l‘)

Check for
updates

What’s to Come is Still Unsure*

Synthesizing Controllers Resilient to Delayed Interaction**

Mingshuai Chen'®)@®, Martin Frianzle?®, Yangjia Li'3
Peter N. Mosaad?®, and Naijun Zhan'

! State Key Lab. of Computer Science, Institute of Software,
CAS, University of Chinese Academy of Sciences, Beijing, China
chenms@ios.ac.cn, znj@ios.ac.cn
2 Department of Computing Science, Carl von Ossietzky Universitiat Oldenburg,
Oldenburg, Germany
fraenzle@informatik.uni-oldenburg.de,
peter.nazier.mosaad@informatik.uni-oldenburg.de

3 University of Tartu, Tartu, Estonia

yangjia@ios.ac.cn

Abstract. The possible interactions between a controller and its envi-
ronment can naturally be modelled as the arena of a two-player game,
and adding an appropriate winning condition permits to specify desir-
able behavior. The classical model here is the positional game, where
both players can (fully or partially) observe the current position in the
game graph, which in turn is indicative of their mutual current states. In
practice, neither sensing or actuating the environment through physical
devices nor data forwarding to and signal processing in the controller are
instantaneous. The resultant delays force the controller to draw decisions
before being aware of the recent history of a play. It is known that exis-
tence of a winning strategy for the controller in games with such delays
is decidable over finite game graphs and with respect to w-regular objec-
tives. The underlying reduction, however, is impractical for non-trivial
delays as it incurs a blow-up of the game graph which is exponential in
the magnitude of the delay. For safety objectives, we propose a more prac-
tical incremental algorithm synthesizing a series of controllers handling
increasing delays and reducing game-graph size in between. It is demon-
strated using benchmark examples that even a simplistic explicit-state
implementation of this algorithm outperforms state-of-the-art symbolic
synthesis algorithms as soon as non-trivial delays have to be handled.
We furthermore shed some light on the practically relevant case of non-
order-preserving delays, as arising in actual networked control, thereby

*William Shakespeare, Twelfth Night/What You Will, Act 2, Scene 3.

**The first and fifth authors are funded partly by NSFC under grant No. 61625206
and 61732001, by “973 Program” under grant No. 2014CB340701, and by the
CAS/SAFEA International Partnership Program for Creative Research Teams. The
second and fourth authors are supported by DFG under grant No. DFG RTG 1765
SCARE. The third author is funded by NSFC under grant No. 61502467 and by the
US AFOSR via AOARD grant No. FA2386-17-1-4022.

© Springer Nature Switzerland AG 2018

S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 56-74, 2018.
https://doi.org/10.1007/978-3-030-01090-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01090-4_4&domain=pdf
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0002-9138-8340
http://orcid.org/0000-0001-7808-0934
http://orcid.org/0000-0002-3629-4907
http://orcid.org/0000-0003-3298-3817

What’s to Come is Still Unsure: Synthesizing Controllers Resilient to Delay 57

considerably extending the scope of regular game theory under delay
pioneered by Klein and Zimmermann.

Keywords: Safety games + Control under delay
Efficient algorithmic synthesis

1 Introduction

Algorithmic game theory is an established approach to the synthesis of
correct-by-construction reactive controllers [13,16]. A finite game graph is used
to formalize the possible actions of the players; it is complemented by a win-
ning condition specifying desirable properties of infinite paths by means of an
acceptance condition or a specification in temporal logic. Frequently, the game is
played on a finite graph alternating moves by two players; the first player is the
controller (sometimes called “ego” player) and the second player is its environ-
ment (“alter”), which may be uncooperative, erratic, or even malicious. Correct
controllers thus have to be able to counteract any environmental actions, i.e.,
they need a sure winning strategy in the game. Controller synthesis can thus
be understood as search for a winning strategy for ego. In this paper, we are
interested in the synthesis problem when the interaction of a controller and its
environment is described by a safety game [13], i.e., an infinite two-player game
on finite graphs comprising “unsafe” states that the controller should avoid vis-
iting.

These safety games have traditionally been investigated in a setting where
the current position in the game is either fully known (“perfect information”)
or known up to certain observability constraints (“imperfect/incomplete infor-
mation”). In this article, we address the problem of control under delays in
perception and action. This can be understood as a form of imperfect informa-
tion, as decisions by the controller have to be drawn based on delayed state
observation—i.e., with the recent game history being opaque to the controller—
and in advance—i.e., well before the actual situation where the action takes effect
is fully determined. Such games have numerous practical applications, especially
in networked control settings like cooperative driving, where observation of and
influence on other cars’ states are delayed by communication protocols severely
restricting frequency of certain message types in order to keep overall channel
usage sustainable under the pertinent severe bandwidth constraints.

It is intuitively obvious that such delay renders control harder: the controller
has to decide in advance and based on dated information, which may no longer
be fully indicative of the current situation. The existence of a winning strategy
for the controller under such delays is decidable over finite game graphs and with
respect to w-regular objectives [10,11]. The underlying reduction to delay-free
games, however, is impractical for non-trivial delays as it incurs a blow-up of the
game graph which is strictly exponential in the magnitude of the delay, as also
observed by Tripakis [20].

58 M. Chen et al.

In this article, we follow Tripakis’ quest for more efficient algorithms. For
safety objectives, we propose a more practical incremental algorithm synthesiz-
ing a series of controllers handling increasing delays and reducing game-graph
size in between. We demonstrate on benchmark examples that even a simplis-
tic explicit-state implementation of this algorithm outperforms state-of-the-art
symbolic synthesis algorithms as soon as non-trivial delays have to be handled.
We furthermore shed some light on the practically relevant case of non-order-
preserving delays, as arising in actual networked control, thereby considerably
extending the scope of regular game theory under delay/lookahead pioneered
by Klein and Zimmermann in [10,11,22] and explained below. Detailed proofs,
extra examples and other materials are listed in the appendixes of [8].

