
MorphQPV: Exploiting Isomorphism in Quantum
Programs to Facilitate Confident Verification
Siwei Tan∗

Zhejiang University
Hangzhou, China

siweitan@zju.edu.cn

Debin Xiang∗
Zhejiang University
Hangzhou, China

db.xiang@zju.edu.cn

Liqiang Lu†
Zhejiang University
Hangzhou, China

liqianglu@zju.edu.cn

Junlin Lu
Peking University
Beijing, China
ljl@pku.edu.cn

Qiuping Jiang
Ningbo University
Ningbo, China

jiangqiuping@nbu.edu.cn

Mingshuai Chen
Zhejiang University
Hangzhou, China
m.chen@zju.edu.cn

Jianwei Yin†
Zhejiang University
Hangzhou, China
zjuyjw@zju.edu.cn

Abstract
Unlike classical computing, quantum program verification
(QPV) is much more challenging due to the non-duplicability
of quantum states that collapse after measurement. Prior
approaches rely on deductive verification that shows poor
scalability. Or they require exhaustive assertions that cannot
ensure the program is correct for all inputs. In this paper, we
propose MorphQPV, a confident assertion-based verification
methodology. Our key insight is to leverage the isomorphism
in quantum programs, which implies a structure-preserve
relation between the program runtime states. In the asser-
tion statement, we define a tracepoint pragma to label the
verified quantum state and an assume-guarantee primitive to
specify the expected relation between states. Then, we char-
acterize the ground-truth relation between states using an
isomorphism-based approximation, which can effectively ob-
tain the program states under various inputs while avoiding
repeated executions. Finally, the verification is formulated as
a constraint optimization problem with a confidence estima-
tion model to enable rigorous analysis. Experiments suggest
that MorphQPV reduces the number of program executions
by 107.9× when verifying the 27-qubit quantum lock algo-
rithm and improves the probability of success by 3.3×-9.9×
when debugging five benchmarks.

CCS Concepts: • Computer systems organization →
Quantum computing; • Theory of computation → Pro-
gram verification.
∗These authors contribute equally to this work.
†Corresponding author

This work is licensed under a Creative Commons Attribution International
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651360

Keywords: quantum computing, program verification

ACM Reference Format:
Siwei Tan, Debin Xiang, Liqiang Lu, Junlin Lu, Qiuping Jiang, Ming-
shuai Chen, and Jianwei Yin. 2024. MorphQPV: Exploiting Isomor-
phism in Quantum Programs to Facilitate Confident Verification.
In 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (ASPLOS
’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3620666.3651360

1 Introduction
Quantum computing is a promising technique that can achieve
low power consumption and low computational complex-
ity [12, 26, 32]. A quantum program consists of a sequence of
quantum instructions that speed up computation using quan-
tum superposition and entanglement. Similar to classical
programs, quantum programs inevitably incur many compu-
tational defects, such as bugs. Currently, there is strong moti-
vation to develop advanced verification tools to debug quan-
tum programs. For example, only 21% of questions related
to quantum programs are resolved on Stack Overflow [38],
which is significantly lower (4.1 times less) than that of clas-
sical programs. Nevertheless, the verification of quantum
programs faces obstacles due to unique properties introduced
by the quantum mechanism. Specifically, the superposition
state greatly expands the search space for bugs, while the
non-duplicability requires massive program executions to
probe the program states.

Quantum program verification (QPV) is mainly performed
by deductive verification [52, 54, 55, 57] and runtime asser-
tion [13, 20, 27–29]. Deductive verification relies on precise
formulations of the program behaviors, e.g., quantum Hoare
logic [57], where the correctness can be compiled into a set
of verification conditions. However, reasoning about the cor-
rectness relies on (1) discharging the verification conditions
via classical computers, incurring significant computational
costs, and (2) human expertise to identify inductive invari-
ants, thus restricting automation levels. On the other hand,

671

https://doi.org/10.1145/3620666.3651360
https://doi.org/10.1145/3620666.3651360
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620666.3651360&domain=pdf&date_stamp=2024-04-27

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

runtime assertion is a lightweight method that tests the pro-
gram under with varying inputs. An assertion is defined as
a predicate toward the properties of program states (e.g.,
purity [55] and expectation [27, 28]), which is expected to
be true if there are no bugs. Validating the assertion entails
three steps: (a) statement of the assertion; (b) characteriza-
tion of the program; and (c) validation to check whether the
characterization result satisfies the assertion predicates. The
application of assertions has been primarily studied on a
case-by-case basis [20]. Researchers like Liu et al. [28] and
Li et al. [27] have expanded on this work to enable dynamic
assertions on quantum hardware.
Confidence is the key metric to evaluate QPV, which is

defined as the probability that the verification result holds
true for all inputs. Existing assertion works [13, 27–29, 55]
exhibit low confidence in verifying the overall correctness
of the program. This limitation arises from the fact that they
can only validate the assertion under a small subset of test
inputs, without the capability to generalize the validation
result to the entire input space. To improve confidence, some
works [1, 46, 47] exhaustively test numerous inputs, which is
insufficient when considering the continuous Hilbert space.
For instance, Li et al. [27] and Liu et al. [29] only test a single
input in each verification, while bugs may not be activated
under this input. Quito [47] applies a grid search on the input
space, necessitating 4.8 × 106 program executions to verify
an 11-qubit QRAM program [14].

Fundamentally, the implementations of current assertion
methods cannot support input-independent verification due
to the following limitations:
a) Assertion statement. Current predicates of the assertion

are limited to a single program state, rendering them
unable to check the relations between states at different
time points. For example, the assertions proposed by Li
et al. [27] and Liu et al. [29] only check whether qubits
are in a specified state set. For different inputs, this state
set has to be re-declared.

b) Characterization.Current techniques cannot characterize
the relations between states, leading to repetitive testing
of programs for each input [27]. Besides, they can only
probe limited features of the state due to the quantum
collapse after the measurement. For example, Twist [55]
only supports to validate the purity of the state, and
Huang et al. [20] only probes the amplitudes of the states.

c) Assertion validation. Current methods fail to consolidate
findings from different testing inputs to support compre-
hensive verification. Strategies employed by Quito [47]
and Fuzz [46] apply an exhaustive search until going
through the entire space or encountering a bug. Further-
more, there is an absence of an analytical framework to
accurately predict verification confidence.

Figure 1 (a) showcases a quantum lock program to illus-
trate the above-mentioned limitations. Quantum lock is an

key unexpected

key

input

output

0
0

1

1
1

0

only the unexpected key helps find the bug

(b) Confidence of the verification

result in the 15-qubit quantum lock.

(a) 4-qubit quantum lock with a bug

caused by the unexpected key.

100

co
nf

id
en

ce
 (

%
)

#input

50

0 8,000
0

15,000

unexp. key

in.
others
key

out.

Figure 1.Motivational example.

important module in encrypting quantum program outputs
by encoding a binary key, such as 001 shown in Figure 1 (a).
The program is expected to output |1⟩ only when the input
matches the key, e.g., 001 → |1⟩, others → |0⟩. A program
bug occurs when an unexpected key, such as 110, is present
in the program, making the program also output |1⟩ for in-
putting this key (110 → |1⟩). This bug cannot be identified
until this unexpected key is tested. In the assertion state-
ment, recent studies [27, 29, 47] require distinct assertions
(output= |1⟩ and output= |0⟩) for various inputs (key and
others). These methods exhaustively test inputs to detect
the unexpected key during the characterization phase. In
the validation, they cannot generalize the execution results
from some inputs to other inputs. For example, they cannot
use the results of inputs 010 and 101 to validate input 110.
Figure 1 (b) presents the confidence of the overall correctness
from the method proposed by Liu et al. [29]. For a 15-qubit
quantum lock program, the confidence level is a mere 0.006%
after a single test and only reaches 50% confidence after
testing 1.5 × 104 inputs.

In this paper, we propose MorphQPV, a confident verifica-
tion methodology that achieves confident verification with
a minimal number of program executions. MorphQPV is
advanced in its ability that only takes twice the effort of clas-
sical program verification, which is a significant advantage
when considering the exponentially increased space of quan-
tum states. Our key insight is to leverage the isomorphism
of the program, which implies the structure-preserving re-
lationship between the input and the runtime states of the
program. This isomorphism facilitates a novel characteri-
zation technique, employing the program’s behavior under
specific inputs to infer behaviors under alternative inputs,
which helps to extend the verification result to the entire
input space.
MorphQPV introduces a verification flow consisting of

three steps: First, MorphQPV defines a form of multi-state
assertion to specify the expected relations between run-
time states of the program, inspired by a classical assume-
guarantee primitive. The multi-state assertion is a static
statement that features an input-independent description
of program behavior. Besides, the assertion is described as a
classical function involving the density matrix of the state to

672

MorphQPV: Exploiting Isomorphism inQuantum Programs to Facilitate Confident Verification ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

ensure maximum expressiveness. Second, MorphQPV char-
acterizes the relation between states as classical functions
using an isomorphism-based approximation. These func-
tions can approximate the density matrix of the program
states based on the input, without executing the program.
The accuracy of the approximation is guaranteed by mathe-
matical proof. Third, MorphQPV models the assertion and
the characterized relations into a constraint optimization
problem, which validates the assertion without specifying
the test inputs. Furthermore, in addition to estimating the
confidence when the program is correct, our approach can
provide counter-examples when finding bugs.
The major contributions of the paper are summarized as

follows:
• We propose a multi-state assertion that characterizes the
relationships among a sequence of quantum states at dif-
ferent time points. This enhances both the efficiency and
expressiveness of program verification.

• We propose an approximation technique to calculate the
runtime states rather than repeatedly executing the pro-
gram. The approximation effectively captures the program
behavior at a relatively low computational cost.

