly nonlinear guards and expressions. Here, x is 
an integer counter variable taken from the finite set Vars = {x1, x2, . . . , xk} ranging 
over Zk , p ∈ [0, 1] is a probability, and c ∈ Z is an integer constant. x mod c denotes 
the unique number in [0, c) congruent to x modulo c and x÷ c denotes (x − x mod c)/c. 
Moreover, we admit standard predicates in guards that are expressible as syntactic 
sugar, e.g., true, false, ϕ ∨ ϕ, e1 = e2, e1 ≤ e2, etc.  

3 Problem Formulation 

This section formulates our problem of certifying the (positive) almost-sure ter-
mination of probabilistic programs with k ∈ N counter variables. 

Probabilistic Counter Programs. Probabilistic counter programs (PCPs) are 
a subclass of imperative programs described by the probabilistic guarded com-
mand language (pGCL) [  44], where the assignments are restricted to a “counting” 
form. Specifically, the syntax of a k-d PCP C adheres to the grammar in Fig. 6. 
The semantics of most program constructs – including skip, sequential compo-
sition, conditional, and (possibly nested) loops – is standard. The probabilistic 
choice { C1 } [ p ] { C2 } flips a coin with bias p ∈ [0, 1] and executes C1 in case the 
coin yields heads, and C2 otherwise; Other forms of discrete random sampling can 
be mimicked by such coin flips [ 27]. Notice that PCPs admit polynomial and mod-
ulo operations in guards. 2 Moreover, from the termination point of view, constant 
assignments of the form x := c are syntactic sugar and can be encoded as cer-
tainly terminating loops while (x > c) {x := x − 1} � while (x < c) {x := x + 1}. 

We interpret the operational semantics of PCPs as countably infinite-state 
Markov chains [ 55]. To this end, we define probabilistic counter transition systems 
(PCTSs) as an intermediate representation: 

Definition 1 (Probabilistic Counter Transition Systems). A PCTS is a 
triple 〈x, S,  T 〉, where  x ∈ Zk is a k-dimensional vector of counter variables, S

2 These operations are essential for reducing k-d PCPs to 1-d PCPs; see Sect. 5. 
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is a finite set of states including an initial state s1 (with constant initialization 
x := c) and a terminal state 3 s⊥ (without any outgoing transition), and T ⊂  
S × P(x) × [0, 1] × Zk × S is a set of transitions. For (s, g, p, u, s′) ∈ T  , 

– s, s′ ∈ S are the source and target states, respectively (s and s′ may coin-
cide); 

– g(x) ∈ P(x) is a predicate over x, which inherits the guard syntax of PCPs; 
– p ∈ [0, 1] is the probability of the transition to be taken; 
– u ∈ {−1, 0, 1}k is an update vector, i.e., the counters are updated as x := 
x + u upon taking the transition. Multi-step updates with u ∈ Zk \{−1, 0, 1}k 

are broken down to consecutive counting steps (e.g., dashed edges in Fig. 2). 

A transition is enabled by its guard g(x) if g(x) =  true for the current counter 
values. If multiple transitions from the same state are enabled by the same guard, 
then we assume that all the probabilities along these transitions sum up to 1. 

Translating PCPs to PCTSs can be done mechanically by recursively travers-
ing the abstract syntax tree; similar procedures are standard in the literature [ 11]. 

Next, we convert a PCTS to a countable Markov chain [ 55] by entangling its 
state space with the infinitely many counter valuations: Given a PCTS 〈x, S,  T 〉, 
the induced Markov chain can be constructed as M = 〈(S × Zk), T ′〉, where  

– the initial state (s1, c) ∈ S × Zk of M is composed of the initial state s1 of 
the PCTS and its initial counter valuations c; 

– the terminal state (s⊥, 0) ∈ S × Zk of M is composed of the terminal state 
s⊥ of the PCTS and special counter valuations 0; 4

– for each PCTS transition (s, g, p, u, s′) ∈ T  , we construct MC transitions 
((s, x), p,  (s, x + u)) ∈ T ′ for all x s.t. g(x) =  true. Moreover,  for  (s⊥, x), we  
add transition ((s⊥, x), 1, (s⊥, x + 1)) if x < 0 or ((s⊥, x), 1, (s⊥, x − 1)) if 
x > 0, to ensure that (s⊥, 0) is the unique exit of the M (cf. Fig. 3). 

Remark that the terminal state (s⊥, 0) is also the only absorbing state of 
M , i.e., a state that has no outgoing transitions. The conversion from PCPs to 
MCs via PCTSs has been illustrated in Sect. 2. Note that the induced MC may 
contain states unreachable from the initial state. 

Given a possibly infinite-state Markov chain M induced by a PCP prog, for  
each path π = 〈(s1, c), . . .〉 of M , let  Tprog be the random variable such that 
Tprog(π) represents the number of transitions until π reaching (s⊥, 0); If  π does 
not terminate by visiting (s⊥, 0), then  Tprog(π) =  ∞. We call  Tprog the runtime 
of prog. Then, the (P)AST property of a PCP can be defined as follows. 

Definition 2 ((Positive) Almost-Sure Termination). Let prog be a PCP 
and P be the probability measure generated by the corresponding Markov chain
3 For simplicity, we assume a unique terminal state for the PCTS (and thus a single 

exit for the PCP as well. For a program with multiple exits, one can append a ghost 
statement, e.g., skip, to the program end to obtain a unified exit. 

4 The concrete counter valuations do not matter. But, we assume, w.l.o.g., that both 
0 and c will be partitioned into the irregular component of M in the finitization. 
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with initial state (s1, c) (cf. [ 54, Appendix A.1]). Then, prog terminates almost-
surely (AST) iff P [Tprog < ∞] = 1. Moreover, prog  positive almost-surely ter-
minates (PAST) iff E [Tprog] < ∞. 
Remark 1. Our notion of termination in Definition 2 is non-universal as it 
assumes implicitly a specific input x = c to the program. We will show in 
Sect. 4.5 how our decidability result can be extended to the universal (positive) 
almost-sure termination (U(P)AST), i.e., (P)AST on all inputs. Nonetheless, 
we note that, in general, deciding AST for one input is as hard as ordinary 
termination for all inputs and deciding UPAST is even harder; see [ 35]. �
Example 2 (1-d Random Walk on Z [ 46]). Consider the following 1-d PCP: 

x := 1 � while (x >  0) {{ x := x − 1 } [ p ] { x := x + 1 }} 

which models a random walk on Z parameterized by the branching probability 
p ∈ [0, 1]. The program terminates as soon as the counter x becomes non-positive. 
It is known from the literature, e.g., [ 23, 46], that the program is PAST if p >  1/2 
(i.e., it terminates almost-surely with a finite expected runtime), AST but not 
PAST if p = 1/2 (i.e., it terminates almost-surely yet with an infinite expected 
runtime), and non-AST if p <  1/2 (i.e., it diverges with positive probability). 
The above termination behavior holds not only for the specific input x = 1, but 
also for all inputs satisfying the loop guard x >  0. �

The decision problem concerned in this paper reads as follows: 

Problem Statement. Given a k-d probabilistic counter program prog 
with input x = c, determine whether prog is PAST, AST, or neither. 