Related work. In the literature on games, constraints on observation and interac-
tion are reflected by corresponding restrictions on the information frames avail-
able to the players. The majority of the results about two-player games played
on graphs adopt the hypothesis of perfect information, where fixed-point algo-
rithms for the computation of winning strategies exist [5,6,16]. In this case,
the controller is aware of the exact current (and past) state of its environment
when selecting its next control action. Reif [17] has studied games of incomplete
information and Kupferman and Vardi in [12] have extended the work of Pnueli
and Rosner [15] about the synthesis of reactive modules to consider incomplete
information . Similarly [21] and [16] study two-player games on graphs with w-
regular objectives subject to partial observability of the current (and past) game
state. Recent state information is available, however; no restriction concerning
the minimum age of observable state information is imposed. As the latter is
an increasingly relevant problem in, e.g., networked control with its non-trivial
end-to-end communication latencies, we here address the problem of two-player
safety games subject to delayed observation and delayed action of the controlled
process, obtaining a specific (and practically extremely relevant) case of imper-
fect information amenable to optimized synthesis algorithms.

The notion of control under delayed information exchange between the con-
troller and the environment, where both the ego and the alter player suffer from
having to operate under dated information about their mutual adversary’s state,
is complementary to the notion of delayed w-regular games investigated by Zim-
mermann et al. [10,11]. In their setting, a delayed output player lags behind
the input player in that the output player has to produce the i-th letter of the
output string only when ¢ + Z;‘:o f(9) letters of the input string are available,
with Vj : f(4§) > 0. Thus, delay essentially comes as an advantage, as the input
player grants the output player a lookahead—the burden for the output player is
“just” that she may have to memorize (a finite abstraction of) infinite lookahead
if delay is unbounded in that Z;:o f(5) diverges. In Zimmermann’s terminology,
our setting can be understood as asking for a strategy of the input player—whose
strategic strength suffers from having to grant a lookahead—rather than for the
output player and under the condition that delay is constant, i.e., f(0) > 0 and
Vi > 0 : f(i) = 0. We exploit a similar reduction to games of perfect infor-
mation as the oblivious-delay construction of Zimmermann [22], which in the

What’s to Come is Still Unsure: Synthesizing Controllers Resilient to Delay 59

case of constant delay exploits a product construction on the game graph essen-
tially representing a synchronous concurrent composition of the graph with a
shift register implementing the delays. In contrast to Zimmermann et al., we
do not grant introspection into the shift register, i.e., lookahead into an adver-
sary’s future actions. We do instead adopt the perspective of their input player,
who has to submit her actions without knowledge of the recent history, as is
frequently the case in practice. For this setting, the above reduction by means
of a shift register also provides a consistent semantics of playing under delay.

It is worth noting that the notion of delay employed in this paper and by
Klein and Zimmermann in [11] is different from that in timed games and their
synthesis algorithms, like UPPAAL-TIGA [2], as well as from that used in the
discrete-event system community, e.g. [1,14]. In timed games, delay refers to
the possibility to deliberately delay the next control action, i.e., a single event.
Up-to-date positional information, however, is always fully transparent to both
players in timed games. In our setting, delay refers to a time lag imposed when
obtaining positional information, modelling the end-to-end latency of informa-
tion distribution in a communication network. Up-to-date positional information
thus is opaque to the players as long as it resides in a queue modelling the net-
work, where state information as well as control events of multiple different ages
coexist and pipeline towards delivery. Such pipelining of control actions is lack-
ing in the model of delay from [14], where only one controllable event can be
latent at any time and just the time of its actual execution is determined by the
environment. Meanwhile, the model of delay in [1] is different from ours as it
leads to non-regular languages.

2 Safety Games under Delayed Information

Notation. Given a set A, we denote its powerset by 24, the set of finite sequences
over A by A*, and the set of infinite sequences over A by A“. The relative
complement of a set B in A is denoted A\ B = {z € A | x ¢ B}. An empty
sequence is denoted by ¢.

2.1 Games with Perfect Information

The plays we consider are played on finite bipartite game graphs as known from
w-regular games, see e.g. [19]:

Definition 1 (Two-player game graph). A finite game graph is of the form
G = (S, s0,50,51,%,—), where S is a finite (non-empty) set of states, Sp, S1
define a partition of S (S; containing the states where it is the turn of player
i to perform an action), sy € Sy is the initial state, ¥ is a finite alphabet of
actions for player 0 (while any action for player 1 is abstracted as u & ¥.), and
—C Sx (ZU{u}) x S is a set of labeled transitions satisfying the following four
conditions:

60 M. Chen et al.

Bipartition: if s € S; and s = s’ for some 0 € X U {u} then s' € S1_;;

Absence of deadlock: for each s € S there exist o € XU {u} and s’ € S s.t.
s 5 s

Alphabet restriction on actions: if s = s’ for some o € SU{u} theno €
iff s € So (and consequently, o = u iff s € S1);

Determinacy of ¥ moves: if s € .Sy and s Z 51 and s 5 sy then s1 = 5.

The state space is required to be deadlock-free and bipartite with respect to the
transitions, which thus alternate between Sy and S; states. Furthermore, the
actions of player 0 are from ¥ and deterministic, while all actions of player 1
are lumped together into a non-deterministic v action, since we are interested in
synthesizing a winning strategy merely for player 0 who models the controller.

The game is played by a controller (player 0, ego) against an environment
(player 1, alter) in turns. Starting from s = sy and in each second turn, the
controller chooses an action ¢ € ¥ that is enabled in the current state s. By
s = s, this leads the game to a unique successor state s’ € S;. From s/, it
now is the environment’s turn to select an action, which it does by selecting a
successor state s” € Sy with s/ = s”. As s’ again is a position controlled by
player 0, the game alternates between moves of player 0 (the controller) and
player 1 (the environment) forever, leading to the following definition.

Definition 2 (Infinite play). A play on game graph G = (S, so, So, S1, 2, —)
18 an infinite sequence T = ToOGT] ...0p_1Tp0p ... S.t. Tg = 8o, and Vi € N :
Uy - Ti+1-

The game graph is accompanied by a winning condition. In a safety game,
this is a set of unsafe positions U C S and the controller loses (and thus the
environment wins) as soon as the play reaches an unsafe state s; € U. Conversely,
the controller wins (and the environment loses) iff the game goes on forever
without ever visiting Y.

Definition 3 (Two-player safety game). A two-player safety game is of the
form G = (S, s0,S50,51,%,U,—), where G' = (S, s0,S50,51,%,—) is a finite
game graph and U C S is a set of unsafe positions.

II(G) denotes the set of plays over the underlying game graph G'. Play
mooo71 - .. € II(G) is won by player 0 iff Vi € N: m; € U and won by player 1
otherwise.

The objective of the controller in a safety game thus is to always select actions
avoiding unsafe states, while the hostile or just erratic environment would try to
drive the game to a visit of an unsafe state by picking adequate successor states
on u actions.