• We propose an input-independent validation method for
the assertion, capable of generating counter-examples and
providing an estimation of the validation confidence.
The evaluation utilizes case studies and quantitative anal-

ysis to suggest that our work is more expressive in iden-
tifying errors. It also achieves an up to 107.9× reduction
of program executions and 3.3×-9.9× improvement of the
success probability when debugging five algorithms. The
source code and dataset of MorphQPV are publicly available
on (https://github.com/JanusQ/MorphQPV).

2 Background
2.1 Quantum Program
In a quantum program, information is encoded in the state of
qubits. For a 𝑛-qubit system, its quantum state is described
by a density matrix 𝜌 , which can be categorized into the pure
state and the mixed state. Generally, the density matrix of a
mixed state is a linear combination of the density matrices
of pure states, represented as 𝜌 =

∑
𝑖 𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖 |. Here, 𝑝𝑖

represents the probability, and |𝜓𝑖⟩ ⟨𝜓𝑖 | denotes the density
matrix of the pure state. All properties of the quantum state
can be analyzed using its density matrix. For example, when
the state 𝜌 is pure, |𝜌𝜌† − 𝜌 | equals 0. In this paper, the
quantum states are also represented as the density matrices.
Inherently, quantum computing is an evolution of the

quantum state, which is mathematically expressed as a uni-
tary matrix (unitary)𝑈 . For a quantum state represented as
a density matrix 𝜌 , it evolves to a new density matrix 𝜌 ′ after
applying one unitary:

𝜌′ = 𝑈𝜌𝑈 † . (1)

Table 1. Notations used in the following sections.

Notation Meaning

† Conjugate transpose that transposes a matrix
and applies complex conjugation to its elements.

𝑡𝑟
Trace operator that sums the diagonal elements
of a matrix.

| | · | | L2 norm that calculates the square root of the
sum of the square of matrix elements.

𝜌T𝑖 Density matrix of qubit state at tracepoint T𝑖 .

𝜌T𝑖 = 𝑓𝑖 (𝜌in) Classical function that approximates the relation
between input 𝜌in and tracepoint state 𝜌T𝑖 .

⟨𝜎in,𝑖 , 𝜎T,𝑖⟩
i𝑡ℎ sampled input 𝜎in,𝑖 and corresponding state 𝜎T,𝑖
at tracepoint 𝑇 .

𝑁sample Number of sampled inputs.

𝑁in Number of qubits of the input.

𝑁T𝑖 Number of qubits at tracepoint T𝑖 .

shots Number of times to repeatedly execute one
quantum program.

Here, † is the conjugate transpose operation that transposes
the matrix and applies complex conjugation to its elements.

Quantummeasurement is the only operation that reads in-
formation from qubits to classical computers. The projective
measurement is performed on a collection of operators {𝑂}
satisfying

∑
𝑂∈{𝑂 } 𝑂

†𝑂 = 𝐼 , where 𝐼 is the identity matrix.
The expectation of measuring quantum state 𝜌 on operator
𝑂 is

E𝑂 [𝜌] = 𝑡𝑟 (𝑂𝜌), (2)

where 𝑡𝑟 is the trace operation. The measurement process
evolves state 𝜌 into a new state 𝜌 ′:

𝜌′ =
𝑂𝜌𝑂†

E𝑂 [𝜌] .
(3)

In this work, we assume that a program execution consists
of one input and multiple shots. The notations and termi-
nologies used in this paper are listed in Table 1.

2.2 Isomorphism
Mathematically, an isomorphism is defined as a structure-
preserving mapping between two spaces of the same type
that can be retraced by an inverse mapping [25]. For example,
the mapping R𝑥 → R𝑦 that satisfies 𝑥 + 1 = 𝑦 is isomorphic
since we can formulate its inverse mapping 𝑥 = 𝑦 − 1. Ex-
tended from isomorphism, a linear isomorphism is defined
as a mapping specified by reversible matrices. A quantum
evolution is isomorphic, as the quantum operator is
reversible (𝑈 −1 = 𝑈 † or 𝑂−1 = 𝑂†). A linear isomorphism 𝑓

satisfies the additivity and homogeneity:
additivity : 𝑓 (𝑢 + 𝑣) = 𝑓 (𝑢) + 𝑓 (𝑣),

homogeneity : 𝑓 (𝑐 𝑢) = 𝑐 𝑓 (𝑢),

where 𝑐 is a constant. Elements𝑢 and 𝑣 are in the input space
of isomorphism 𝑓 . Based on the additivity and homogeneity,

673

https://github.com/JanusQ/MorphQPV

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

Step 3. assertion validation

correct &

confidence

yes no

counter-

example

Step 1. assertion statement

assume

guarantee

specify expected relation
between states

Step 2. program characterization

characterize natural relation
between states by an input sampling

quantum program

label states by tracepoint
pragma

input q[0,1];

x q[2,3,4];

cz q[1],q[4];

t1 q[1,2];

x q[2,3,4];

h q[1];

t2 q[0];

compare

Figure 2. Overview of MorphQPV.

the equality holds in:

𝑓 (
∑︁
𝑖

𝑐𝑖 𝑢𝑖) =
∑︁
𝑖

𝑐𝑖 𝑓 (𝑢𝑖) . (4)

3 MorphQPV Overview
Figure 2 presents the verification workflow of MorphQPV
to verify quantum program, consisting of three steps:
Step 1. assertion statement.We label the states in the pro-

gram via tracepoint pragma. Subsequently, each tracepoint
records the time and the associated qubits, which is used to
describe the expected program behavior with these states.
We define an assume-guarantee assertion with predicates to
specify: (a) the ranges of these states, represented as objective
functions for each state, e.g., 𝑃1 (𝜌T1) and 𝑃2 (𝜌T2) in Figure 2;
and (b) the relation between these states, represented as a
objective function involving multiple states, e.g., 𝑃3 (𝜌T1 , 𝜌T2).
The predicate is validated on the classical computers.

Step 2. program characterization.MorphQPV characterizes
the natural relations between quantum states by running the
program on the quantum hardware. The characterization
begins with a one-shot input sampling to record the labeled
states across different inputs. By exploiting isomorphism, it
then builds approximation functions based on the sampling
results, e.g., 𝜌T1 = 𝑓1 (𝜌in), representing the relations between
the input and the labeled states. These approximation func-
tions can be efficiently computed to obtain tracepoint states
on classical computers.
Step 3. assertion validation. MorphQPV validates the as-

sertion by checking whether the relations in the program
satisfy the expected constraints in the assertion. Instead of
testing tremendous inputs to identify the error, we apply
a global search that packs the predicates and the approxi-
mation functions into a constraint maximization problem.
The assume-guarantee assertion is true only if the maximum
objective is less than 0. When the program is incorrect, the
maximum argument 𝜌𝑖𝑛 is the counter-example resulting in
the bug. When the program is correct, MorphQPV estimates
the confidence based on the accuracy of the characterization.

4 Assertion Statement
We introduce assertions to specify the relations between
states, aiming to provide a comprehensive description of
program behavior across different inputs. We label the qubit
states at different times of the program by injecting trace-
points. A tracepoint T𝑖 is defined as:

T𝑖 ≡ ({𝑄𝑖 }, 𝑡𝑖𝑚𝑒𝑖), 𝑄𝑖 ∈ 𝑄, (5)

where𝑄 is the qubit set of the quantum program. 𝑡𝑖𝑚𝑒𝑖 is the
time to obtain the density matrix 𝜌T𝑖 of qubits 𝑄𝑖 . The tra-
cepoint is declared as a pragma in the QASM language [11],
defined as “T index q[qubits]”. For example,

1 h q[1];
2 cx q[1], q[2];
3 T 1 q[1,2]; // add tracepoint 𝑇1 on qubits 1,2.

4 cx q[2], q[3];

where tracepoint T1 is injected into the GHZ [15] circuit at
𝑡𝑖𝑚𝑒1 = 3.

Assertions are written in classical predicates to express
the ranges of states at tracepoints and the relations between
them.

Definition 1 (Assume-guarantee assertion). An assume-
guarantee assertion is defined as:

𝑎𝑠𝑠𝑒𝑟𝑡 (T𝑖 ,T𝑗) ≡ assume: 𝑃1 (𝜌T𝑖), 𝑃2 (𝜌T𝑗
) ,

guarantee: 𝑃3 (𝜌T𝑖 , 𝜌T𝑗
) , (6)

where predicate 𝑃𝑘 is an inequality or objective function
that takes density matrices as inputs. The objective function
satisfies 𝑃𝑘 ≤ 0 when and only when the predicate is true.

The assertion is set to ensure that the program always
meets the following condition: when states 𝜌T𝑖 and 𝜌T𝑗

sat-
isfy the predicates 𝑃1 and 𝑃2, they should satisfy the predicate
𝑃3. Put simply, the assertion fails if an input satisfies 𝑃1 and
𝑃2 but violates 𝑃3. The rule of predicates 𝑃1 and 𝑃2 is deter-
mined by the input format of the specific optimizer in Section
6.1. For example, when using quadratic programming in ver-
ification, the predicate is described as the inequality within
two degrees. The theoretical model of MorphQPV supports
taking arbitrary mathematical formulations as predicates

674

MorphQPV: Exploiting Isomorphism inQuantum Programs to Facilitate Confident Verification ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

qalice

qbob

output

2 3 4 5 6 7 91 8 10input

are asserted to have phase difference of π,② states of ,
 when qalice is measued 1.

are asserted to be equal.① states of ,

Figure 3. Example of assertions in quantum teleportation.

since the density matrix of the asserted state is obtained
from the classical computer.