We show that the problem is undecidable for k-d PCPs in general, yet decidable 
for 1-d PCPs as well as specific fragments of k-d PCPs. The same conclusion 
holds for the universal counterpart of the problem (i.e., (P)AST on all inputs). 

4 Deciding (P)AST for 1-D PCPs 

This section stablishes the decidability of (P)AST for 1-d PCPs and presents an 
efficient decision procedure leveraging the technique of Markov chain finitization. 
Decision Procedure. Algorithm 1 outlines our procedure for deciding (P)AST 
for a 1-d PCP prog with input x = c. As has been exemplified in Sect. 2, our  
algorithm works in four main steps: (I) Preprocessing : It converts  prog to the cor-
responding 1-d PCTS P , which induces a potentially infinite-state Markov chain 
M (Line 1); (II) Decomposition: It decomposes M – based on a guard analysis 
– into a finite component Mirreg and two infinite components M − 

reg,M  + 
reg featur-

ing periodic behaviors (Lines 2 and 3); (III) Finitization: It abstracts M into a 
finite-state labeled Markov chain Ṁ which preserves the termination nature of 
prog (Lines 4 and 5); (IV) Decision: It determines the termination of prog by 
conducting a standard reachability analysis over Ṁ (Lines 6 to 10). 

In the rest of this section, we elaborate Steps (II) to (IV) of the above decision 
procedure and justify its correctness and efficiency afterwards.
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Algorithm 1: Deciding AST and PAST for 1-d PCPs 
input: 1-d PCP prog (with input x = c). 
output: PAST, AST (but non-PAST), or non-AST. 

/* convert the program to a 1-d PCTS; see Section 3 */ 
1 P ← PCP2PCTS(prog) ; 

/* decompose the underlying infinite-state MC; see Section 4.1 */ 
2 〈δ−, δ+, T  −, T  +〉 ←  GuardAnalysis(P ) ; � generate thresholds and periods 
3 〈Mirreg, M  − 

reg
, M  + 

reg
〉 ←  Decompose(P, δ−, δ+, T  −, T  +) ; 

/* obtain the finite-state labeled MC; see Section 4.2 */ 
4 Ṁ − 

reg 
← Abstract(Label(M − 

reg
)) ; Ṁ + 

reg 
← Abstract(Label(M + 

reg
)) ; 

5 Ṁ ← Ṁ − 
reg

� Mirreg � Ṁ + 
reg 

; � combine the finite components 

/* decide termination by reachability analysis of Ṁ (Section 4.3) 
*/ 

6 if ∃(s′, c′) ∈ Ṁ : (s1, c) →∗ (s′, c′) and (s′, c′) �→∗ (s⊥, 0) then 
7 return non-AST ; � a run may get trapped in a bottom SCC 

8 if ∃(s′, c′) ∈ Ṁ : NullRec((s′, c′)) and (s1, c) →∗ (s′, c′) then 
9 return AST (but non-PAST) ; � a null-recurrent state is reachable 

10 return PAST ; � prog is necessarily PAST otherwise 

4.1 Infinite-State MC Decomposition 

Our decomposition of the countable Markov Chain M exploits its regularity over 
the infinite state space S×Z. Such regularity roots in the fact that every (possibly 
nonlinear) guard of a 1-d probabilistic counter program is eventually periodic: 

Theorem 1 (Periodicity of Guards). Let P = 〈x, S, T 〉 be the 1-d PCTS of 
prog and G = {g | (s, g, p, u, s′) ∈ T  }  be the set of guards in P . Then, every guard 
g ∈ G  over the counter x ∈ Z is eventually periodic, i.e., there exist computable 
thresholds δ−, δ+ ∈ Z (with δ− < δ+) and periods T −, T  + ∈ Z>0 such that 

∀x < δ−: g(x) =  g(x − T −) and ∀x > δ+: g(x) =  g(x + T +) . 

Proof (sketch). The proof is done by structural induction on the syntax tree 
of the guard g: For the base case with a pure polynomial predicate, we con-
struct the thresholds δ+,− using Cauchy’s bound [ 32] associated with the periods 
T − = T + = 1; For the induction step with nested operators ÷ or mod, we iter-
atively replace the innermost ÷/mod-expression with polynomial expressions 
while constructing δ+,− and T +,−. See complete proof in [ 54, Appendix B.1]. ��

We refer to the construction in the proof of Theorem 1 as guard analysis (cf. 
Line 2 of Algorithm 1), which ultimately yields two thresholds δ+,− and periods 
T +,− such that all guards are periodic with period T − over (−∞, δ−) and T + 

over (δ+ , ∞), respectively. Recall the parity random walk in Prog. 1, our guard 
analysis yields δ− = 0, δ+ = 2  and T − = T + = 2. Now, to describe the periodic 
parts beyond [δ−, δ+], we introduce the model of regular Markov chains:
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Fig. 7. The decomposition of the infinite-state MC M . Absorbing states (dashed cir-
cles) in M +,− 

reg correspond to the non-absorbing states in Mirreg and vice versa. 

Definition 3 (Regular Markov Chains). Given a Markov chain M + 
reg over 

the state space S × Z≥δ+ with a transition probability function μ : (S × Z≥δ+) × 
(S × Z≥δ+) → [0, 1]. For  k ≥ δ+, we call the sets of the form S × {k} levels 
and refer to them as level-k. M + 

reg is called a regular Markov chain with period 
T + (T +-periodic, for short) if (i) there is no cross-level transition in M + 

reg, i.e., 
μ((s, k), (s′, k′)) = 0 for any |k′ − k| > 1; ii) all states at level-δ+ are absorbing; 5
and (iii) μ((s, k), (s′, k′)) = μ((s, k + T +), (s′, k′ + T +)) for all k >  δ+ , k′ ≥ δ+. 6

A T +-periodic regular Markov chain can be represented effectively as a T +-
tuple of matrices 〈(Ai, Bi, Ci)〉T + 

i=1, where  

Ai[s, s′] =  μ((s, T ++ i), (s′, T  ++ i − 1)) , 
Bi[s, s′] =  μ((s, T ++ i), (s′, T  ++ i)) , 
Ci[s, s′] =  μ((s, T ++ i), (s′, T  ++ i + 1)) . 

(1) 

A regular Markov chain M − 
reg over the state space S × Z≤δ− with period T − can 

be defined and represented analogously. 
Given the thresholds δ+,− and periods T +,− from guard analysis, a decompo-

sition of infinite-state MC M (Line 3 of Algorithm 1) can be identified as 

M = M − 
reg � Mirreg � M + 

reg , (2) 

where Mirreg is a finite-state MC over S × [δ−−1, δ++1]  with absorbing states at 
levels of δ−−1 and δ++1; M + 

reg (resp. M − 
reg) is an infinite-state T +-periodic (resp. 