For a given play = € II(G), its prefiz up to position 7, is denoted m(n).
This prefix thus is the finite sequence w(n) = mgoe71 . .. Opn_17n, Whose length is
|r(n)] = n+ 1 and whose last element is Tail(w(n)) = m,. The set of prefixes
of all plays in II(G) is denoted by Pref(G), in which we denote those ending
in a controller state by Pref.(G) = {p € Pref(G) | Tail(p) € Sp}. Likewise,

What’s to Come is Still Unsure: Synthesizing Controllers Resilient to Delay 61

Pref.(G) = {p € Pref(G) | Tail(p) € S1} marks prefixes of plays ending in
environmental positions.

For a game G = (S, s¢,S0,51,2,U,—), a strategy for the controller is a
mapping £ : Pref.(G) — 2% s.t. all o € £(p) are enabled in Tail(p) and &(p) #
() for any p € Pref.(G). The outcome of the strategy £ in G is defined as
O(G,§) = {mr = mpopm1 ... € II(G) | Vi € N : 09; € &(n(2¢))} and denotes all
plays possible when player 0 respects strategy £ while player 1 plays arbitrarily.

Definition 4 (Winning strategy for the controller). A strategy & for the
controller in a safety game G = (S, so, So, S1, 2, U, —) is winning for the con-
troller (or just winning for short) iff V@ = mooemy ... € O(G,€).Vk € N :
Tk € Uu.

A winning strategy for the environment can be defined similarly as being a
mapping & : Pref,.(G) — 2% with equivalent well-defined conditions as above.
It is a classical result of game theory that such safety games under perfect
observation are determined: one of the two players has a sure winning strategy
enforcing a win irrespective of the opponent’s choice of actions.

Theorem 1 (Determinacy [9]). Safety games are determined, i.e., in each
safety game G = (S, s0,S0,51,%,U,—) exactly one of the two players has a
winning strategy.

We call a (controller) strategy & : Pref.(G) — 2% positional (or memoryless)
if for any p and p’ € Pref.(G), Tail(p) = Tail(p’) implies &(p) = £(p’). Being
positional implies that at any position in a play, the next decision of a controller
which follows the strategy only depends on the current position in the game
graph and not on the history of the play. As a consequence, such a positional
strategy can also be described by a function & : Sy — 2> that maps every state
of the controller in the game to a set of actions to be performed whenever the
state is visited. The reduction to positional strategies is motivated by the fact
that in delay-free safety games, whenever there exists a winning strategy for the
controller, then there also exists a positional strategy for it.

Theorem 2 (Computing positional strategies [7,19]). Given a two-player
safety game G, the set of states from which player 0 (player 1, resp.) can enforce
a win is computable, and memoryless strategies are sufficient for the winning

party.

The construction of a positional strategy builds on backward fixed-point iteration
computing the set of states from which a visit in & can be enforced by player 1
[19].

2.2 Games under Delayed Control

As immediately obvious from the fact that memoryless strategies suffice in the
above setting, being able to fully observe the current state and to react on it
immediately is an essential feature of the above games. In practice, this is often

62 M. Chen et al.

impossible due to delays between sensing the environmental state, computing
the control action, submitting it, and it taking effect. The strategy, if existent,
thus cannot resort to the full state history, but only to a proper prefix thereof
due to the remainder becoming visible too late.

If the delay is constant and equates to é € N steps, then the controller would
have to decide about the action to be taken after some finite play mgogmy ... w2y
already after just seeing its proper prefix mgogmy . .. To,—s. Furthermore, a con-
stant strategy not dependent on any historic observations would have to be
played by the controller initially for the first § steps. That motivates the follow-
ing definition:

Definition 5 (Playing under delay). Given a delay 6 € N, a strategy for the
controller under delay § is a map & : Pref,(G) — 2%, where x = c if § is even and
T = e else, together with a non-empty set o C kL of initial action sequences.
The outcome of playing strategy («,&) in G under delay § is O(G,a,&,d) =

Ha:a0-~-a[g1_1 ca.VieN:
7T:7T00'07T1...€H(G) 2i < 6 = 09; = a;
AN21> 6 = oy 65(7’1’(2176))

We call the strategy (o, &) playable by the controller iff it always assigns permitted
moves, i.e., iff for each prefix mooom ... 02pn—_1Tan—1 of a play in O(G,,&,0),
we have that the set of next actions

_ JHan | {00,02,04,...,09,_2,a,) is a prefix of a word in o} iff 2n <6,
"¢ (2n - 9)) iffon>6

suggested by the strategy is non-empty and contains only actions enabled in
Ton—1- Strategy (o, &) is winning (for the controller) under delay & iff it is
playable and for each m = moogmy ... € O(G,,&,0), the condition Vk € N :
T € U holds, i.e., no unsafe state is ever visited when playing the strategy.

Playing under a delay of 6 thus means that for a play m = mgogmy ..., the
choice of actions suggested by the winning strategy at state my; has to be pre-
decided at state mo;_s for any ¢ > f%] and decided without recourse to positional
information for the first § — 1 steps. Playing under delay 0 is identical to playing
under complete information.

From Definition 5 it is obvious that existence of a (delay-free) winning strat-
egy in the complete information game G is a necessary, yet not sufficient condi-
tion for existence of a strategy that is winning under a delay of § > 0. Likewise,
existence of a strategy winning under some relatively small delay J is a necessary,
yvet not sufficient condition for existence of a strategy that is winning under a
delay of ¢’ > §: the strategy for ¢’ can be played for ¢ by simply waiting ¢’ — ¢
steps before implementing the control action.

Remark 1. The reader may wonder why Definition 5 assumes strictly sequential
delay, i.e., in-order delivery of the delayed information, which cannot be guar-
anteed in many practical applications of networked control. The reason is that

What’s to Come is Still Unsure: Synthesizing Controllers Resilient to Delay 63

random out-of-order delivery with a maximum delay of J has in-order deliv-
ery with an exact delay of § as its worst-case instance: whenever a data item is
delivered out-of-order then it is delivered before ¢, implying earlier availability of
more recent state information and thus enhanced controllability. In a qualitative
setting, as addressed in this article, solving the control problem for out-of-order
delivery with a maximum delay of § is consequently—up to delaying data items
arriving early—identical to solving the control problem under in-order delivery
with an exact delay of §, as the latter is the former’s worst case.