The positions of tracepoints are determined by the verifica-
tion goals. There are two preferred strategies for placing the
assertion. Firstly, we have some prior knowledge of the state
at the position where we put the tracepoint. In this case, we
usually place tracepoints at the start or end of sub-routines.
Secondly, we place the statement in the area that can help
understand the program functionality or areas suspected of
having problems.
The assertion definition of MorphQPV gets inspiration

from the classical assume-guarantee assertion, which is used
to identify deadlock and concurrent exceptions in classi-
cal parallelized programs [44]. Considering that a quantum
program is naturally parallelized, our assertion can detailly
describe the amplitude transition of bases in the program.
Besides, compared to the classical assertion [44], the assump-
tion in MorphQPV is the condition of the guarantee, filtering
the input space that required validation. This provides two
advantages for debugging quantum programs. First, this en-
ables the debugging of programs with mid-measurement by
assuming that the asserted state equals the collapsed state af-
ter the measurement. Second, it helps prune the input space
and minimize the overhead. We can use multiple assume-
guarantee assertions to elaborate the functionality of the
program.

Figure 3 presents an example of quantum teleportation [5]
to illustrate our assertion statement. The teleportation is
expected to transport the input state of 𝑞alice to the output
state of𝑞bob.We inject tracepoints T1 and T2 to label the input
state and the output state. Using the notation in Equation 5,
T1 = ({𝑞alice}, 1), T2 = ({𝑞bob}, 10). The expected program
behavior is that when input and output are pure states, the
input state equals the output state

assume: 𝑃1 (𝜌T1) =
����𝜌T1

𝜌
†
T1

− 𝜌T1

����︸ ︷︷ ︸
when 𝜌T1 is pure,

, 𝑃2 (𝜌T2) =
����𝜌T2

𝜌
†
T2

− 𝜌T2

����︸ ︷︷ ︸
𝜌T2 is pure,

,

guarantee: 𝑃3 (𝜌T1 , 𝜌T2) =
����𝜌T1 − 𝜌T2

����︸ ︷︷ ︸
𝜌T1 should equal 𝜌T2

, (7)

where | | · | | is the L2 norm. We can follow the same definition
to check the relations of states involving feedback. For ex-
ample, we validate whether, at timepoint 8, the state of 𝑞bob
has a phase difference of 𝜋 with the input state when 𝑞alice is

measured 1. Clearly, we add tracepoint T3 = ({𝑞alice}, 8) and
T4 = ({𝑞bob}, 8} to the program, and define the assertion:

assume: 𝑃1 (𝜌T3) =
����𝜌T3 − |1⟩ ⟨1|

����︸ ︷︷ ︸
when 𝑞alice is measured 1,

,

guarantee: 𝑃3 (𝜌T3 , 𝜌T4) =
����𝑡𝑟 (𝜌†T4

𝜌in) .𝑝ℎ𝑎𝑠𝑒 − 𝜋
����︸ ︷︷ ︸

𝜌T4 should have a phase difference of 𝜋 with the input state

.

5 Isomorphism-based Characterization
The characterization for each tracepoint T𝑖 aims to capture
the natural relation between the program input 𝜌in and the
state 𝜌T𝑖 at this tracepoint during execution, which is formu-
lated as an approximation function, i.e., 𝜌T𝑖 = 𝑓 (𝜌in).

5.1 Input Sampling
The characterization starts with an input sampling to initial-
ize the approximation function, where we run the program
under various inputs and apply tomography to the trace-
point states. These inputs are carefully designed to ensure
high characterization accuracy. Specifically, the input states
should be orthogonal and cover more eigenstates to max-
imize their variety. Besides, the inputs are expected to be
easily prepared. Based on this objective, we utilize the cir-
cuits from the orthogonal Clifford group [6] to prepare the
inputs. Bravyi et al. [6] utilizes Hadamard-free circuits with
up-bound depths linear to the number of qubits. Compared
to using basis states, the Clifford group is more expressive
in representing superposition and entanglement, making it
closer to commonly used program inputs.

The density matrix of the tracepoint state under different
sampled inputs is obtained by tomography. The number of
sampled inputs 𝑁sample is pre-determined based on the ex-
pected accuracy of approximation (discussed in Section 5.3).
The 𝑖𝑡ℎ input and tracepoint states are recorded as 𝜎in,𝑖 and
𝜎𝑇,𝑖 , respectively. These two states are collected as ⟨𝜎in,𝑖 , 𝜎𝑇,𝑖⟩
pairs of size 𝑁sample.

5.2 Isomorphism-based Approximation
As discussed in Section 2.2, the quantum evolution in the
quantum program is isomorphic, which, therefore, has addi-
tivity and homogeneity. We adopt this property to build the
approximation functions.
Specifically, the relation between 𝜌in and 𝜌𝑇 in the pro-

gram has the following property. For input represented as
the linear combination of sampled inputs

𝜌in =
∑︁

𝑖
𝛼𝑖𝜎in,𝑖 . (8)

where parameter 𝛼𝑖 is a real value, tracepoint state 𝜌T under
this input is

𝜌T =
∑︁

𝑖
𝛼𝑖𝜎T,𝑖 . (9)

675

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

This is because for the natural relation represented as func-
tion 𝜌T = 𝐹 (𝜌in), there is

𝜌T = 𝐹 (𝜌in) = 𝐹 (
∑︁

𝑖
𝛼𝑖𝜎in,𝑖) =

∑︁
𝑖
𝛼𝑖𝐹 (𝜎in,𝑖) =

∑︁
𝑖
𝛼𝑖𝜎T,𝑖 .

which comes from additivity and homogeneity in Equation 4.
𝐹 (𝜎in,𝑖) = 𝜎T,𝑖 is correct as these two states are collected
from real program executions.
Based on this relation, all possible inputs of a program

can be categorized into two parts. The first part consists
of the inputs that can be decomposed into Equation 8. The
tracepoint states under these inputs are accurately computed
by Equation 9. The second part consists of the inputs that
cannot be decomposed. However, we can approximate them
by Equation 8. The tracepoint state under these inputs can
be approximated by Equation 9. Overall, we can build the
following function to obtain the approximated tracepoint
states for any input.

Theorem1 (Approximation function). Function 𝜌T = 𝑓 (𝜌in)
is an under-approximation of the real relation 𝐹 between
input 𝜌in and tracepoint state 𝜌T. The function is computed
in two steps:
1. For input 𝜌in, it first approximates the 𝜌in by Equation 8

to obtain parameters {𝛼𝑖 }.
2. It then outputs tracepoint state 𝜌T by Equation 9 with

parameters 𝛼𝑖 .
Note that parameters 𝛼𝑖 mathematically equals the expecta-
tion of input 𝜌in on sampled input 𝜎in,𝑖 .

The approximation can be applied to programs with non-
overlapping qubits in the input and tracepoint. The approxi-
mation also holds for programs with mid-measurements and
simple feedback, where the relations of qubit states are not
isomorphic. We put the detailed proof in Appendix A.
Figure 4 shows a visual example of a single-qubit pro-

gram. In the input sampling, we execute three orthogonal
input states 𝜎in,1 = |+⟩ ⟨+| (on x-axis of the Bloch sphere),
𝜎in,2 = |+𝑖⟩ ⟨+𝑖 | (on y-axis), and 𝜎in,3 = |1⟩ ⟨1| (on z-axis). The
tracepoint states are recorded as 𝜎T,1, 𝜎T,2, and 𝜎T,3. Given
input state 𝜌in, the first step approximates it according to
Equation 8:

𝜌in = 𝛼1 |+⟩ ⟨+| + 𝛼2 |+𝑖⟩ ⟨+𝑖 | + 𝛼3 |1⟩ ⟨1|,
𝛼1 = E |+⟩ [𝜌in], 𝛼2 = E |+𝑖 ⟩ [𝜌in], 𝛼3 = E |1⟩ [𝜌in].

In the second step, the tracepoint state under this input is
computed according to Equation 9:

𝜌T = 𝛼1𝜎T,1 + 𝛼2𝜎T,2 + 𝛼3𝜎T,3 .

Note that in this example, the approximation of the input
state and tracepoint state have 100% accuracy, as input can
be elaborately represented by Equation 8.
Building the approximation function can generalize the

information obtained from individual input into a broader
input space. Compared to simulation on classical computer
and quantum program execution, it significantly reduces

= + +
Z

X
Y

input sampling

X
Y

Z
Clifford group

approximation

Figure 4. Visual example of the approximation in a single-
qubit program.

the complexity of the following verification. Specifically,
the computation of the approximation function has linear
complexity to test an input in the verification, as it only
involves simple summing. In contrast, the complexity of the
simulation is exponential to the overall number of qubits
of the program. Obtaining the runtime state by executing
the quantum program also has exponential complexity, as
it requires state tomography to overcome the limitation of
quantum collapse.

5.3 Approximation Accuracy
The inaccuracy of the approximation occurs when the in-
put cannot be decomposed into the linear combination of
the sampled inputs. More samplings ensure less uncovered
eigenstates in the sampled inputs and higher accuracy. We
present a quantitative analysis of this trade-off in this section.
Specifically, the accuracy of the approximation is determined
by the number of qubits of the state (𝑁in) and the number of
sampled inputs (𝑁sample) in the input sampling.

Theorem 2 (Approximation accuracy). For different inputs,
there are two cases:
1. For inputs that can be accurately represented by Equa-

tion 8, the accuracy is 100%.
2. For inputs with eigenstates that cannot be represented by

Equation 8, the average accuracy is 𝑁sample/ 2𝑁in+1×100%.
When the number of samples 𝑁sample equals 2𝑁in+1, the ap-
proximation accuracy is 100% for any input. In other words,
the approximated tracepoint state is always the same as the
real state obtained by state tomograph.