T −-periodic) regular MC over S × Z≥δ+ (resp. Z≤δ−) with absorbing states at 
level-δ+ (resp. level-δ−). An example of the decomposition is depicted in Fig. 7 
and the detailed decomposition algorithm can be found in [ 54, Appendix C]. 
We justify in [ 54, Appendix B.2] that our decomposition as in (2) indeed yields 
regular Markov chains M +,− 

reg in accordance with Definition 3.

5 All outgoing transitions from level-δ+ states are allocated to the irregular part of M . 
6 We rule out the case of k = δ+ to ensure that the level-δ+ states are absorbing. 
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4.2 Regular MC Finitization 

Next, our goal is to construct a finite-state Markov chain Ṁ via labeling and 
abstraction (Line 4 of Algorithm 1), which preserves termination nature of M : 

Ṁ = Ṁ − 
reg � Mirreg � Ṁ + 

reg , (3) 

where Ṁ − 
reg and Ṁ + 

reg are finitized MCs abstracting M − 
reg and M + 

reg, respectively. 
Due to the symmetry, we show below how to obtain Ṁ + 

reg by finitizing the T +-
periodic regular MC M + 

reg over S × Z≥δ+, whose transition probability function 
μ is described by the set of matrices 〈(Ai, Bi, Ci)〉T + 

i=1 as per (1). 
Without loss of generality, we assume δ+ = 0  throughout the rest of this sub-

section; any other threshold can be aligned to 0 by shifting the MC accordingly. 
Moreover, we assume T + = 1. This is because any  T +-periodic regular MC M + 

reg 
can be reduced equivalently to a 1-periodic regular MC; see [ 54, Appendix B.3]. 

Now, our task is to finitize a 1-periodic regular MC M + 
reg over S × Z≥0, 

whose transition probability function μ is described by the matrices (A, B, C). 
Our approach to solving this task consists of two steps – labeling and abstraction. 
The former labels the level-1 states of M + 

reg whilst the latter replaces the regular 
part with a labeled Markov chain over the finite state space S × {0, 1}. 
The Labeling Procedure. Consider a random walk π starting from a level-1 state 
(s, 1) of M + 

reg. The  absorbing time of (s, 1) is a random variable T (π) � min{i | 
π(i) ∈ S × {0}}. Let  P(s,1) be the probability measure generated M + 

reg start-
ing from (s, 1). The state (s, 1) is recurrent if P(s,1)[T <  ∞] = 1  and transient 
otherwise. In particular, we distinguish positive-recurrence with E(s,1)[T ] < ∞ 
from null-recurrence with E(s,1)[T ] =  ∞. The only termination-relevant infor-
mation from M + 

reg is which absorbing states at level-0 are reachable from each 
labeled level-1 state with positive probability. Such information can be obtained 
by applying [ 40, Theorem 7.2.3] on quasi-birth-death processes (QBDs) estab-
lished in the queueing theory, which, however, relies on a crucial assumption 
that M + 

reg is irreducible, i.e., the underneath graph is strongly connected (see [ 54, 
Appendix A.2]). This assumption does unfortunately not hold for regular Markov 
chains induced by 1-d PCPs in general. Our approach drops this assumption by 
extending QBD analysis techniques with the identification of strongly connected 
components (SCCs) and reachability analysis between SCCs for infinite regular 
graphs. The key is to build the so-called coupled model – a finite-state Markov 
chain capturing all asymptotic properties of the infinite walks over M + 

reg. 
To this end, we build a coupled Markov chain M over the finite state space 

S × {−1, 0, 1}, where the first component represents the current state in M + 
reg 

and the second component indicates the counter change upon transiting to the 
current state: −1 for counter decreasing from level-k to level-(k−1), 0 for counter 
remaining unchanged, and 1 for counter increasing from level-k to level-(k + 1). 
The transition probability function μ̄ of M , for any s, s′ ∈ S, is set  as  

μ̄((s, −1), (s′, −1)) = μ̄((s, 0), (s′, −1)) = μ̄((s, 1), (s′, −1)) = A[s, s′] , 
μ̄((s, −1), (s′, 0)) = μ̄((s, 0), (s′, 0)) = μ̄((s, 1), (s′, 0)) = B[s, s′] , 
μ̄((s, −1), (s′, 1)) = μ̄((s, 0), (s′, 1)) = μ̄((s, 1), (s′, 1)) = C[s, s′] .
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Fig. 8. Distilling from a regular MC M + 
reg over S = {sa, sb}×  Z≥0 (left) a coupled MC 

M over S × {−1, 0, 1} = {sa−, sa0, sa+, sb−, sb0, sb+} (middle). Based on the labeling 
of M and the abstraction procedure, we obtain the finite-state MC Ṁ + 

reg with labeled 
level-1 states (right). The concrete labels depend on the probability values p, q (see 
Example 3); We introduce an artificial sink state ↑ succeeding all transient (τ) states 
(in case of any) to signify that Ṁ + 

reg can get trapped. 

See Fig. 8 for an example of constructing the coupled MC. The intuition behind 
the coupling is to measure how much time a random walk over M spends in its 
“decreasing” component S×{−1} compared to that in the “increasing” component 
S × {1}. For the simple case where M is irreducible (assuming the irreducibil-
ity of M + 

reg), by the ergodic theorem for irreducible Markov chains (see [ 54, 
Appendix A.1, Theorem 5]), the ratio of the time spent in any state s converges 
to the stationary distribution γ̄(s). To measure the averaged imbalance between 
increasing- and decreasing-steps, we define the imbalance value ν̄ as 

ν̄ �
∑

s ∈ S×{1} 
γ̄(s) −

∑
s ∈ S×{−1} 

γ̄(s) . (4) 

Then, the sign of ν̄ classifies the coupled Markov chain M into three categories: 
transient (ν̄ >  0), null-recurrent (ν̄ = 0), and positive-recurrent (ν̄ <  0). Note 
that this is a global property of M , i.e., all its states are in the same category. 

For the more involved case with reducible M , the ergodic theorem does not 
apply. Nonetheless, every reducible M can be partitioned into bottom SCCs 
(BSCCs) and some dangling states. Each BSCC  B ⊆ S × {−1, 0, 1} forms an 
irreducible Markov chain with a local imbalance value ν̄B obtained by restricting 
in (4) the state space to B+ = B ∩ S × 1 and B− = B ∩ S × −1. 

The stationary distribution of B labels all states with ν̄B . A dangling state 
s is labeled transient if any transient BSCC is reachable, null-recurrent if any 
null-recurrent BSCC is reachable, and positive-recurrent otherwise. The detailed 
labeling algorithm is in [ 54, Appendix C.3]. 
Example 3 (Labeling M). Recall the reducible coupled Markov chain M in Fig. 8. 

M is composed by one BSCC B = {sa0, sa+, sb−, sb+} and two dangling states 
sa− and sb0. For the MC induced by B, the stationary distribution is given by 

[γ̄(sa0), ̄γ(sa+), ̄γ(sb−), ̄γ(sb+)] =
[

p · q 
p + q 

, (1 − p) · q 
p + q 

, p · (1 − q) 
p + q 

, p · q 
p + q

]
. 