Issues are, however, different in a stochastic setting, where out-of-order deliv-
ery with a maximum delay of § induces a reduced expected message delay strictly
smaller than ¢, i.e., it even truly enhances controllability. Dealing with this basic
quantitative case and furthermore exploiting constructive means of control on
message delay, like setting a network’s QoS parameters, for control will be sub-
ject of future research.

2.3 Insufficiency of Memoryless Strategies

Recall that in safety games with
complete information, the exis-
tence of a winning strategy for
the controller implies existence of
a memoryless strategy for player 0.
For games with delayed informa-
tion, however, memoryless strate-
gies are not powerful enough:

Example 1. Consider the safety
game G = (S,s0,S50,51,%,U,—
), shown in Fig. 1, where S =
S() @] Sl, So = {61,62,63}, Sl =
{61362763364765}7 So = (1, ¥ =
{a,b}, and U = {e3}. Player 0 can

obviously win this safety game if no
delay is involved. Fig. 1. A safety game winnable with memory-

less strategies for delay § < 1, yet not beyond.

Now consider a memoryless strat-
egy & : Sy +— 2% for the controller
under delay 2. We obviously need &’(c2) = {b}, indicating that the controller exe-
cutes b two steps later at either ¢y or c3, as a at c3 would yield the unsafe state
es. Analogously, we have &’(c3) = {a} . It is a different matter when arriving
at c¢i, where the controller has to draw a pre-decision for both ¢y and c3. If the
controller picks a (or b) at ¢, then two steps later at ¢3 (co, resp.) it executes the
unsafe action a (b, resp.). For a win, extra memory keeping track of the historic
sequence of actions is necessary such that the controller can determine whether
it will visit ¢o or ¢3 from cy.

The above example shows that memoryless strategies are generally insuffi-
cient for winning a safety game under delays. A straightforward generalization

64 M. Chen et al.

of the situation shown in Fig. 1, namely deeply nesting triangles of the shape
spanned by ci1, ¢z, and c3, demonstrates that the amount of memory needed
will in worst case be exponential in the delay. Any reduction to safety games
under complete information will have to introduce a corresponding blow-up of
the game graph.

2.4 Reduction to Delay-Free Games

As playing a game under delay 6 amounts to pre-deciding actions § steps in
advance, the problem of finding a winning strategy for the controller in G =
(S, s0, S0, 51, 2,U,—) that wins under delay ¢ can be reduced to the problem
of finding an undelayed winning strategy for the controller in a related safety
game:

Lemma 1. Let G = (S, s0, 50,51, Z,U,—) be a safety game and § € N a delay.
Then the controller has strategy that wins G under a delay 55 iff the controller
has a winning strategy in the game G = (S, s}, b, S1, SUI2T U’ =) given by

-
“«
|

- (S - z(%]) W {so} ¥ <{86} x E[%W), where & denotes disjoint union,
S5 = (S0 x SI3T) U{sh}, and 8 = (S x STET) U ({s5} x £13T),
2. s —'s ’Lﬁ

s=syNo=a1...an, EE"AS =(s{,a1...a)
Vs=(sp,a) N\oa=uANs = (sp,a)
Vs=(5,a1...an) NSESgNo EXNE NS = (8,as...a,0)
Vs=(5,a)ANs3€Siho=urs S Ns = (5 a),
where nzg if 0 is even and n = ‘”Tl if 6 is odd.

U =Uxxl3],

The essential idea of the above reduction is to extend the game graph by a
synchronous product with a shift register appropriately delaying the implemen-
tation of the control action decided by the controller. The blow-up in graph size
incurred is by a factor \E”? and thus exponential in the delay. It is obvious
that due to this, a winning strategy for the controller in the delayed game can,
if existent, be synthesized with |X| 31 memory.

Note that the above reduction to delay-free safety games does not imply that
games under delay are determined, as the claim in Lemma 1 is not symmetric
for the environment. A simple guessing game, where player 1 guesses in each
step either a 0 or a 1 and player 0 has to repeat the exact guess, losing as
soon as she fails to properly repeat, reveals that player 0 has a sure winning
strategy under delay 0, but none of the two players has one under any positive
delay.! Determinacy is only obtained if one of the players is granted a lookahead

! While player 1 could enforce a win with probability 1 in a probabilistic setting by
just playing a random sequence, she cannot enforce a win in the qualitative setting
where player 0 may just be lucky to draw the right guesses throughout.

What’s to Come is Still Unsure: Synthesizing Controllers Resilient to Delay 65

equivalent to the other’s delay, as in Klein and Zimmermann’s setting [11]. Such
lookahead does not, however, correspond to any physical reality in distributed
control, where both players are subject to the same end-to-end latency (i.e.,
delay) in their mutual feedback loop.

3 Synthesizing Controllers

As stated above, controller synthesis for games under delay can be obtained using
a reduction to a delay-free safety game involving the introduction of a shift
register. The exponential blow-up incurred by this reduction, however, seems
impractical for any non-trivial delay. We therefore present a novel incremental
synthesis algorithm, which starts from synthesizing a winning strategy for the
underlying delay-free safety game and then incrementally hardens the strategy
against larger and larger delays, thus avoiding explicit reductions. We further
optimize the algorithm by pruning the otherwise exponentially sized game graph
after each such hardening step: as controllability (i.e., the controller wins) under
delay k is a necessary condition for controllability under delay k¥ > k, each
state uncontrollable under delay k can be removed before proceeding to the next
larger delay. The algorithm thus alternates between steps extending memory, as
necessary for winning under delay, and steps compressing the game graph.