Here, we define accuracy as the Hilbert–Schmidt inner
product between approximated 𝜌T and real 𝜌T obtained by
executing the quantum program. The proof of the theorem
is in the Appendix.
Theorem 2 suggests that the inaccuracy comes from the

space that the sampled inputs cannot represent (Equation 8).
By increasing the number of sampled inputs 𝑁sample, we can

676

MorphQPV: Exploiting Isomorphism inQuantum Programs to Facilitate Confident Verification ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

case 1theoretical: case 2empirical: case 2case 1

ac
cu

ra
cy

1 7 13 16 19 25

0.2

0.4

0.6

0.8

1.0

1 17 33 49 64

ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

reach maximum

with 64 inputs

reach maximum
accuracy when
sampling 16
inputs

(a) (b)

Figure 5. Experimental and theoretical accuracy of the ap-
proximation in the (a) 7-qubit and (b) 15-qubit quantum
teleportation programs.

exponentially increase the space of case 1 and linearly in-
crease the accuracy of case 2. Verification in case 1 is exactly
accurate. For case 2, when bugs occur, the incorrect state
usually shows a significant difference compared to expected
state and can be identified with a certain accuracy threshold.
Figure 5 compares the experimental accuracy with theo-

retical value in 7-qubit and 15-qubit quantum teleportation
programs, where 𝑁in = 3 and 5, respectively. For case 1, the
experimental accuracy is close to 1. The inaccuracy mainly
results from the inaccuracy of the tomography. For case 2,
the experimental accuracy grows linearly and reaches the
maximum when the number of the samplings 𝑁sample are
16 (23+1) and 64 (25+1), respectively. Besides, we observe that
the experimental accuracy is usually larger than the theoret-
ical value, as the Clifford group used in the input sampling
is expressive when approximating the state evolution.

5.4 Pruning the Sample Space
The accuracy of the approximation linearly increases as the
number of sampled inputs grows. We further propose three
strategies to prune the sample space during the characteri-
zation process.

Strategy-adapt: adaptively determining the inputs for sam-
pling. The input of a program is usually a sub-space of the
whole quantum state, which can be represented by fewer or-
thogonal states. MorphQPV can apply eigendecomposition
to the input space. The sampling only uses the eigenvectors
with large eigenvalues as the program inputs, which reduces
the number of sampled inputs. For example, when verifying
a 5-qubit quantum neural network program that classifies
handwritten numerals, MorphQPV can apply eigendecompo-
sition to the training dataset and uses the top-9 eigenvectors
with large eigenvalues as sampled inputs.

Strategy-const: setting a part of the input state as constant.
The input of a program may consist of multiple parts of
qubits that represent different data. We can make the state of
some input qubits constant to reduce the size of input space.
For example, the quantum adder program has two parts of
inputs |𝑥⟩ and |𝑦⟩, represented as 𝑓 (|𝑥⟩ , |𝑦⟩) = |𝑥 + 𝑦⟩ (e.g.,
𝑓 (|01⟩ , |10⟩) = |11⟩). By keeping |𝑥⟩ constant, we prune
the sample space and focus on verifying the program under
different states of |𝑦⟩.

Strategy-prop: checking a single property rather than the
entire density matrix. Usually, we only check limited prop-
erties of the state (e.g., probability distribution, expectation,
and purity) that also satisfy the additivity and homogeneity.
MorphQPV can reduce the complexity of the tomography
by only measuring the specific properties validated in the
assertion.

6 Assertion Validation
6.1 Constraint Optimization
For assertion 𝑎𝑠𝑠𝑒𝑟𝑡 (𝑇1,𝑇2), we adopt an optimization-based
method to validate the assertion, which checks whether the
characterized functions (e.g., 𝜌T1 = 𝑓1 (𝜌in)) satisfy the pred-
icates of the assertion. If not, the validation outputs the
counter-example that makes the assertion fail.

According to the definition of the assume-guarantee asser-
tion (cf. Definition 1), predicate 𝑃𝑘 is defined as an inequality
or objective function. The inequality can also be transferred
into the objective function. The objective function satisfies
𝑃𝑘 ≤ 0 if and only if the predicate is true. Therefore, the asser-
tion validation is transformed into a constraint optimization
problem:

maximize
𝜌T1 ,𝜌T2

𝑃3 (𝜌T1 , 𝜌T2),

subject to 𝑃1 (𝜌T1) ≤ 0,
𝑃2 (𝜌T2) ≤ 0,

(10)

where 𝑃3 is guarantee and 𝑃1, 𝑃2 are assumptions. We substi-
tute the 𝜌T1 and 𝜌T2 with the characterized approximation
functions 𝜌T1 = 𝑓1 (𝜌in) and 𝜌T2 = 𝑓2 (𝜌in) to check whether
the runtime states satisfies the assertion:

maximize
𝜌in

𝑃3 (𝑓1 (𝜌in), 𝑓2 (𝜌in)),

subject to 𝑃1 (𝑓1 (𝜌in)) ≤ 0,
𝑃2 (𝑓2 (𝜌in)) ≤ 0.

As 𝜌in is represented by parameters {𝛼𝑖 } in the approxima-
tion function (Theorem 1). We directly optimize {𝛼𝑖 } to find
the maximum. The correctness of the assertion equals:

𝑎𝑠𝑠𝑒𝑟𝑡 (𝑇1,𝑇2) ≡ if max[𝑃3 ({𝛼})] ≤ 0 → true
> 0 → false.

The optimization can be efficiently solved by current state-
of-the-art optimizers, such as stochastic gradient descent [56],
genetic algorithm [24] and quadratic programming [51]. For
example, for the assertion of quantum teleportation in Equa-
tion 7, the verification aims to check that:

maximize
𝜌in

����𝜌in − 𝑓2 (𝜌in)
���� ,

subject to
����𝜌in𝜌†in − 𝜌in

���� ≤ 0 ,����𝑓2 (𝜌in) 𝑓2 (𝜌in)† − 𝑓2 (𝜌in)
���� ≤ 0 .

Here, 𝜌T1 = 𝜌in, as tracepoint T1 labels the input of the
program.

677

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

pr
ob

ab
ili

ty
 d

en
si

ty
 (%

)

6.0

approximation accuracy (%)

probability that
counter-example
cannot be identified

= 40
= 24

accuracy

threshold ε

Figure 6. Distribution of approximation accuracies under
various inputs.

6.2 Confidence Estimation
The approximation accuracy may not support discriminat-
ing errors in the corner cases, making the verification result
invalid for all inputs of the program. Such inaccuracy can be
alleviated by sampling more inputs. We propose a quantita-
tive method to analyze the relation between the confidence
and the number of samples, which helps programmers esti-
mate the overhead to achieve the expected confidence.
The confidence is mainly determined by the approxima-

tion accuracy and an accuracy threshold 𝜖 defined to identify
the counter-example. Confidence measures the probability
that the verification result is valid for all inputs. Conversely,
1−confidence is the probability that at least one counter-
example exists but is not identified, as their approximation
accuracies are smaller than the accuracy threshold 𝜖 .

As shown in Figure 6, we observe that the approximation
accuracies under various inputs follow the Beta distribution
𝐵(𝛽1, 𝛽2). Parameters 𝛽1 and 𝛽2 are determined by the num-
ber of samples 𝑁sample and the characteristic of the quantum
program. Besides,

𝛽1
𝛽1 + 𝛽2

=
𝑁sample

2𝑁in+1

is the average accuracy of case 2 in Theorem 2.
The values of 𝛽1 and 𝛽2 can be characterized by running

a set of benchmarking inputs. In the Beta distribution, the
probability that the approximation accuracy 𝑎𝑐𝑐 of a counter-
example is smaller than the accuracy threshold 𝜖 , which can
not be identified, is

𝑃 (𝑎𝑐𝑐 < 𝜖) =
∫ 𝜖

0
𝐵(𝑥 ; 𝛽1, 𝛽2)𝑑𝑥,

which equals the integral of the Beta probability function
𝐵(𝑥 ; 𝛽1, 𝛽2) between range [0, 𝜖].

Theorem 3 (Confidence). The confidence that the program
is correct when the validation does not find the counter-
example is:

confidence = 1 − 𝑃 (𝑎𝑐𝑐 < 𝜖) . (11)

Overall, Here, we assume that the program only has one
counter-example to simplify the estimation. An error pro-
gram usually has more counter-examples. So the real con-
fidence is higher, as it equals the probability that all these
counter-examples have accuracy below the threshold, which
is 1−𝑃 (𝑎𝑐𝑐 < 𝜖)𝑁c-e . 𝑁c-e is the number of counter-examples.

Thus, we provide a lower-bound estimation of the confi-
dence.

6.3 MorphQPV Complexity
Overall, the complexity of MorphQPV in verifying an asser-
tion is determined by the following parameters: the number
of qubits of inputs 𝑁in, the number of qubits involved in two
tracepoints 𝑁T1 , 𝑁T2 , and the number of inputs executed in
input sampling 𝑁sample.
• In the input sampling, state tomography at each tracepoint
hasO(𝑒𝑁𝑇1) orO(𝑒𝑁𝑇2) complexity [10].𝑁sample input sam-
ples leads to complexity of O(𝑁sample (𝑒𝑁𝑇1 + 𝑒𝑁𝑇1)). Input
sampling is a one-shot process that does not need repeated
running during verification.

• In the assertion validation, the optimization augments
to validate each assertion consists of 𝑁sample parameters
{𝛼𝑖 }. Assume that we adopt the quadratic programming
solver to find the maximization. The optimization requires
up to O(𝑁 3

sample) number of iterations to find the global
maximization [17].

Overall, to ensure 100% confidence, the characterization re-
quires 100% accuracy with 2𝑁in+1 sampled inputs. The com-
plexity of the chracterizaion is upper-bounded by O(2𝑁in+1

(𝑒𝑁𝑇1 + 𝑒𝑁𝑇2)) . The complexity of the validation is upper-
bounded by O(23𝑁in+3).