The local imbalance value ν̄B for B is calculated as 

ν̄B �
∑

s ∈ B+ 

γ̄(s) −
∑

s ∈ B− 

γ̄(s) =  
(1 − p)q 

p + q︸ ︷︷ ︸
γ̄(sa+) 

+ 
pq 

p + q︸ ︷︷ ︸
γ̄(sb+) 

− 
p(1 − q) 

p + q︸ ︷︷ ︸
γ̄(sb−) 

= 
pq − p + q 

p + q 
.
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Therefore, the irreducible part B is labeled as transient (if ν̄B > 0), null-recurrent 
(if ν̄B = 0), and positive-recurrent (if ν̄B < 0). Moreover, since B is the only 
BSCC that is reachable from the dangling states sa− and sb0, they two will be 
labeled with the same category as B (depending on the sign of ν̄B). �

Intuitively, the coupled Markov chain M captures the asymptotic, long-term 
behavior of M + 

reg. In principle, we can label level-1 states of M + 
reg in accordance 

with the labels of M . 7 However, two corner cases need to be taken into account: 
(I) A random walk over M + 

reg starting from level-1 can get  trapped in a finite  
set of states, i.e., a finite disconnected region of the infinite graph with no way 
back to level-0. The coupled Markov chain would capture this behavior as null-
recurrent, however, we must label such states as transient; (II) A random walk 
over M + 

reg starting from level-1 may visit level-0 immediately before exhibiting 
the asymptotic, long-term behavior as captured by M . 

We address corner case 4.2 by identifying the so-called trappable states at 
level-1 of M + 

reg and corner case 4.2 by allowing a “runway” of length 3 · |S| 
for the random walk to enter the mode of asymptotic, long-term behaviors as 
captured by M . Both solutions are implemented, again, via standard qualitative 
reachability analysis over M + 

reg. Due to limited space, we provide the detailed 
algorithm for labeling the level-1 states of M + 

reg (in the presence of the two corner 
cases) in Appendices B.4 and C.4 of [ 54]. 
The Abstraction Procedure Our abstraction procedure completes the finitization 
step by truncating M + 

reg – whose level-1 states are labeled – into a labeled finite-
state MC Ṁ + 

reg over S × {0, 1} while abstracting away the infinite component 
beyond level-1. The key in this procedure is to identify all possible exit states at 
level-0 for a random walk starting from each state at level-1. Such random walks 
can be infinite, nevertheless, our “runway” tactic (formulated in [ 54, Appendix 
B.4, Lemma 2]) ensures that it suffices to consider only finite walks bounded by 
the first 3 · |S| levels (see the detailed abstraction algorithm in [ 54, Appendix 
C.2]). An example of the finitized MC Ṁ + 

reg in depicted in (the right of) Fig. 8. 

4.3 Deciding Termination via Reachability Analysis 
The finitization step yields two finite-state MCs Ṁ − 

reg and Ṁ + 
reg with labels. By 

combining them with Mirreg à la (3), we obtain a finite-state labeled Markov 
chain Ṁ . The following theorem establishes that the (P)AST nature of the orig-
inal 1-d PCP can be determined by conducting a reachability analysis over Ṁ 
(suppose s →∗ s′ means s′ is reachable from s in zero or finitely many steps): 
Theorem 2 (Decision Rules). Suppose a 1-d PCP prog induces a finite-state 
labeled Markov chain Ṁ over the state space Ṡ = S × [δ−− 1, δ++1]  with initial 
state (s1, c) and terminal state (s⊥, 0). Then,  
– If ∃(s′, c′) ∈ Ṡ : (s1, c)→∗ (s′, c′) ∧ (s′, c′) �→∗ (s⊥, 0), then prog is non-AST; 8

7 All states in the same row of M share the same label due to the construction of M . 
8 As a special case, if (s1, c) →∗ ↑ (through a transient state), then prog is non-AST.
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– Otherwise, if there exists a null-recurrent state (s′, c′) such that (s1, c) →∗ 

(s′, c′), then prog is AST but non-PAST; 
– Otherwise prog is PAST. 

Remark 2. The reachability analysis over Ṁ as conducted in Theorem 2 is qual-
itative: We drop all explicit transition probabilities in Ṁ and keep track of only 
their positivity, i.e., non-zero (a transition exists) or zero (no transition exists). 
This is because (positive) almost-sure termination of finite-state MCs is a topo-
logical property independent of the specific transition probabilities thereof. �

4.4 Correctness and Efficiency of Algorithm 1 

The decidability of (P)AST problems for 1-d PCPs follows from the correctness 
(i.e., soundness and completeness) of our decision algorithm as established below. 

Theorem 3 (Correctness). For any 1-d PCP prog, Algorithm 1 terminates 
and returns the correct termination category of prog. 

The efficiency of our decision procedure is captured by the following theorem: 

Theorem 4 (Time Complexity). Algorithm 1 runs in time polynomial in the 
size of the transition system, the thresholds, and the periods, i.e., 

O
(
poly(|S|, δ+− δ−, T  + , T  −) +  StationaryDistribution(max(T −, T  +) · |S|)

)
, 

where StationaryDistribution(n) denotes the complexity of an oracle for find-
ing the stationary distribution of a Markov chain with n states, which can be 
expressed as a linear programming instance (see [ 54, Appendix A.1]). 

The proofs of Theorem 3 and Theorem 4 are provided in [  54, Appendix B.7]. 

4.5 Extending the Decidability to U(P)AST 

Now, we show how our decidability result can be extended to the U(P)AST 
problems, i.e., deciding (P)AST on all inputs. The key to the extension is that 
the termination behavior of a 1-d PCP is eventually periodic w.r.t. the inputs: 

Lemma 1 (Periodicity of (P)AST). Fix a 1-d PCP prog. Suppose PAST(k) 
(AST(k), resp.) is a predicate indicating whether prog is PAST (AST, resp.) on 
input x = k ∈ Z. Then, there exist thresholds δ− 

t , δ
+ 
t ∈ Z (with δ− 

t < δ+ 
t ) and  

periods T − 
t , T + 

t ∈ Z>0 such that 

∀x < δ− 
t : PAST(x) =  PAST(x − T − 

t ) and AST(x) =  AST(x − T − 
t ) 

∀x > δ+ 
t : PAST(x) =  PAST(x + T + 

t ) and AST(x) =  AST(x + T + 
t ) . 

Moreover, the thresholds and periods are computable (cf. Theorem 1) as  

δ− 
t = δ−− 2T −·|S|, δ− 

t = δ++ 2T +·|S|, T  − 
t ≤ 2T −·|S|, T  + 

t ≤ 2T +·|S| . 