The key idea of the synthesis procedure (Algorithm 1) is to compute a series
of finite-memory winning strategies &, while increasing delays from k = 0 to the
final delay of interest k = 4. The algorithm takes as input a delayed safety game
G5 and returns either WINNING paired with a winning strategy (a,é(;) for the
controller if G is controllable, or LOSING otherwise with an integer m indicat-
ing that the winning strategy vanishes when lifting delay to m. Line 2 invokes
the classical fixed-point iteration (cf. Appx. C in [8]) to generate the mazimally
permissive strategy for the controller in G under no delay. The procedure FPIt-
eration first conducts a backward fixed-point iteration computing the set L of
states from which a visit to & can be enforced by the alter player 1 [19]. The
maximally permissive strategy for the controller is then obtained by admitting
in each state from Sy \ L exactly those actions leading to a succesor in Sy \ L.
Then the delays are lifted from & = 0 to § by a while loop in line 3, and within
each step of the loop the strategy ék+1 is computed based on fk as follows:

1. If £+ 1 is an odd delay, the controller needs to make pre-decisions at safe
states of the environment, namely at each s € S; \ U. The controller needs
to pre-decide at s a set of actions that are safe to perform at any successor
s' € Succ(s), for which the winning actions have already been encoded in
the strategy fk(s’ ,+). This is achieved, in line 7, by taking an intersection
of & (s', p) for all s € Succ(s) with the same history sequence of actions p.
The derived strategy can be spurious however, inasmuch as the intersection
involves only immediate successors of s, yet without observing the entire
strategy space. At line 9 we therefore remove all uncontrollable predecessors
of freshly unwinnable states by a Shrink procedure depicted in Algorithm 2,
which will be explained below.

66

M. Chen et al.

Algorithm 1: Synthesizing winning finite-memory strategy

input : G = (S, so, S0, 51, %,U, —), a safety game played under delay 0.
/* initialization */

1 k<—0; a—{e};
/* computing maximally permissive strategy under no delay */
2 § «— FPIteration(G);
/* lifting delays from 0 to § */
3 while k£ < § do
/* with an odd delay k+ 1 */
4 if k=0 (mod 2) then
5 for se S, 01...0r € ado
2
6 if s € S1\U then
7 Ser(s, 01 con) =N, w &k(s 01 0%);
/* shrinking the possibly-spurious strategy */
8 if §k+1(s,01...a§) = @ and /\sl:sl)slfk(sl,(fl..,ag) 760
then
9 L Shrink(£x+1, &k, G, (s, 01 ...Ug));
10 else
11 L §k+1(s,01...U§)H®;
12 o — {0001~~~0§ | so 2% s',al---a% € a,épya(s o0 -a%) #0};
13 if & =0 then
14 L return (LOSING, k + 1);
/* with an even delay k+ 1 */
15 else
16 forseS,o01...06—1 € ado
2
17 if s € So \U then
18 for og,s" : s 2% s’ do
19 L Ert1(8,0001 ... 0k-1) — E(s' 01 oko1);
2 2
20 else
21 L Ehr1(8,0001 ... 0k=1) — 0;
2
22 | k—k+1
23 return (WINNING, (o, &));
2. In case of an even delay k 4 1, the controller needs to make pre-decisions at

safe states of its own, i.e. at each s € Sy \ Y. In contrast to an intersection in
the odd case, the controller can inherit the winning strategy & (s, p) directly
from each successor s’ of s. However, we have to prepend, if s 2% ', the

action og to the history sequence p to record the choice in the shift register
(line 19).

What’s to Come is Still Unsure: Synthesizing Controllers Resilient to Delay 67

The synthesis algorithm may abort at line 14 if the controller does not have
available actions to pick anymore at the initial state sg, declaring LOSING at
k + 1 where the winning strategy vanishes. Otherwise, the algorithm continues
and eventually produces a winning strategy 55 for the controller in G.

Only when a fresh unwinnable state s for the controller is detected (line 8),
the Shrink function (Algorithm 2) will be launched to carry out two tasks in
a recursive manner: (1) it traverses the graph backward and removes from the
current strategy all the actions that may lead the play to this unwinnable state,
and consequently (2) it gives a state-space pruning that removes all states no
longer controllable under the given delay before proceeding to the next larger
delay. The latter accelerates synthesis, while the former is a key ingredient to
the correctness of Algorithm 1, as can be seen from the proof of Theorem 3: it
avoids “blind alleys” where locally controllable actions run towards subsequently
deadlocked states.

Algorithm 2: Shrink: Shrinking the possibly-spurious strategy

input : éQnJrl, the strategy under an odd delay 2n + 1;
fgn, the strategy under an even delay 2n;
G = (S, so, S0, 51, %,U,—), a safety game played under delay d;
(s,01...0n), a fresh unwinnable state with the sequence of actions.

1 fors' :s’ 5 sdo
2 if 0, € ézn(s’, 001 ...0n—1) then
égn(8l7 001...0n—1) «— égn(s/, 001 ...0n-1) \{on};
/* § < s indicates the existence of £2n+1(§,), i.e., we visit
merely states that have already been attached with
(possibly deadlocking) actions by Algorithm 1 */
4 for5:55 s and §¢U and §<sdo
5 if 0, € é2n+1(§, 001...0n—1) then
6 égm_l(é, 001...0pn—1) « £2n+1(§, 001 ...0n-1) \{on};
7 if ézn+1(57001...0n71) :(Dthen
8 L Shrink(€2n+1,€2n,G’, (5,0’0’1 ...O'nfl));

The worst-case complexity of Algorithm 1 follows straightforwardly as O(d -
1So| - [S1] - [2]L2)), as is the case for the reduction to a delay-free safety games.
In practice, the advantage however is that we avoid explicit construction of the
graph of the corresponding delay-free game, which yields an exponential blow-
up, and interleave the expansion by yet another shift-register stage with state-set
shrinking removing uncontrollable states.

Theorem 3 (Correctness and Completeness). Algorithm 1 always termi-
nates. If its output is (WINNING, (o, &)) then (o, &) is a winning strategy of Gs;
otherwise, with output (LOSING, k+1) of the algorithm, G5 has no winning strat-
eqy.

68 M. Chen et al.

Proof. Elaborated in Appx. A of [8].

Example 2. Consider the safety game G under delayed information in Fig. 1.
The series of finite-memory winning strategies produced by Algorithm 1 is:

fo(cr,¢) = {a,b}, fo(cz,¢) = {a}, €o(cs, &) = {b}.
i(er,e) = {a}, &i(e2,0) ={b}, &iles,e) =0, &i(es,e) ={b}, &iles,e) ={a}.
&(cr,a) = {a}, &(c2,a) = {b}, €a(cs,a) =0,
&2(c1,0) = {b}, §2(c2,b) = 0, §2(cs,b) = {a}.

Winning strategies for the controller vanish when the delay reaches 3

4 Case Study and Experimental Evaluation

Avoiding collisions is a central issue in transportation systems as well as in many
other applications. The task of a collision avoidance (CA) system is to track
objects of potential collision risk and determine any action to avoid or mitigate
a collision. One of the challenges in designing a CA system is determining the
correct action in presence of the end-to-end latency of the overall control system.