7 Case Study
We debug three algorithms as case studies, including quan-
tum lock [30] (QL), quantum neural network [23] (QNN), and
Quantum Random Access Memory (QRAM). These three
quantum algorithms are not discussed by prior assertion
works for two reasons: First, verification of these programs
relies on the search for error inputs. However, the error in-
puts take a small proportion of the entire input space. For
example, there is only one input leading to the error out-
put in QL, while other outputs cannot help identify the bug.
Second, they require complex comparisons to discriminate
the error. For example, we compare the intermediate states
of a QNN model with other QNN models, which requires
obtaining the density matrix on the classical computer.

7.1 Case Study 1: Quantum Lock
The importance of QL has been introduced in Section 1.
Moreover, the QL program is also known as the phase kick-
back module that is used to provide quantum speedup in
many important quantum algorithms, including the Bern-
stein–Vazirani algorithm [4] and the quantum phase estima-
tion algorithm [16]. A QL program is encoded with a key. If
and only if the input state equals the key, the output is |1⟩.
If the input state does not equal the key, the output is |0⟩.

𝜌𝑜𝑢𝑡𝑝𝑢𝑡 =

{ |1⟩ ⟨1|, if 𝜌in = |key⟩ ⟨key| .
|0⟩ ⟨0|, if 𝜌in ≠ |key⟩ ⟨key| .

678

MorphQPV: Exploiting Isomorphism inQuantum Programs to Facilitate Confident Verification ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

#qubit

#e
xe
cu
tio

ns

Quito
NDD
MorphQPV

Figure 7. Numbers of sampled inputs to identify bugs in the
quantum lock program.

As shown in Figure 1 (a), by inserting a controlled gate with
an unexpected key, the program also outputs 1 with this
unexpected key.

Verification of unexpected keys. The objective of Veri-
fication is to check whether the unexpected key exists. For
a 𝑁 -qubit QL program, the input space consists of 2𝑁−1 bit
strings. By exhaustively testing each bit string with the state
assertion [20, 28, 29], the number of program executions
follows the hypergeometric distribution, leading to close to
O(2𝑁−1/2) complexity.
We first inject tracepoint into the QASM language of QL

program [11]:
1 T 1 q[2,3,4]; // add tracepoint 𝑇1 on qubits 2,3,4.

2 h q[1];
3 x q[2,3,4];
4 mcz q[1,2,3],q[4];
5 x q[2,3,4];
6 h q[1];
7 T 2 q[1]; // add tracepoint 𝑇2 on qubits 1,

and specify the assertion:
assume: 𝑃1 (𝜌T1) = (𝜌T1 ≠ |key⟩ ⟨key|)︸ ︷︷ ︸

when input is not |key⟩

,

guarantee: 𝑃3 (𝜌T1 , 𝜌T2) =
����𝜌T2 − |0⟩ ⟨0|

����︸ ︷︷ ︸
output |0⟩ ⟨0 |

.

We apply Gurobi [17], a quadratic programming solver, to
find the maximum of the objective function in the assertion
validation. Figure 7 presents the number of program exe-
cutions required by Quito [47], NDD [29] and our method.
MorphQPV achieves 107.9× speedup compared to the base-
lines (from 9.3 × 105 program executions to 8,974) for the
21-qubit QL algorithm. Note that the speedup exponentially
grows as the number of qubits increases.

7.2 Case Study 2: Quantum Neural Network
In this case study, we debug the QNNmodel that predicts the
species of Iris flowers. The Iris dataset includes 100 flowers
with 4 attributes (e.g., width of the petal) and 2 species (e.g.,
Setosa and Virginica). Figure 8 presents the program of the
QNN model, which consists of an encoder and layers of
parameterized gates. The attributes of the flower are input
into the program via an encoder. The expectation on the

validate the prior knowledge of the attribute.

width
length

petal

width
length

4mm
6.7cm
1.3mm
5.5cm

sepal

prediction

validate the correctness of the pruning

···

en
co

de
r

parameterized gates

attributes

Figure 8. Quantum neural network to classify the species
of Iris flowers.

Z-axis of the first qubit at the end of the program determines
the prediction output. If E𝑍 (𝜌) > 0, the flower is Setosa. If
E𝑍 (𝜌) ≤ 0, it is Virginica. MorphQPV provides a new ability
to verify the model after the gate pruning and validate the
prior knowledge to improve the model interpretability.
Verification of gate pruning. Current quantum gates

suffer from noise, motivating works [19, 45] to prune unim-
portant gates. For example, in the case study, the pruning
removes two gates (𝑃1 and 𝑃2 in Figure 8). We expect that the
prediction does not change after the pruning. Besides, if the
prediction changes, we should find the incorrectly pruned
gates.
To identify the incorrectly-pruned gates, we inject trace-

points T1 after the encoder, T2 and T3 after each pruned gate,
and T4 before the output. We apply an assume-guarantee as-
sertion to check whether each tracepoint T𝑖 ∈ {T2,T3,T4} re-
mains in similar states before and after the pruning. We have
QNN models before pruning QNN∗ and after pruning QNN′.
The assertion is

assume: 𝑃1 (QNN∗ .𝜌T1) =
����QNN∗ .𝜌T1

QNN∗ .𝜌†T1
− QNN∗ .𝜌T1

����︸ ︷︷ ︸
QNN∗ .𝜌T1 is pure

,

𝑃2 (QNN′ .𝜌T1) =
����QNN′ .𝜌T1

QNN′ .𝜌†T1
− QNN′ .𝜌T1

����︸ ︷︷ ︸
QNN′ .𝜌T1 is pure

,

guarantee: 𝑃3 (QNN∗ .𝜌T𝑖 ,QNN
′ .𝜌T𝑖) = (

����QNN∗ .𝜌𝑇𝑖 − QNN′ .𝜌𝑇𝑖
���� ≤ 𝛽) ,

where 𝛽 is a distance threshold. Tracepoints states QNN∗.𝜌𝑇𝑖
and QNN′ . 𝜌𝑇𝑖 are obtained by the approximation. Besides,
we adopt the optimization strategy Strategy-adapt to reduce
the overhead in the initializing approximation function.
If the assertion toward the output fails, we can apply a

binary search to check each pruned gate. Verifying pruning
is difficult using prior assertion techniques, as they have
tested various inputs and run quantum state tomography at
each tracepoint, requiring exponential complexity for each
input.

679

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

(a) QRAM table

=

addr.
000
001

value
0.5π
0.2π

110
111

1.2π
0.7π

···

(b) QRAM circuit

···

ad
dr

es
si

ng

da
taRX RX RX RX

multi-controlled RX gate

Figure 9. Example of the quantum random access memory.

Verification of prior knowledge. Studying the inter-
pretability of the machine learning model is also an im-
portant aspect, as it provides optimization opportunities
to improve the model accuracy [42] and assist the domain
experts [7]. The Verification is performed with some prior
knowledge. For example, biologists suggest that the flowers
with sepal lengths in the range [4, 6] cm belong to Setosa.
Verifying the QNN model can give the Biologist an answer
to this prior knowledge.
The Verification can be performed by prior works with

a test dataset consisting of pre-collected inputs. However,
works have pointed out that accuracy in the test dataset
cannot guarantee high generality [36], as the test dataset
only covers a small proportion of the input space. MorphQPV
can declare an assertion to verify this prior knowledge, which
checks that all model outputs satisfy the prior knowledge.
We inject a tracepoint T5 to the fourth qubit at the beginning
of the program (see Figure 8):

assume: 𝑃1 (𝜌T5) = (4 ≤ 𝜌T5 [1] [1] ≤ 6)︸ ︷︷ ︸
when the sepal length is in [4, 6] cm

,

guarantee: 𝑃2 (𝜌T4) = (E𝑍 (𝜌𝑇4) > 0)︸ ︷︷ ︸
the output should be Setosa

.

Here, we assume that the sepal length is encoded into the
amplitude of |1⟩ of the fourth qubit, normalized to [0, 2𝜋] in
the implementation. The Verification aims to find the flower
that belongs to Virginica but in the range of [4, 6] cm. If the
assertion fails, the prior knowledge is wrong. If the assertion
passes, the prior knowledge is correct.

7.3 Case Study 3: Quantum Random Access Memory
In this section, we debug QRAM, which is an important
quantum program that allows data to be accessed based
on addresses. QRAM is a fundamental component of many
quantum applications [3, 43], which is widely studied [14, 50],
as the information stored in it can be repeatedly reused
without being destroyed by decoherence errors and non-
duplicability of the quantum state.
As shown in Figure 9 (a), similarly to classical RAM, the

information stored in QRAM is represented as a table, where
each address 𝑖 identifies a value 𝜃𝑖 ∈ [0, 2𝜋]. The size of the
table is 2𝑁 for 𝑁 addressing qubits. QRAM allows inputting
a superposition state to the addressing qubits to query in-
formation. The result is output as the state of a data qubit.