The decidability of U(P)AST for 1-d PCPs then follows immediately from 
Lemma 1, since we can enumerate all possible inputs within [δ− 

t − T − 
t , δ+ 

t + T + 
t ].
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5 Decidable Fragments for Multidimensional PCPs 

Below, we identify four classes of k-d PCPs that can be reduced to 1-d PCPs: 

(i) All But One Counters are Bounded : k-d PCPs with counter variables 
Vars = {x1, x2, . . . , xk−1, y}, for which there exists constant B such that 
|xi| < B  for all i = 1, . . . , k  − 1 in all reachable program states; 

(ii) Monotone Counters: k-d PCPs with counter variables Vars = {x1, . . . , xm, 
y1, . . . , yn, z}, for which all counters xi are always non-decreasing while all 
counters yi are always non-increasing. An additional requirement is that 
all atomic propositions in guards must depend on only one variable; 

(iii) Conditionally Bounded Counters: k-d PCPs with counter variables Vars = 
{x1, x2, . . . , xk−1, y}, for which there exist constants Ai, Bi, Ci,Di ∈ Z such 
that |Ai · xi − Bi · y − Ci| ≤  Di for all i = 1, . . . , k  − 1 in all reachable 
program states. In other words, all counters lie in a bounded neighborhood 
of a one-dimensional affine subspace of Zk; 

(iv) Constant Probability Programs: The decidable fragment described in [ 25] 
can be rewritten as a 1-d PCP via a linear variable substitution. 

We call the above classes and their mixtures essentially 1-d PCPs. The detailed 
techniques for reducing essentially 1-d PCPs to 1-d PCPs can be found in [ 54, 
Appendix D]. Below, we demonstrate the reduction using a real-world program; 
additional examples are provided in [ 54, Appendix E]. 

Example 4 (Zeroconf Protocol [ 5, 23]). Consider the randomized IPv4 Zeroconf 
protocol for self-establishing IP connections via bounded retries: 

start := 1 � established := 0 � probe := 0 �

while ( start ≤ 1 ∧ established ≤ 0 ∧ probe < 4 ) { 
if ( start  =  1 )  {{ start := 0 } [ 0.5 ]  { start := 0 � established := 1 } }  
else { { probe :=  probe + 1  } [ 0.001 ] { start := 1 � probe := 0  } } }  . 

Observe that all the three variables are bounded and thus – as a special case of 
Class (i) – the program is an essentially 1-d PCP: By introducing a new variable 
z = 16  · probe + (start + 2) + 4 · (established + 2) and applying the substitutions 

start �→ (z mod 4) − 2, established �→ (z ÷ 4) mod 4 − 2, probe �→ z ÷ 16, 

we obtain the reduced 1-d PCP: 

z := 10 �

while ( (z mod 4) − 2 ≤ 1 ∧ (z ÷ 4) mod 4 − 2 ≤ 0 ∧ z ÷ 16 < 4 )  { 
if ( (z mod 4) − 2 = 1  )  {{ z := z − 1 } [ 0.5 ]  { z := z − 1 � z := z + 4  } }  
else { {  z := z + 16  } [ 0.001 ] { z := z + 1 � while ( z ÷ 16 > 0 )  { z := z − 16 } } }  . 

Hence, termination behaviors of the protocol can be inferred automatically. �
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6 Implementation and Experimental Results 

We have implemented our techniques in Python as a prototypical tool called 
Pastry 9 – the Positive Almost-Sure Termination pRototYpe. By interfacing 
with Probably [ 49] for parsing probabilistic programs, Sympy for solving sys-
tems of linear equations, NetworkX [ 28] for graph analysis, and SciPy [ 63] for  
representing and manipulating sparse graphs as COO-encoded matrices, Pas-
try decides whether a given essentially 1-d PCP with possibly infinite states is 
PAST, AST (but non-PAST), or non-AST. All experiments are conducted on a 
3.22 GHz Apple M1 Pro processor with 16 GB RAM running macOS Sequoia. 

Remark 3. Can one automatically check if a given k-d PCP belongs to one of 
the four classes of essentially 1-d PCPs as identified in Sect. 5? For Classes (ii) 
and (iv), the check can be done automatically in a purely syntactic way. For 
Classes (i) and  (iii), the check can be automated by leveraging techniques for 
synthesizing invariants of the form |xi| < B  or |Ai · xi − Bi · y − Ci| ≤  Di. 
For instance, for linear programs, the check can be automated by a reduction to 
nonlinear constraint solving via Farkas’ lemma [ 15] (though the procedure may 
not be complete due to integer-valued (counter) variables xi and y). Our current 
implementation of Pastry automates the check for Classes (ii) and  (iv). 

Baselines and Benchmarks. We compare Pastry in terms of applicability and 
efficiency against four state-of-the-art tools for deciding termination of proba-
bilistic programs: Amber [ 52] for analyzing prob-solvable loops, KoAT1 [ 25] for  
analyzing constant probability programs (as a subset of essentially 1-d PCPs), 
and KoAT2 [ 48] and  Absynth [ 53] – both are for computing upper bounds on 
expected costs and thus are limited to certifying PAST. Our benchmark suite 
is compiled from seven sources in the literature (see Table 1). To facilitate the 
comparison, we initialize programs with open inputs (i.e., uninitialized variables 
and/or parameters) using randomly drawn inputs. 

Experimental Results. As reported in Table 1, Pastry suffices to determine 
the termination category of all but 2 benchmarks, including probabilistic 
counter programs featuring complex control flows, such as nested loops (e.g., 
two_endpoints) and conditional branches within loops (e.g., generalized_rw 
and 1d_poly_rw). These program features pose significant challenges for other 
decision procedures like Amber and KoAT1. Such benchmarks can be handled 
by techniques based on stochastic invariants, e.g., [ 12], which admit, however, 
only a relatively complete template-based approach for algorithmic synthesis. 
Moreover, compared to KoAT2 and Absynth which can certify PAST only, 
Pastry is capable of deciding both (non-)PAST and (non-)AST within a uni-
fied framework. We note that geometric_gauss and polynomial_nast are out 
of reach by Pastry (yet can be handled by Amber) as they feature continuous 
sampling and nonlinear updates, respectively (thus beyond PCPs).

9 Available at � https://github.com/FICTION-ZJU/Pastry. 

https://github.com/FICTION-ZJU/Pastry
https://github.com/FICTION-ZJU/Pastry
https://github.com/FICTION-ZJU/Pastry
https://github.com/FICTION-ZJU/Pastry
https://github.com/FICTION-ZJU/Pastry
https://github.com/FICTION-ZJU/Pastry
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Table 1. Experimental results (–: inapplicability; TO: timeout in 90 s). 