In the context of avoiding collisions, we present an escape game as an artifi-
cial scenario to illustrate our approach. The game is a two-player game between
a robot (i.e., the controller) and a kid (i.e., the dynamical part of its environ-
ment), which are moving in a closed room with some fixed obstacles as shown in
Fig. 2. In this scenario, the robot has to make decisions (actions) under J-delayed
information.

Definition 6 (Two-player escape game in a p X ¢ room under

delay). A two-player escape game under delay § is of the form G =
(S, 50,50,51,0,8,U,—), where

- S =X XY xX xY xB is a non-empty set of states providing r € X =
{0,...,p—1} andy € Y ={0,...,q — 1} coordinates for the robot as well as
for the kid, together with a flag denoting whose move is next. Concretely, a
state (xo, Yo, x1,Y1,0) encodes that the robot currently is at position (xo,yo),
while the kid is at (x1,y1), and that the next move is the robot’s iff b holds.
Here p,q € N> denote the width and length of the room.

- O C X xY is a finite set of positions occupied by fized obstacles.

- X is a finite alphabet of actions for player 0 (i.e., the robot), which consists
of kinematically constrained moves explained below.

- U C S is the finite set of undesirable states, which are characterized by fea-
turing collisions with the obstacles or the kid.

- =C Sx (ZU{u}) xS is a set of labelled transitions, and

- 0 is the delay in information retrieval s.t. the robot has to react on & old
information.

What’s to Come is Still Unsure: Synthesizing Controllers Resilient to Delay 69

Yy
start —>
3 € RU,UR
2 (X 0033 1133
a
AT A

1
0 . () ()

aaaaa a , , , ,

0 1 2 3 T v v v v
Fig. 2. The robot escape game Fig. 3. A snippet of the game graph

In our scenario, we first consider a room of extent 4 x 4, as shown in
Fig. 2. The fixed obstacles are located at oy = (1,2) and oy = (3,0) and
the initial state sy where the robot and the kid are located in the room is
so = (0,0,3,3,true) € Sp. The kid can move in the room and her possible moves
(i.e., the uncontrollable actions) are unilaterally denoted u for unpredictable, yet
amount to moves either one step to the right R, left L, up U, or down D. The
robot has a finite set of moves (i.e., controllable actions), which are kinemati-
cally constrained as being a combination of two moves, e.g., up then right UR,
denoted as ¥ = {RU, UR, LU, UL,RD, DR, LD, DL, ¢}, and € means doing nothing. We
assume that the two players respect the geometry of the room and consequently
never take any action leaving the inside area of the room or running through an
obstacle, which can be achieved by specifying two groups of constraints C and £
(exemplified in Appx. D of [8]) respectively for the robot and the kid, defining
their legal actions. Representing a state (xo,yo,x1,y1,b) as xoyox1y: inside a
blue circular node if b (robot’s turn) and inside a red square node if —b (kid’s
turn), the game graph spanned by the legal actions looks as shown in Fig. 3.

The safety objective for the robot is to move inside the working room while
avoiding to ever be collocated with the kid or the fixed obstacles. We conse-
quently define the set of unsafe states as U = {(xo,¥0,21,¥1,0) | (z0,%0) €
OV (w0,y0) = (z1,y1)}-

There obviously exists a winning strategy for the robot in a delay-free set-
ting, namely to cycle around the obstacle at 01 to avoid being caught by the kid.
To investigate the controllability resilient to delays, we first construct the graph
structure from the symbolic description by a C++ program. It consists of 224
states, 16 unsafe states, and 738 legal transitions satisfying the respective condi-
tions C and &. The obtained game graph is then used as input to a prototypical
implementation in Mathematica? of Algorithm 1, which declares WINNING paired
with a finite-memory winning strategy (i.c., a safe controller) &5 under delays

2 Both the prototype implementation and the evaluation examples used in this section
can be found at http://lcs.ios.ac.cn/~chenms/tools/DGame.tar.bz2. We opted for an
implementation in Mathematica due to its built-in primitives for visualization.

http://lcs.ios.ac.cn/~chenms/tools/DGame.tar.bz2

70 M. Chen et al.

0 <6 < 2 (see Appx. E in [8]), while LOSING when the delay is 3. The latter
indicates that the problem is uncontrollable under any delay §’ > 3.

To further investigate the scalability and efficiency of our method, we have
evaluated the implementation on two additional examples (Appx. B in [8]) as
well as evasion games instantiated to rooms of different sizes (marked with prefix
Escp.). A slightly adapted scenario (denoted by prefix Stub.) was also investi-
gated, where the kid plays in a rather stubborn way, namely she always moves
either one step to the left or down, yet never goes right nor up, which yields
potentially larger affordable delays for the robot. In particular, a comparison
of the performance of our incremental algorithm was done with respect to two
points of reference: to the same Mathematica-based algorithm using 6 = 0 (the
underlying explicit-state delay-free safety synthesis) employed after reducing the
games to delay-free ones by shift registers (cf. Lemma 1), and to the state-of-the-
art synthesizer SafetySynth? for solving safety games applied to an appropriate
symbolic form of that shift-register reduction. All experiments were pursued on
a 2.5 GHz Intel Core-i7 processor with 8GB RAM running 64-bit Ubuntu 17.04.

From the upper part of Table 1, it can be seen that our incremental algo-
rithm significantly outperforms the use of the shift-register reduction . On all
cases involving delay, Algorithm 1 is faster than the same underlying explicit-
state implementation of safety synthesis employed to the reduction of Lemma 1.
The benefits from not resorting to an explicit reduction, instead taking advan-
tage of incrementally generated strategies and on-the-fly pruning of already-
uncontrollable branches, are thus obvious. In contrast, the reduction-based app-
roach suffers inevitably from the state-explosion problem: for e.g. Escp.4x5
under § = 3, the reduction yields a game graph comprising 29242 states and
107568 transitions.