Mathematically, for input state
∑2𝑁

𝑖=0 𝜆𝑖 |𝑖⟩. The output of the
data qubit is ∑︁2𝑁

𝑖=0
𝜆𝑖 |𝜃𝑖 ⟩ ,

where we define |𝜃𝑖⟩ = 𝑐𝑜𝑠𝜃𝑖 |0⟩ + 𝑠𝑖𝑛𝜃𝑖 |1⟩. For example,
when the input state is

√
2
2 |00⟩ +

√
2
2 |11⟩, the output state

is
√
2
2 (𝑐𝑜𝑠𝜃00 +𝑐𝑜𝑠𝜃11) |0⟩ +

√
2
2 (𝑠𝑖𝑛𝜃00 + 𝑠𝑖𝑛𝜃11) |1⟩ As shown

in Figure 9 (b), in the circuit implementation of QRAM, the
values are read into the data qubit by sequentially applied
multi-controlled RX gates. The controlled state corresponds
to the address 𝑖 , while the rotation of the gate corresponds to
value 𝜃𝑖 . For example, address 101 and the value 𝜋/3 are im-
plemented by the 5th multi-controlled RX gate with rotation
𝜋/3, controlled by the state |101⟩ of the addressing qubit.
Verification of error address. It is important to check

the data in QRAM and locate the error address when the
data is wrong. Since the QRAM input space includes all
superposition states, it is impossible to traverse the whole
space. MorphQPV provides an efficient debugging method
to verify QRAM and identify the error address. As shown
in Figure 9 (b), we first define tracepoint T1 at the start of
the addressing qubit and tracepoint T2 at the end of the data
qubit to check the overall functionality of QRAM:

assume: 𝑃1 (𝜌𝑇1) =
����𝜌𝑇1 −∑︁2𝑁

𝑖, 𝑗=0
𝜆𝑖𝜆

∗
𝑗 |𝑖⟩ ⟨ 𝑗 |

����︸ ︷︷ ︸
when input state is

∑2𝑁
𝑖=0 𝜆𝑖 |𝑖 ⟩ ,

,

guarantee: 𝑃2 (𝜌𝑇2) =
����𝜌𝑇2 −∑︁2𝑁

𝑖, 𝑗=0
𝜆𝑖𝜆

∗
𝑗 |𝜃𝑖 ⟩ ⟨𝜃 𝑗 |

����︸ ︷︷ ︸
the output state is

∑2𝑁
𝑖=0 𝜆𝑖 |𝜃𝑖 ⟩

.

If the program is incorrect, we apply a binary search to
identify the error address. We inject tracepoint T3 into the
middle of the program and check the addresses before T3 by
assertion:

assume: 𝑃1 (𝜌𝑇1) =
����𝜌𝑇1 − 2𝑁 /2∑︁

𝑖, 𝑗=0
𝜆𝑖𝜆

∗
𝑗 |𝑖⟩ ⟨ 𝑗 |

���� ,
guarantee: 𝑃2 (𝜌𝑇3) =

����𝜌𝑇3 −∑︁2𝑁 /2
𝑖, 𝑗=0

𝜆𝑖𝜆
∗
𝑗 |𝜃𝑖 ⟩ ⟨𝜃 𝑗 |

���� ,
which means that the values can be correctly read for the
first 1/2 addresses. If the error exists in the first 1/2 addresses,
we inject a tracepoint to validate the first 1/4 addresses. Oth-
erwise, we will validate the second 1/2 addresses. The search
is repeated until the error address is identified.

Figure 10 presents the numbers of sampled inputs to iden-
tify the error in QRAM by Quito [47], NDD [29] and Mor-
phQPV . MorphQPV shows a 31,563.2× reduction of sam-
pling inputs compared to Quito. This reduction is even more
significant than debugging the QL program since the input
space of QRAM is a larger superposition state with more op-
timization opportunities, while the inputs of the QL program
only consist of classical states.

680

MorphQPV: Exploiting Isomorphism inQuantum Programs to Facilitate Confident Verification ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Quito
NDD
MorphQPV

#qubit

#i
np
ut

107

104

101
11

199.2×
2,436.9×

31,563×

13 15 17 19 21

Figure 10. Numbers of sampled inputs to identify bugs in
the quantum random access memory program.

Table 2. Comparsion of expressiveness of MorphQPV to
four assertion techniques. “Full”, “Part”, or “No” means the
technique has full, part, or no ability.

Stat [20] Proj [27] NDD [28] SR [13] MorphQPV

Verified object Probability
distribution

Mixed
state

Mixed
state

Mixed
state

Mixed state
& Evolution

Comparison Part Equal & In Equal & In Equal & In Full

Interpretability Part No No No Full

Debug circuit
with feedback No No No Full Full

8 Comparison With Prior Works
We compare MorphQPV with four recent works to imple-
ment quantum program assertion and recent work to de-
termine test inputs in the expressiveness, confidence, and
overhead. The quantum program assertions are based on sta-
tistical analysis (Stat) [20], projection-based measurement
(Proj) [27], non-destructive discrimination (NDD) [28], and
symbolic reasoning (SR) [13]. Quito determines test inputs
based on the grid search [47].

8.1 Expressiveness Analysis
In terms of the verified object, MorphQPV directly verifies
the evolution of the program, which is independent of spe-
cific inputs, while prior works [13, 20, 27, 29] only verify
single states under specific inputs. Stat [20] check the ampli-
tudes that ignore the phase. When checking the qubit state,
the predicates of MorphQPV, Proj [27], NDD [29], SR [13]
allows verifying the mixed state.

In terms of the comparison type, Proj [27], NDD [29] verify
assertion by injecting circuit blocks to the program. They
can only check if the runtime state is in a specified state set
and cannot support greater than or less than comparison.
Moreover, they cannot compare the states at different times
of the program. By the isomorphism-based characterization,
MorphQPV obtains the density matrix of the states on the
classical computer, supporting complex comparison types
and comparisons of states at different times.
In terms of interpretability, Stat [20] outputs the prob-

ability distribution of the error state when the assertion
fails. Proj [27], NDD [29] output no information. MorphQPV

Table 3. Benchmarking programs used in the evaluation.

Abrv. Program Abrv. Program

QNN Quantum neural network [23] QL Quantum lock [40]
QEC Quantum error correction [37] Shor Shor’s algorithm [9]
XEB Cross entropy benchmarking [2]

provides the counter-example and the density matrix of pro-
gram intermediate states. Moreover, MorphQPV estimates
the confidence when the program is verified to be correct.

In terms of the ability to debug nondeterministic programs
with simple feedback, Stat [20], Proj [27], and NDD [20] have
to redefine the predicates for different mid-measurement
results. SR [13] can verify nondeterministic programs. As
suggested in the characterization, the approximation of Mor-
phQPV is applicable for mid-measurement and feedback.
The assume-guarantee assertion can also verify the program
execution under different conditions by asserting the state
after the mid-measurement (cf. the example of quantum tele-
portation in Section 4).

8.2 Success Rate Analysis
We compared the success rate of MorphQPV with NDD [27]
and Quito [47] in Table 4 with five benchmarking programs
listed in Table 3. We adopted mutation testing [21] to eval-
uate the confidence in verification. We generated 100 test
cases for each program, all with bugs. These bugs are imple-
mented by randomly injecting phase gates into the programs.
To make a fair comparison, each verification method tests
five inputs when verifying each program. The success rate is
the probability that the verification result from the method
is valid for all inputs.

Overall, MorphQPV achieves the maximum 100% success
rate to identify bugs in all five benchmarks. The success rate
of Quito [47] decreases exponentially as the number of qubits
grows, as the size of the input space increases. Quito shows a
less than 50% success rate when debugging the QL and XEB
programs with more than three qubits because most errors
are in the phase of the tracepoint states, while Quito only
validates the probability distribution of these states.

NDD [28] shows a high success rate in QEC, Shor, and
XEB, as it can identify phase differences so that a few inputs
can help find the errors. However, NDD shows a confidence
of 0% in the 9-qubit QL program, as the program has only
one counter-example. Besides, NDD cannot debug QNN, as
debugging QNN needs to compare the value of expectations,
while NDD only supports equal or inclusive comparison.

8.3 Overhead Analysis
Table 4 also compares the overhead of the programs. The
overhead is defined as the number of quantum operations
introduced to validate the assertion. For each program, we

681

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

Table 4. Comparison of the success rate and the overhead
in the verification.

Bench-
mark

Success rate (%) Overhead (×103 operations)
NDD
[28]

Quito
[47]

Morph-
QPV

NDD
[28]

Quito
[47]

Morph-
QPV

Q
L

3q 38 36 100 10.0 5.0 5.0
5q 12 11 100 10.0 5.0 5.0
7q 3 2 100 10.0 5.0 5.0
9q 0 0 100 10.0 5.0 5.0

Q
N
N

3q / 100 100 / 5.0 5.0
5q / 100 100 / 5.0 5.0
7q / 67 100 / 5.0 5.0
9q / 50 100 / 5.0 5.0

Q
EC

3q 100 0 100 1.9×103 5.0 101.5
5q 100 0 100 4.3×104 5.0 175.0
7q 100 0 100 7.5×107 5.0 326.5
9q 100 0 100 2.4×1010 5.0 520.5

Sh
or

3q 100 0 100 2.0×103 5.0 101.0
5q 100 0 100 4.3×104 5.0 177.0
7q 100 0 100 9.0×107 5.0 306.5
9q 100 0 100 2.8×1010 5.0 488.0

X
EB

3q 100 100 100 2.0×103 5.0 103.0
5q 100 50 100 4.4×104 5.0 181.5
7q 100 44 100 8.5×107 5.0 323.5
9q 100 37 100 2.6×1010 5.0 505.5

executed 103 shots to obtain the measured probability distri-
bution. For example, when NDD [29] debugs the QL program,
it inserts a NOT gate following measurement to the output
qubit, resulting in overall 104 ((1 + 1) × 103 × 5) operations
for testing 5 inputs.
Compared to NDD [29], which validates the correctness

of the mixed states, MorphQPV achieves a high overhead op-
timization (e.g., from 2.8 × 1010 to 488.0 for the 9-qubit Shor
algorithm). This originates from the fact that MorphQPV ap-
plies an approximation function to obtain the density mat rix
instead of executing the program. NDD [29] requires synthe-
sizing unitary gates to basis gates for the sub-space projec-
tion. The resulting number of gates exponentially increases
as the number of qubits grows in the common case. For ex-
ample, to verify a 9-qubit mixed state, these methods may
require up to 2.1 × 104 gates and 144.4 hours with the state-
of-the-art synthesis method [53]. Qutio [47] only checks the
probability distribution, which has the minimum overhead
(5.0 × 103) but the lowest confidence in the verification. For
the QL and QNN programs, MorphQPV also achieves the
minimum overhead by leveraging the optimization strategies
to prune the characterization space in Section 5.4.