Benchmark Src Dim PAST AST 
Time (s)

1 

Pastry Amber KoAT1 KoAT22 Absynth 

symmetric_rw1 1 ✗ ✓ 0.171 0.028 0.003 – – 

symmetric_rw2 1 ✗ ✓ 0.137 0.027 0.003 – – 

biased_rw1 1 ✗ ✗ 0.078 0.027 0.003 – – 

biased_rw2 1 ✗ ✗ 0.419 0.073 0.004 – – 

biased_rw3 1 ✗ ✗ 0.430 0.079 0.004 – – 

biased_rw4 1 ✓ ✓ 0.081 0.023 0.032 0.888 0.011 

binomial1 1 ✗ ✗ 0.076 0.028 0.004 – – 

binomial2 

[52] 

1 ✓ ✓ 0.080 0.022 0.031 0.877 0.012 

geometric 1 ✓ ✓ 0.074 0.018 0.029 0.661 0.009 

2d_bounded_rw 2 ✓ ✓ 3.390 0.031 – – – 

geometric_gauss 1 ✓ ✓ – 0.022 – – – 

polynomial_nast 2 ✗ ✗ – 1.590 – – – 

asymmetric_rw1 1 ✓ ✓ 0.075 0.024 0.031 0.980 0.011 

complex_roots 1 ✓ ✓ 0.137 0.025 0.056 9.459 0.028 

high_multiplicity 1 ✓ ✓ 0.132 0.028 0.052 7.137 0.027 

neg_binomial 1 ✓ ✓ 0.073 0.024 0.030 0.924 0.012 

nast_prog 1 ✗ ✗ 0.160 0.046 0.003 – – 

npast_prog 1 ✗ ✓ 0.109 0.040 0.004 – – 

dir_term 

[25] 

1 ✓ ✓ 0.078 – 0.034 – 0.016 

irr_runtime 1 ✓ ✓ 0.081 0.024 0.036 0.942 0.012 

tortoise_hare_un 1 ✓ ✓ 0.467 0.024 0.130 TO 0.133 

tortoise_hare 2 ✓ ✓ 2.450 – 0.159 TO 0.773 

tortoise_hare_dt 2 ✓ ✓ 0.185 – 0.032 1.047 – 

generalized_rw 1 ✗ ✗ 0.236 – – – – 

two_endpoints 1 ✗ ✗ 0.209 – – – – 

infinite_loop 1 ✗ ✗ 0.030 – – – – 

two_loops 1 ✗ ✗ 0.151 – – – – 

ast_loop 1 ✓ ✓ 0.078 0.022 0.032 1.193 0.013 

ast_rw 1 ✓ ✓ 0.174 0.021 0.042 3.114 0.020 

biased_rw5 

[12] 

1 ✗ ✗ 0.178 – – – – 

skewed_rw 1 ✗ ✗ 0.229 – – – – 

asymmetric_rw2 1 ✓ ✓ 0.088 0.031 0.039 0.929 0.011 

1d_poly_rw 1 ✗ ✗ 3.720 – – – – 

catmouse 1 ✓ ✓ 0.103 – – 1.079 0.020 

speedpldi4 1 ✓ ✓ 0.112 – – 1.448 0.024 

insertsort 2 ✓ ✓ 0.303 – – 3.462 0.030 

speedpldi2 2 ✓ ✓ 0.135 – – 2.972 0.020 

speedpldi3 

[ 1] 

2 ✓ ✓ 0.226 – – 2.235 0.026 

counterex1b 2 ✓ ✓ 0.361 – – 6.758 0.051 

Knuth-Yao_dice [36] 2 ✓ ✓ 0.499 – – 12.712 53.015 

brp_protocol [30] 3 ✓ ✓ 0.311 – – 2.135 0.025 

zeroconf [ 5] 3 ✓ ✓ 0.264 – – 3.727 0.036 
1 Timings for Pastry, Amber, and KoAT1 are the total time for deciding both PAST 
and AST, whilst timings for KoAT2 and Absynth are for certifying PAST only. 
2 KoAT2 takes inputs in the form of integer transition systems (ITS), where seman-
tically equivalent programs may induce ITS with different structures. Thus, for some 
program that KoAT2 fails to certify PAST, e.g., dir_term, KoAT2 may succeed on its 
transformed version (by, e.g., eliminating loopy structures). 
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In terms of efficiency, Pastry performs on par with its competitors for most 
1-d programs yet less efficient for certain multi-dimensional programs. This is 
primarily due to an unoptimized procedure for constructing potentially large 
graphs for multi-dimensional programs. 

We further note that the efficiency of Pastry depends on the size of counter 
increments as it affects the size of the underlying Markov chain to be constructed. 
To investigate the dependency in a quantitative aspect, we examine a simple 
program with parameters α, β, and  p: 

x := 10 � while (x > α) {{ x := x + β } [ p ] { x := x − β }} . 

The expected theoretical time complexity for analyzing this program is O(β2)+  
O(|α · β|). Our empirical results (by varying the parameters α, β, and  p) agree 
with this theoretical estimation; see detailed analysis in [ 54, Appendix G]. 

7 Related Work 

Program Termination Landscape. As a cornerstone problem in computability, the 
results concerning termination can be broadly split into four categories: (i) estab-
lishing the undecidability of the termination problem in a model of computation. 
Historically the first results were obtained for Turing machines [ 62] and lambda 
calculus [ 14]. Later on, much simpler yet undecidable models were discovered. 
The most relevant to our work is the counter-machine model. These machines 
operate on integer registers, and the instructions generally involve increment-
ing, decrementing, copying, and testing the values in these registers. Different 
variations of counter machines have been proposed by, e.g., Hermes [ 31], Ershov 
[ 19], Péter [ 59], Minsky [ 18, 37, 50, 51], Lambek [ 39], Shepherdson and Sturgis 
[ 60]. Some key differences in these models include: the presence of an accumu-
lator (a special register for arithmetic operations), the use of direct vs. indirect 
addressing, the availability of instructions for incrementing, decrementing, and 
comparing the values in the registers, and whether or not the machine allows 
for unconditional jumps, conditional jumps, or both; (ii) establishing the hard-
ness of the termination problem w.r.t. a known hypothesis, such as leveraging 
the Skolem problem [ 22, 29] to loop termination analysis [ 57]; (iii) establishing 
decidability results in special cases, such as the decidability of termination for 
probabilistic pushdown automata (pPDA) [ 20] or programs in a special restric-
tive syntax such a single while loop with affine assignments [ 6, 7, 24, 58, 61]; (iv) 
finding an easily verifiable termination certificate (also called a proof). Within 
this category, we can identify two sub-categories: (a) when the certificate always 
exists, but the search procedure might be undecidable in general, as for the inter-
section types [ 16, 17] or recent works on the supermartingale rules [ 10, 42, 43, 46]; 
(b) when there is no guarantee of existing certificates, but if exists, it can be 
found efficiently as for special cases of ranking supermartingales (SMs), e.g., 
polynomial SMs [ 11], linear lexicographic ranking SMs [ 1], repulsing SMs [ 13]; 
or for the case of resource-aware programming languages [ 33]. 
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PCPs in the Landscape. We place our results on k-d PCPs to Categories 7 and 7, 
especially in the probabilistic setting. For the undecidability category, the most 
relevant results are on the undecidability of counter machines (with two counters, 
decrement and jump instructions) [ 18, 37, 51] as our proof is based on encoding 
an arbitrary 2-counter machine inside a 2-d PCP program. For the decidabil-
ity category, the most relevant works are on probabilistic pushdown automata 
(pPDA) [ 20], one-counter automata (pOC) [ 9], recurrent Markov Chains (RMCs) 
[ 21], and one-counter Markov decision procedures (OC-MDPs) [ 8]. Our work is 
orthogonal to these models as we allow a wide range of guard expressions that 
cannot be simulated (or at least we are not aware of the simulation) by pPDA, 
pOC, RMCs, or OC-MDPs. The non-trivial guards play a crucial role in rewriting 
the special cases of k-d PCPs into 1-d PCPs. For example, it allows for encoding 
constant probability programs [ 25] into  1-d PCPs using a simple transformation. 
Moreover, we provide the first open-source decision-procedure implementation 
for PCPs that could be useful for the mentioned models. 