Within the lower part of Table 1, the performance of the current explicit-state
implementation of Algorithm 1 is compared with that of SafetySynth, the winner
in the sequential safety synthesis track of the 3rd and 4th Reactive Synthesis
Competition* (SYNTCOMP 2016 and 2017). In order to be able to examine
the efficiency of our incremental algorithm under larger delays, we used a slight
modification of the escape game forbidding the kid to take moves to the right or
up, thus increasing the controllability for the robot. Note that Algorithm 1 com-
pletes synthesis faster in these “stubborn” scenarios due to the reduced action
set. SafetySynth implements a symbolic backward fixed-point algorithm for solv-
ing delay-free safety games using the CUDD package. Its input is an extension
of the AIGER® format known from hardware model-checking and synthesis. We
therefore provided symbolic models of the escape games in Verilog® and com-
piled them to AIGER format using Yosys’. Verilog supports compact symbolic
modelling of the coordinates other than an explicit representation of the game

3 Available at https://www.react.uni-saarland.de/tools/safetysynth/.
* http://www.syntcomp.org/.

® http://fmv.jku.at/aiger/.

5 http://www.verilog.com/.

7 http:/ /www.clifford.at/yosys/.

https://www.react.uni-saarland.de/tools/safetysynth/
http://www.syntcomp.org/
http://fmv.jku.at/aiger/
http://www.verilog.com/
http://www.clifford.at/yosys/

71

What’s to Come is Still Unsure: Synthesizing Controllers Resilient to Delay

‘T 4 *®™9 Uo poulr}qo Se ‘Spoyjouwl peseq-uolonpal oy} o} paredwod sords 93e)s ur s3uraes jo o8ejusdtad 9

ow) NJD JO YT wyyim waqord s1sayjuks/[01jU0d oY) Iomsue 0} s[Ie] wWyILiose :j,

‘A899eI)s SUTUUIM OU SRY ID[[OIIU0D dY) @ ID[[RWS 10 Apeal[e :—

‘Aiqeded 3uryndurod

JO uoryeI[9Yy 03 dUp ¢ < ¢ IPUN UMOUNUNL O£ ‘punoq dwl NJD YT UM 9 W\m W\o sAe[op 10pUN J[QR[[OIFUOD POYLIGA ST ¢ & 0 L *TH
*,9 < ¢ Aelop Aue 1opun o[qe[[OIjUODUN O[IYM @ > ¢ > () SAR[OP IopUN O[(R[[0IJU0D POYLIDA SI ¢85 @ @ = XTMp

*9[qR[[0IJUO0D ST 95 YOIYM Jopun AR[Op WNWIXBUW oY) :XTWo

88'66 —| 86°C¢ | 8I1'1¢ | 94°CC | 8001 ce'e | 09€ — | ¢9'vTee T10°€T | LS'VC | 8V'C | 09'C | €CT'T ¥ = | LXL'qnig
68°66 - 09°L | 79 6L4°S | 09°'C| LV'TI | €6°0 — | ¥T'999 69°61 | 96°61 | V.L'C| 9LC| LI'L ¥ = | 9X9rqnig
96°86 - - —| 6v'c| 02°'T| 69°0| TV'0 - - —| 0€€c| 69C| 09'C| SI'T ¢ = |9X g'quag
L6°86 - - —| 4T'T | €9°0| 480 | 1ITO0 - - — | L9°€T 0g'c| 19¢| 611 ¢ = | §Xgrquag
L6°86 - - ~-| ¥¥'0| 92°0| ¥1°0 | 80°0 - - - €8°C| 67’1 671 9T'1 ¢ = | §Xprquag
8686 - - —| 8T'0| CT'0| 40°0| ¥0°0 - - - 08'1 Vet ve'r | LO'T ¢ = | ?7Xprquag
%| |9=¢| ¢=¢|V=¢|€=0|C2=0¢|1=0|0=¢ 9=¢| §¢=¢| Vv=¢|€=¢/c=¢|1=0/0=¢ xette swreu
(uoryejuowerduur 93eys-q101[dxo odwirs) T WYIIIOSTY (or]0qUIAS) wﬂuizm%w&mw + sAsox + uorjonpey Jrewyouag

10°66 — | 09°80T | 69°C€ | ST'8T | VV'€1 = P & A i LO'ET 0< 9¢ | 028¥T | ¥20e | 8x.L dosy
6686 —| 4¥'CS | VO'6T | L9°0T | TL'L = P 4 | TO'E8TT | 98°L91C 1872 T < 0S¢ | L60TT | 0G€T | LXxL dosy
L6°86 —| o0g€'0t1 gr's| 06°'C| 90T T = P 4| TVITS | T6'919 €1'C T < 9¢ | ¥ThS | veel | 9xg9-dosy
00°66 - og'v| Oov'c| Cv'1i| 00T T = P 4| €891 | €9°L1C 10T T < o€ | 919¢€ 0%8 | 9xg-dosy
8686 - LT 9T'1 89°0 | 970 T = P A 0T°L6 2 96 970 T < 9C | 10€T 86¢ | gxg-dosy
20°66 - €9°0| 9¥v°'0| 420 8I0 ¢ = — | 89°'¥80¢€ 08°€€ 60'7€ 8T°0 c= 0Z | 9cel 09¢ | gxy-dosz
20'66 - g2°0| TTt'0| €T1°0| 8O0 ¢ = — | €2°6901 €LTT 99°TT 80°0 c= 91 8€L $2g | vXy-dosz
L6°18 - T0°0| 00°0| 00°0| 000 ¢ = - 200 T0°0 10°0 00°0 c = 4 (44 ¥1 | [8] p-duxz
10°0 T0°0| 00°0| 000| 00008 < 200 20°0 10°0 000| 000 2¢ < v [or4 v1 | [8] g duxg

%| | v=9¢| €=9¢ | c=9¢ 1=9¢|0=9 ¥ v=¢| €=¢| T=¢| T=¢ 0=¢| % Il | I<I| sl owreu

T Wy3I03[y SIseYIuAg 93e3g-301[dXy + uoIonpay jrewyousg

(spuooes ur awry) seyoroidde paseq-uoIpONPal 0) UOIJR[ol Ul $HNSAI JIeWouag T S[qR],

72 M. Chen et al.

graph as in Fig. 3, and further admits direct use of shift registers for memorizing
actions of the robot under delays. Therefore, as visible in Table 1, SafetySynth
outperforms our explicit-state safety synthesis for some large room sizes under
small delays. For larger delays it is, however, evident that our incremental algo-
rithm always wins, despite its use of non-symbolic encodings.

Remark 2 It would be desirable to pursue a comparison on standard benchmarks
like the synthesis track of SYNTCOMP. As these are conveyed in AIGER format
only and not designed for modifiability, like the introduction of shift registers
, this unfortunately is not yet possible. Likewise, other state-of-the-art synthe-
sizers from the SYNTCOMP community, like AbsSynthe [4], could not be used
for comparison as they do not support the state initializations appearing in the
AIGER translations of the escape game.