9 Detailed Evaluation
This section evaluates the detailed techniques proposed in
this work. MorphQPVwas implemented with Python (3.9.13)
and the NumPy package (1.23.1). The objective optimization in-
volved in assertion validation was performed by the Groubi
(11.0.0) solver. The Pennylane (0.33.1) package was used to
simulate the program execution. The number of shots of
each program execution was set to 1000. All data were tested

(b) Accuracy of approximation

under different numbers of qubits

and sampled inputs.

state tomography
process tomography MorphQPV

(a) Comparison of the computation
time to obtain the intermediate
program states.

#qubit

tim
e

(s
) 106

104

100

102

#sampling
#qubit 20

4
8

12 24 28 212

accuracysimulation

Figure 11. Evaluation of Theorem 1 and Theorem 2.

on a Linux platform with two 64-core AMD EPYC 9554 CPUs
and 1.6TB memory. The duration of the program on the real-
world quantum hardware was estimated based on the IBMQ
quantum cloud platform, which has 60𝑛𝑠 single-qubit gate
time, 340𝑛𝑠 two-qubit gate time, and 732𝑛𝑠 readout time. We
evaluated MorphQPV on five quantum algorithms listed in
Table 3. The number of input qubits and output qubits of
these algorithms were set to their overall number of qubits
for fair comparison.

9.1 Evaluation of Theorems
Evaluation of Theorem 1. The approximation is an ef-
ficient method to obtain the program intermediate states
when comparing its computation time to obtain tracepoint
states under each input with the quantum simulation on
Qiskit (0.45.0), quantum state tomography [10] and the
quantum process tomography [41] in Figure 11 (a). Mor-
phQPV achieves 74.3×, 1.2×104×, and 7.3×106× reduction
compared to the simulation, state tomography, and process
tomography in 10-qubit programs, respectively. The quan-
tum process tomography requires 11.4 days to obtain the
density matrix of a 10-qubit program state. Compared to it,
MorphQPV takes less than 0.5 seconds. This is attributed to
the fact that MorphQPV only involves simple summation
of density matrices, while simulation requires numerous
matrix-matrix multiplications. State tomography and pro-
cess tomography have to measure the state on all basis.
Evaluation of Theorem 2. Figure 11 presents the aver-

age approximation accuracy of 5 algorithms under different
numbers of qubits and sampled inputs. The accuracy curve
is close to case 2 of Theorem 2, as the randomly generated in-
puts used in the experiments are more likely to stay in case 2.
The maximum number of sampled inputs in the experiment
to ensure the accuracy 100% is consistent with the theorem,
which increases 2× as the number of qubits increases 1.

Evaluation of Theorem 3. Figure 12 compares the esti-
mated confidence with the real success rate of generating the
correct verification result in 7-qubit programs. Bugs are im-
plemented by the mutation testing introduced in Section 8.2.
Since Theorem 3 presents a lower bound for confidence, the
real success rates of programs are above the theoretical value.

682

MorphQPV: Exploiting Isomorphism inQuantum Programs to Facilitate Confident Verification ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
co

nf
id

en
ce

 (%
)

#sample

estimation: QEC QNNShorreal: QEC QNNShor

Figure 12. Evaluation of confidence estimation (Theorem 3).

baseline strategy-adapt strategy-const strategy-prop

(a) Number of sampled inputs
with 3 optimization strategies.

(b) Number of shots with 3
optimization strategies.

#s
am

pl
e

#s
ho

t

#qubit#qubit

Figure 13. Evaluation of three pruning strategies of the
program characterization introduced in Section 5.4.

The QEC program has fewer counter-examples, and its curve
is close to the estimated confidence, while the Shor program
has more counter-examples and a higher success rate.

9.2 Evaluation of Techniques
Evaluation of space pruning strategies. Figure 13 (a)
presents the ablation study of the space pruning strategies in
Section 5.4 in the QNN and Shor algorithm. Strategy-adapt
and Strategy-const decrease the number of sampled inputs
by 12.4× and 32.0× compared to the characterization without
optimization, respectively. The reduction of strategy-adapt
comes from pruning unimportant eigenstates. For example,
for the 10-qubit QNN program, the 2048 samples are pruned
to 90 (22.8× reduction) with 95% accuracy. Strategy-const
optimizes the overhead by pruning the input space. For ex-
ample, for the 10-qubit Shor program, we set the state of
half of the input qubit constant, leading to 32.0× reductions.
In Figure 13 (b), strategy-prop achieves 82.1× reduction of
shots in 10-qubit programs, which results from eliminating
the state tomography in the characterization. For example,
to validate a 6-qubit state in the Shor program, if only am-
plitudes are involved in the assertion, the characterization
takes 63.0× fewer shots compared to the baseline with no
optimization.

Evaluation of approximation accuracy on the noisy
quantum simulator. Figure 14 presents the approximation
accuracy of 5-qubit and 15-qubit Shor and QNN algorithms
on the noisy quantum simulator. We employed the Qiskit
simulator with the noise model of the IBM Cairo quantum de-
vice that has 99.45% fidelity for single-qubit gates and 98.4%
fidelity for two-qubit gates. When tracepoints are injected
into the start and end of the program, the approximation

#tracepoint

ac
cu

ra
cy

 (%
) 100

50

0
0 2 4 6 8

Shor:
5q 15q

QNN:

Figure 14. Approximation accuracy on the noisy quantum
simulator. The accuracy is optimized by injecting different
numbers of intermediate tracepoints.

(b) Validation times of 3 optimization

solvers.

(a) Ablation study of using Clifford
group in 9-qubit programs.

#qubit#sample

tim
e

(m
s)

ac
cu

ra
cy

 (%
)

64×

 82.2%

basis stateClifford annealing quadraticdescent

Figure 15. Evaluation of using Clifford group and optimiza-
tion times in the validation.

accuracy is 13.7% and 1.6% for 15-qubit Shor and QNN al-
gorithms, respectively. The inaccuracy comes from the fact
that tracepoints are far from each other, leading to large de-
coherence errors. We can inject intermediate tracepoints to
minimize this noise. Specifically, for tracepoints T1 and T2,
we inject an intermediate tracepoint T3 between them. We
can characterize relations 𝜌T3 = 𝑓1 (𝜌T1) and 𝜌T2 = 𝑓2 (𝜌T3)
to obtain the relation between 𝜌T1 and 𝜌T2 , which equals
𝜌T2 = 𝑓2 (𝑓1 (𝜌T1)). By injecting four intermediate tracepoints,
the optimization improves the approximation accuracy from
1.6% to 13.6% for the 15-qubit QNN algorithm. The accuracy
is further improved to 65.0% after injecting nine tracepoints.

Ablation study of adoptingClifford group. Figure 15 (a)
shows the ablation study of using the Clifford group in the
characterization of 9-qubit benchmarking algorithms. Over-
all, the Clifford group reduces the number of sampled inputs
to achieve 100% accuracy by 64.0× compared to using ba-
sis states as sampled inputs, as the states prepared by the
Clifford group show entanglement and superposition, which
are more representative compared to the basis states. When
the number of sample inputs is 210, the Clifford group also
achieves 82.2% accuracy improvement (from 10.9% to 93.1%).

Evaluation of optimization times based on different
solvers in validation. In Figure 15 (b), we evaluated the op-
timization time of the resulting constraint objective function
on three optimization solvers, including stochastic gradient
descent [56], genetic algorithm [24] and quadratic program-
ming [51] solvers. The quadratic programming solver shows
the minimum validation time for programs with less than 12
qubits, which requires less than 12 minutes to find the global
optimal. Note that the local optimal is usually enough as it
can also determine the correctness, which further reduces

683

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

the optimization time. We observed that the curve of the val-
idation cost polynomially grows as the number of sampled
inputs increases.

10 Related Work
Quantum program can be verified by deductive verifica-
tion [8, 34, 52, 54, 55, 57] and runtime assertion [13, 20, 27–
29]. The deductive verification is mainly performed by ex-
tending the classical deductive verification frameworks, such
as Hoare logic [52, 57] and semantic model [34]. However,
this reasoning cannot be performed on quantum hardware,
leading to high computational overhead, and requires human
experts that limit the degree of automation. An orthogonal
line is the assertion. The assertion validation can be per-
formed by projection [27], swap-test [29], or focus on spe-
cific properties of the program, such as the amplitudes [20]
and purity [55] of runtime states. Verification can also be per-
formed by checking the equivalence of programs [33, 48, 49],
while it requires the correct program for comparison. Gleip-
nir [39] enables a rigorous and efficient input-aware error
analysis of the quantum programs. It approximates the pro-
gram by tensor networks. Compared to it, the approxima-
tion of MorphQPV eliminates the simulation for each input.
OSCAR [18] debugs the optimization of the variational quan-
tum algorithm by constructing the loss function landscape
in the parameter space. MorphQPV provides the ability to
construct the landscape in the input space. The optimization-
based validation gains inspiration from Ren et al. [35] that
employs adversarial learning to search for counter-examples
in quantum neural networks. MorphQPV generalizes the
search to a variety of quantum algorithms and provides a
theoretical estimation of the verification confidence.

11 Conclusion
We propose MorphQPV to boost the success rate in verifying
the quantum program. We design an assume-guarantee as-
sertion to specify the expected relations between states in the
program. We then exploit the isomorphism property of the
program to characterize ground-truth state relation as clas-
sical approximation functions. We check whether ground-
truth relations satisfy the assertion by combining them into
a constraint optimization problem. MorphQPV can output
the counter-example and estimate the confidence of the ver-
ification. MorphQPV achieves an up to 107.9× reduction of
program executions and an improvement of the 3.3×-9.9×
probability of success when debugging five algorithms.