8 Conclusion 

We have investigated the (positive) almost-sure termination problem of prob-
abilistic counter programs inducing possibly infinite-state Markov chains. Our 
work establishes the decidability of U(P)AST problems for (essentially) 1-d PCPs 
– a significant contribution as obtaining stronger decidability results for new 
classes of programs is inherently challenging. Conversely, we show that these 
problems are undecidable for k-d PCPs in general. For the decidable class of 
essentially 1-d PCPs, we developed an efficient decision procedure that relies on 
decomposing and finitizing the underlying Markov chains. Experimental results 
demonstrate that our procedure effectively determines (P)AST for non-trivial 
probabilistic programs, including cases beyond the reach of existing tools. 

Future directions include the extension of our results to (i) reasoning about 
quantitative aspects of probabilistic programs beyond almost-sure termination, 
e.g., termination probabilities and expected runtimes; and (ii) dealing with pro-
grams featuring nondeterminism [ 44] and/or conditioning [ 55]. 

Acknowledgments. This work has been partially funded by the ZJNSF Major Pro-
gram (No. LD24F020013), by the Fundamental Research Funds for the Central Univer-
sities of China (No. 226-2024-00140), and by the ZJU Education Foundation’s Qizhen 
Talent program. 

Disclosure of Interests. The authors have no competing interests to declare that 
are relevant to the content of this article. 



On the Almost-Sure Termination of Probabilistic Counter Programs 101 

References 

1. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales: 
an efficient approach to termination of probabilistic programs. Proc. ACM Pro-
gram. Lang. 2(POPL), 34:1–34:32 (2018) 

2. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic 
systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). 
https://doi.org/10.1007/978-3-319-10575-8_28 

3. Barthe, G., Katoen, J., Silva, A. (eds.): Foundations of Probabilistic Programming. 
Cambridge University Press (2020) 

4. Bhat, U.N.: An Introduction to Queueing Theory: Modeling and Analysis in Appli-
cations. Statistics for Industry and Technology, Birkhäuser, Boston, MA (2015) 

5. Bohnenkamp, H.C., van der Stok, P., Hermanns, H., Vaandrager, F.W.: Cost-
optimization of the IPV4 Zeroconf protocol. In: DSN, pp. 531–540. IEEE Computer 
Society (2003) 

6. Bozga, M., Iosif, R., Konecný, F.: Deciding conditional termination. Log. Methods 
Comput. Sci. 10(3), 252–266 (2014) 

7. Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B. 
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006). 
https://doi.org/10.1007/11817963_34 

8. Brázdil, T., Brozek, V., Etessami, K., Kucera, A., Wojtczak, D.: One-counter 
Markov decision processes. In: SODA, pp. 863–874. SIAM (2010) 

9. Brázdil, T., Kiefer, S., Kučera, A.: Efficient analysis of probabilistic programs with 
an unbounded counter. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, 
vol. 6806, pp. 208–224. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_18 

10. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526. 
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_34 

11. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic 
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV 
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/ 
978-3-319-41528-4_1 

12. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Sound and com-
plete certificates for quantitative termination analysis of probabilistic programs. 
In: CAV (1). LNCS, vol. 13371, pp. 55–78. Springer (2022). https://doi.org/10. 
1007/978-3-031-13185-1_4 

13. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for probabilistic ter-
mination. In: POPL, pp. 145–160. ACM (2017) 

14. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 
58(2), 345–363 (1936) 

15. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using 
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, 
vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6_39 

16. Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for λ-terms. Arch. 
Math. Log. 19(1), 139–156 (1978) 

17. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional characters of solvable 
terms. Math. Log. Q. 27(2–6), 45–58 (1981) 

https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39


102 S. Novozhilov et al. 

18. Dudenhefner, A.: Certified decision procedures for two-counter machines. In: 
FSCD. LIPIcs, vol. 228, pp. 16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum für 
Informatik (2022) 

19. Ershov, A.P.: On operator algorithms. Doklady Akademii Nauk SSSR 122, 967– 
970 (1958). English translation in Automat. Express 1, 20–23 (1959) 

20. Esparza, J., Kucera, A., Mayr, R.: Model checking probabilistic pushdown 
automata. In: LICS, pp. 12–21. IEEE Computer Society (2004) 

21. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and 
monotone systems of nonlinear equations. J. ACM 56(1), 1:1–1:66 (2009) 

22. Everest, G., van der Poorten, A.J., Shparlinski, I.E., Ward, T.: Recurrence 
Sequences, Mathematical surveys and monographs, vol. 104. American Mathemat-
ical Society (2003) 

23. Feng, S., Chen, M., Su, H., Kaminski, B.L., Katoen, J., Zhan, N.: Lower 
bounds for possibly divergent probabilistic programs. Proc. ACM Program. Lang. 
7(OOPSLA1), 696–726 (2023) 

24. Frohn, F., Giesl, J.: Termination of triangular integer loops is decidable. In: Dillig, 
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 426–444. Springer, Cham 
(2019). https://doi.org/10.1007/978-3-030-25543-5_24 

25. Giesl, J., Giesl, P., Hark, M.: Computing expected runtimes for constant probability 
programs. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 269– 
286. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_16 

26. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE, pp. 167–181. ACM (2014) 

27. Gryszka, K.: From biased coin to any discrete distribution. Period. Math. Hung. 
83(1), 71–80 (2021) 

28. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, 
and function using networkX. Tech. rep, Los Alamos National Laboratory (LANL), 
Los Alamos, NM, USA (2008) 

29. Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent 
sequences. Discret. Appl. Math. 154(3), 447–451 (2006) 

30. Helmink, L., Sellink, M., Vaandrager, F.W.: Proof-checking a data link protocol. 
In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 127–165. 
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9_75 

31. Hermes, H.: Die universalität programmgesteuerter rechenmaschinen. 
Mathematisch-Physikalische Semesterberichte 4, 42–53 (1954) 

32. Hirst, H.P., Macey, W.T.: Bounding the roots of polynomials. Coll. Math. J. 28(4), 
292–295 (1997) 

33. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Madhusudan, P., 
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 781–786. Springer, Heidelberg 
(2012). https://doi.org/10.1007/978-3-642-31424-7_64 

34. Holtzen, S., den Broeck, G.V., Millstein, T.D.: Scaling exact inference for discrete 
probabilistic programs. Proc. ACM Program. Lang. 4(OOPSLA), 140:1–140:31 
(2020) 