5 Conclusions

Designing controllers that work safely and reliably when exposed to delays is a
crucial challenge in many application domains, like transportation systems or
industrial robots. In this paper, we have used a straightforward, yet exponential
reduction to show that the existence of a finite-memory winning strategy for the
controller in games with delays is decidable with respect to safety objectives. As
such a reduction being exponential in the magnitude of the delay would rapidly
become unwieldy, we proposed an algorithm that incrementally synthesizes a
series of controllers withstanding increasingly larger delays, thereby interleaving
the unavoidable introduction of memory with state-space pruning removing all
states no longer controllable under the given delay before proceeding to the next
larger delay. To the best of our knowledge, we also provided the first implemen-
tation of such a state-space pruning within an algorithm for solving games with
delays, and we demonstrated the beneficial effects of this incremental approach
on a number of benchmarks.

The benchmarks used were robot escape games indicative of collision avoid-
ance scenarios in, e.g., traffic maneuvers. Control under delay here involves select-
ing appropriate safe actions or movements without yet knowing the most recent
positions of the other traffic participants. Experimental results on such escape
games demonstrate that our incremental algorithm outperforms reduction-based
safety synthesis, irrespective of whether this safety synthesis employs naive
explicit-state or state-of-the-art symbolic synthesis methods, as available in
Saarbriicken’s SafetySynth tool.

An extension to hybrid control, dealing with infinite-state game graphs
described by hybrid safety games, is currently under development and will be
exposed in future work. We are also moving forward to a more efficient implemen-
tation of Algorithm 1 based on symbolic encodings, like BDDs [18] or SAT [3]. A
further subject of future investigation is stochastic models of out-of-order deliv-
ery of messages. As these result in a high likelihood of state information being
available before the maximum transportation delay, such models can quanti-
tatively guarantee better controllability than the worst-case scenario of always

What’s to Come is Still Unsure: Synthesizing Controllers Resilient to Delay 73

delivering messages with maximum delay addressed in this paper. We will there-
fore attack synthesis towards quantitative safety targets in such stochastic set-
tings and may also exploit constructive means of manipulating probability dis-
tributions of message delays, like QoS control, within the synthesis.

Acknowledgements. The authors would like to thank Bernd Finkbeiner and Ralf
Wimmer for insightful discussions on the AIGER format for synthesis and Leander
Tentrup for extending his tool SafetySynth by state initialization, thus facilitating a
comparison.

References

1.

2.

10.

11.

12.

13.

14.

Balemi, S.: Communication delays in connections of input/output discrete event
processes. CDC 1992, 3374-3379 (1992)

Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121-125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3_14

Bloem, R., Konighofer, R., Seidl, M..: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1-20.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4_1
Brenguier, R., Pérez, G.A., Raskin, J., Sankur, O.: AbsSynthe: abstract synthesis
from succinct safety specifications. In: SYNT 2014, volume 157 of EPTCS, pp.
100-116 (2014)

Brenguier, R., Pérez, G.A., Raskin, J., Sankur, O.: Compositional algorithms for
succinct safety games. SYNT 2015, 98-111 (2015)

Biichi, J., Landweber, L.: Solving sequential conditions by finite-state strategies.
Trans. Am. Math. Soc. 138, 295-311 (1969)

Biichi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Am. Math. Soc. 138(1), 295-311 (1969)

Chen, M., Franzle, M., Li, Y., Mosaad, P.N., Zhan, N.: What’s to come is
still unsure: synthesizing controllers resilient to delayed interaction (full version).
[Online]. http://lcs.ios.ac.cn/~chenms/papers/ATVA2018_FULL.pdf

Gale, D., Stewart, F.M.: Infinite games with perfect information. In: Kuhn, HW .,
Tucker, A.W. (eds.) Contributions to the Theory of Games II, Annals of Mathe-
matics Studies 28, pp. 245-266. Princeton University Press, 1953

Klein, F., Zimmermann, M.: How much lookahead is needed to win infinite games?
In: Halldérsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 452-463. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6_36

Klein, F., Zimmermann, M.: What are strategies in delay games? Borel determi-
nacy for games with lookahead. In: CSL 2015, volume 41 of Leibniz International
Proceedings in Informatics, pp. 519-533 (2015)

Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Advances
in Temporal Logic, pp. 109-127. Springer, Berlin (2000)

McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic
65(2), 149-184 (1993)

Park, S., Cho, K.: Delay-robust supervisory control of discrete-event systems with
bounded communication delays. IEEE Trans. Autom. Control 51(5), 911-915
(2006)

https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-642-54013-4_1
http://lcs.ios.ac.cn/~chenms/papers/ATVA2018_FULL.pdf
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1007/978-3-662-47666-6_36

74

15.

16.

17.

18.

19.

20.

21.

22.

M. Chen et al.

Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652—671. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035790

J. Raskin, K. Chatterjee, L. Doyen, and T. A. Henzinger. Algorithms for omega-
regular games with imperfect information. Logical Methods Comput. Sci. 3(3)
(2007)

Reif, J.H.: The complexity of two-player games of incomplete information. J. Com-
put. Syst. Sci. 29(2), 274-301 (1984)

Somenzi, F.: Binary decision diagrams. In: Calculational System Design, Volume
173 of NATO Science Series F: Computer and Systems Sciences, pp. 303-366. IOS
Press (1999)

Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E-W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1-13. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-59042-0_57

Tripakis, S.: Decentralized control of discrete-event systems with bounded or
unbounded delay communication. IEEE Trans. Autom. Control 49(9), 1489-1501
(2004)

De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imper-
fect information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927,
pp. 153-168. Springer, Heidelberg (2006). https://doi.org/10.1007/11730637_14
Zimmermann, M.: Finite-state strategies in delay games. In: GandALF 2017, Vol-
ume 256 of EPTCS, pp. 151-165 (2017)

https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/3-540-59042-0_57
https://doi.org/10.1007/11730637_14

	What's to Come is Still Unsure*
	1 Introduction
	2 Safety Games under Delayed Information
	2.1 Games with Perfect Information
	2.2 Games under Delayed Control
	2.3 Insufficiency of Memoryless Strategies
	2.4 Reduction to Delay-Free Games

	3 Synthesizing Controllers
	4 Case Study and Experimental Evaluation
	5 Conclusions
	References