35. Kaminski, B.L., Katoen, J., Matheja, C.: On the hardness of analyzing probabilistic 
programs. Acta Informatica 56(3), 255–285 (2019) 

36. Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number generation. 
In: Algorithms and Complexity: New Directions and Recent Results. Academic 
Press (1976) 

37. Korec, I.: Small universal register machines. Theor. Comput. Sci. 168(2), 267–301 
(1996) 

https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64


On the Almost-Sure Termination of Probabilistic Counter Programs 103 

38. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328– 
350 (1981) 

39. Lambek, J.: How to program an infinite abacus. Math. Bull. 4(3), 295–302 (1961) 
40. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in 

Stochastic Modeling. SIAM, ASA-SIAM Series on Statistics and Applied Math-
ematics (1999) 

41. Lommen, N., Meyer, É., Giesl, J.: Control-flow refinement for complexity analysis 
of probabilistic programs in Koat (short paper). In: IJCAR (1). LNCS, vol. 14739, 
pp. 233–243. Springer (2024). https://doi.org/10.1007/978-3-031-63498-7_14 

42. Majumdar, R., Sathiyanarayana, V.R.: Positive almost-sure termination: complex-
ity and proof rules. Proc. ACM Program. Lang. 8(POPL), 1089–1117 (2024) 

43. Majumdar, R., Sathiyanarayana, V.R.: Sound and complete proof rules for prob-
abilistic termination. Proc. ACM Program. Lang. 9(POPL), 1871–1902 (2025) 

44. McIver, A., Morgan, C.: Abstraction, refinement and proof for probabilistic sys-
tems. Monographs in Computer Science, Springer (2005). https://doi.org/10.1007/ 
b138392 

45. McIver, A., Morgan, C.: Introduction to PGCL: its logic and its model. In: Refine-
ment Techniques in Software Engineering. Springer (2005). https://doi.org/10. 
1007/0-387-27006-X_1 

46. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-
sure termination. Proc. ACM Program. Lang. 2(POPL), 33:1–33:28 (2018) 

47. van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An introduction to probabilistic 
programming (2021). https://arxiv.org/abs/1809.10756 

48. Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer 
programs using expected sizes. In: TACAS 2021. LNCS, vol. 12651, pp. 250–269. 
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_14 

49. Meyer, P.J.: Probably: probabilistic guarded command language (PGCL) docu-
mentation (2023). https://philipp15b.github.io/probably/pgcl.html. Accessed 25 
Oct 2023 

50. Minsky, M.: Recursive unsolvability of post’s problem. Tech. Rep. 54G-0023, Mas-
sachusetts Institute of Technology, Lincoln Laboratory (1954) 

51. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs, NJ, USA (1967) 

52. Moosbrugger, M., Bartocci, E., Katoen, J.-P., Kovács, L.: The probabilistic ter-
mination tool amber. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. 
LNCS, vol. 13047, pp. 667–675. Springer, Cham (2021). https://doi.org/10.1007/ 
978-3-030-90870-6_36 

53. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource anal-
ysis for probabilistic programs. In: PLDI, pp. 496–512. ACM (2018) 

54. Novozhilov, S., Yang, M., Chen, M., Li, Z., Yin, J.: On the almost-sure termi-
nation of probabilistic counter programs (2025). https://hal.science/hal-05082395, 
hal preprint hal-05082395 

55. Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J., McIver, A.: Con-
ditioning in probabilistic programming. ACM Trans. Program. Lang. Syst. 40(1), 
4:1–4:50 (2018) 

56. Ost, A.: Quasi-birth-and-death processes. In: Performance of Communication Sys-
tems: A Model-Based Approach with Matrix-Geometric Methods, pp. 51–102. 
Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04421-6_4 

57. Ouaknine, J., Worrell, J.: On linear recurrence sequences and loop termination. 
ACM SIGLOG News  2(2), 4–13 (2015) 

https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/0-387-27006-X_1
https://doi.org/10.1007/0-387-27006-X_1
https://doi.org/10.1007/0-387-27006-X_1
https://doi.org/10.1007/0-387-27006-X_1
https://doi.org/10.1007/0-387-27006-X_1
https://doi.org/10.1007/0-387-27006-X_1
https://doi.org/10.1007/0-387-27006-X_1
https://doi.org/10.1007/0-387-27006-X_1
https://doi.org/10.1007/0-387-27006-X_1
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1809.10756
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://philipp15b.github.io/probably/pgcl.html
https://philipp15b.github.io/probably/pgcl.html
https://philipp15b.github.io/probably/pgcl.html
https://philipp15b.github.io/probably/pgcl.html
https://philipp15b.github.io/probably/pgcl.html
https://philipp15b.github.io/probably/pgcl.html
https://philipp15b.github.io/probably/pgcl.html
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://hal.science/hal-05082395
https://hal.science/hal-05082395
https://hal.science/hal-05082395
https://hal.science/hal-05082395
https://hal.science/hal-05082395
https://doi.org/10.1007/978-3-662-04421-6_4
https://doi.org/10.1007/978-3-662-04421-6_4
https://doi.org/10.1007/978-3-662-04421-6_4
https://doi.org/10.1007/978-3-662-04421-6_4
https://doi.org/10.1007/978-3-662-04421-6_4
https://doi.org/10.1007/978-3-662-04421-6_4
https://doi.org/10.1007/978-3-662-04421-6_4
https://doi.org/10.1007/978-3-662-04421-6_4
https://doi.org/10.1007/978-3-662-04421-6_4
https://doi.org/10.1007/978-3-662-04421-6_4


104 S. Novozhilov et al. 

58. Ouaknine, J., Sousa-Pinto, J., Worrell, J.: On termination of integer linear loops 
2015 (2014) 

59. Péter, R.: Graphschemata und rekursive funktionen. Dialectica 12, 373 (1958) 
60. Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. J. ACM 

10(2), 217–255 (1963) 
61. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV 

2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004). https://doi.org/10. 
1007/978-3-540-27813-9_6 

62. Turing, A.M.: On computable numbers, with an application to the entscheidungs 
problem. Proc. London Math. Soc. s2-42(1), 230–265 (1937) 

63. Virtanen, P., et al.: SciPy 1.0 Contributors: SciPy 1.0: Fundamental algorithms for 
scientific computing in Python. Nat. Methods 17, 261–272 (2020) 

Open Access This chapter is licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), 
which permits use, sharing, adaptation, distribution and reproduction in any medium 
or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if changes were 
made. 

The images or other third party material in this chapter are included in the 
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. 

https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	On the Almost-Sure Termination of Probabilistic Counter Programs
	1 Introduction
	2 A Bird's-Eye Perspective
	3 Problem Formulation
	4 Deciding (P)AST for 1-D PCPs
	4.1 Infinite-State MC Decomposition
	4.2 Regular MC Finitization
	4.3 Deciding Termination via Reachability Analysis
	4.4 Correctness and Efficiency of Algorithm 1
	4.5 Extending the Decidability to U(P)AST

	5 Decidable Fragments for Multidimensional PCPs
	6 Implementation and Experimental Results
	7 Related Work
	8 Conclusion
	References