Appendix
A Proof of Theorems
Proof of Theorem 1. Assuming that the evolution of the gates
between the input and the tracepoint is defined as unitary
𝑈 , in the input sampling (Section 5.1), 𝜎T,𝑖 = 𝑈𝜎in,𝑖𝑈

†. We

can obtain Equation 9:

𝜌T = 𝑈𝜌in𝑈
† // Equation 8

=
∑︁

𝑖
𝛼𝑖 (𝑈𝜎in,𝑖𝑈

†) // move𝑈 and𝑈 †

=
∑︁

𝑖
𝛼𝑖𝜎T,𝑖 // 𝜎T,𝑖 = 𝑈𝜎in,𝑖𝑈

†

(12)

When there is a mid-measurement between the input and
the tracepoint, the evolution of the program before and af-
ter the program is defined as𝑈1 and𝑈2. The measurement
operator is defined as 𝑂 , and the approximation holds as

𝜌T = 𝑈2
𝑂 (𝑈1𝜌in𝑈

†
1)𝑂

†

E𝑂 [𝑈1𝜌in𝑈
†
1]

𝑈
†
2

As operators 𝑈1, 𝑈2, and 𝑂 are all linear, we can prove the
approximation of these operators holds following the same
step of Equation 12.
When there is feedback in the program, i.e., the classical

controlled unitary gate, the quantum state is operated by
unitary𝑈𝑖 with probability 𝑝𝑖 , which is the probability that
basis 𝑖 is measured. The evolution is formulated as

𝜌T =
∑︁
𝑖

𝑝𝑖𝑈𝑖𝜌in𝑈
†
𝑖

The relationship between states 𝜌T and 𝜌in in the equation is
also linear, so the approximation holds in the program with
feedback.

Proof of Theorem 2. The accuracy of the approximation is
measured via the Hilbert–Schmidt inner product [22]. There-
fore,

𝑎𝑐𝑐 = 𝑡𝑟 (√𝜌approx 𝜌truth)2,

where 𝜌approx and 𝜌truth are approximation state and ground-
truth state, respectively. Since Hilbert–Schmidt’s inner prod-
uct is preserved by unitary evolution, the error of output
equals the error of input state (Equation 8). For case 1, the
approximation error of input is 0. For case 2, the approx-
imation of input follows the same workflow as the quan-
tum state tomography [31], which has been proven to be
𝑁sample = 2𝑁in+1/(1 − 𝜖). We can transform this equation to
the equation in case 2.

B Comparison to Deductive Verification
Methods

Table 5 and Table 6 compare the expressiveness, the success
rate, and the overhead of MorphQPV with recent deductive
verification methods. The experiment setup is the same as
in Section 8.2.
In terms of expressiveness, the baselines all have lim-

ited verified objects and simple comparison types. None of
them can verify the three cases in Section 7. NKA [34] and
QHL [57] provide a part of interpretability by understand-
ing the mathematical formulation. However, they cannot
output the counter-example when the program is incorrect.

684

MorphQPV: Exploiting Isomorphism inQuantum Programs to Facilitate Confident Verification ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 5. Comparison of the expressiveness of MorphQPV to
three deductive verification methods.

KNA [34] Twist [55] QHL [57] MorphQPV

Verified
object Expectation Purity Expectation Mixed state

& Evolution
Compa-
rision

Equal or
greater Equal Equal or

greater Full

Interpr-
etability Part No Part Full

Table 6. Comparison of the success rate and the overhead
of MorphQPV to two deductive verification methods.

Bench-
mark

Success rate (%) Overhead (seconds)
Twist
[55]

Automa
[8]

Morph-
QPV

Twist
[55]

Automa
[8]

Morph-
QPV

Q
EC

5q 98 100 100 0.3 0.3 0.1
10q 98 100 100 4.5 1.2 0.1
15q 99 100 100 156.5 3.1 0.4
20q 100 100 100 5.9 × 103 4.8 8.0

Sh
or

5q 100 100 100 1.1 0.7 0.1
10q 100 100 100 23.2 6.9 0.1
15q 100 100 100 1.2 × 103 22.2 1.2
20q 100 100 100 6.1 × 104 65.5 86.6

Q
N
N

5q / / 100 / / 0.1
10q / / 100 / / 0.1
15q / / 100 / / 1.9
20q / / 100 / / 82.9

X
EB

5q / 100 100 / 0.7 0.1
10q / 100 100 / 6.5 0.1
15q / 100 100 / 20.1 6.7
20q / 100 100 / 48.6 314.7

Twist [55] only outputs the purity that cannot help identify
the source of error in most cases.
In terms of success rate, MorphQPV and two deductive

methods all have a high success rate in identifying the bugs.
However, both Twist [55] and Automa [8] cannot debug the
QNN program. Twist also cannot verify the XEB program.
This is because Twist validates the purity of the state, while
the bugs in the QNN and XEB programs do not change the
purity. Automa cannot verify the QNN program as it is based
on the deduction, which cannot obtain the specific expecta-
tion of the program state.

In terms of overhead, Twist [55] suffers from high compu-
tational cost, which requires 6.1 × 104 s to verify a 20-qubit
QEC program, as it relies on classical simulation to validate
the purity. Automa [8] shows a small overhead, as it adopts
a tree automata to speed up the runtime analysis. However,
its complexity still exponentially increases as the number of
qubits grows. Compared to them, the complexity of the Mor-
phQPV is not determined by the overall number of qubits of
the program but by the input qubits. The time-consuming
part in MorphQPV is mainly the input sampling and the
sampling time can be further reduced by parallel techniques.

C Artifact Appendix
C.1 Abstract
In this letter, we provide detailed information that will facil-
itate the artifact evaluation process. The artifact checklist
section presents brief information about this artifact and
outlines the basic requirements to reproduce the experiment
results. Then, we describe the directory tree of our codebase
and go into more detail about the requirements. Finally, in
the experiment workflow section, we explain step by step
how to reproduce the experiments.

C.2 Artifact check-list (meta-information)
Program: MorphQPV is implemented in Python.
Dataset: We use 5 algorithms to evaluate MorphQPV. A
quantum neural network is one of the algorithms that uses
the MNIST dataset.
Environment: Linux ubuntu 5.4.0 or MacOS 13.2.1.
Hardware: x86-64 CPU, 32GB Memory, 512GB of storage
space.
Execution: An Internet connection is required to download
the MNIST dataset and access the quantum device in IBMQ.
Metrics: Accuracy, the confidence of program verification,
and execution time.
Results: The runtime logs are printed to the console, and
the results of experiments are saved to CSV files or Graphs
in examples/.
Experiments: Python scripts are provided in examples/
to reproduce the results of the experiments.
Disk space required: 256GB.
Time needed to prepare workflow: Less than one hour.
Time needed to complete experiments: Less than one
hour for each Python script, except examples/fig7- quantum-
lock_verify.py. The overhead comparison experiments take
much longer because they need to test over many bench-
marks.
Code licenses: GNU GPLv3.
Archived: 10.5281/zenodo.10775069

C.3 Description
MorphQPV is built on Python scripts, which can be exe-
cuted on Linux or MacOS systems. Below, we introduce the
important files and directories in the artifact.
data/. This sub-directory includes code for benchmarking
quantum algorithms (in data/Qbenchmark/) and the MNIST
dataset downloaded from scripts.
examples/. This sub-directory includes the Python scripts
to reproduce the experiments in the paper.
morphQPV/. This sub-directory stores the core code of Mor-
phQPV, which implements the assume-guarantee pragma (rf.
Definition 1 in the paper.), the characterization method (Sec-
tion 5), and the optimization-based method to verify the
program (Section 6).

685

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

Table 7. Relationship between the scripts and the experiments in the paper.

Content Experiment Script (in examples/) Expected result Notes

Overhead
analysis

Numbers of samples to identify bugs in quantum lock fig7-quantumlock_verify.py Figure 7 Less than ten minutes

Comparison of the verification success rate and overhead table4-compare.py Table 4 More than one hour

Evaluation
of Theorems

Theorem 1: Approximation function fig11a-theorem1.py Figure 11 (a) Less than ten minutes

Theorem 2: Approximation accuracy fig11b-theorem2.py Figure 11 (b) A few minutes

Theorem 3: Evaluation of confidence estimation fig12-confidence.py Figure 12 A few minutes

Optimization
comparison
and ablation
study

Evaluation of different optimization techniques fig13-opt_strategy.py Figure 13 Requires Internet connection,
a few minutes

Ablation study of using Clifford gates and basis gates fig15a-ablation_study.py Figure 15 (a) More than one hour

Runtime comparison of different optimization solvers fig15b-solvers_compare.py Figure 15 (b) More than one hour

main_exp.py. This Python script gives an example using
morphQPV to define and verify the assume-guarantee asser-
tion.
morphQPV/assume_guarantee/. This sub-directory con-
tains the source code to define the assume-guarantee pragma,
the sampling of input-output pairs, and the solver to find the
satisfied input states.

• grammer.py Implementation to the assume-guarantee
pragma. The main class in this script is MorphQC,
which defines the quantum gate, the tracepoint, and
the assertion.

• predicate.py Template of predicates (cf. Definition
1 in the paper.) in MorphQPV, including the IsPure,
Equal, NotEqual, GreaterThan, LessThan.

• sample.py Implementation to the Input Sampling in
Section 5.1.

• inference.py Implementation to the Isomorphism-
based Approximation in Section 5.2.

• solver/. Implementation to convert the assertion into
a constrained optimization problem.

• optimizer/. Implementations to solve constrained op-
timization problems, including gradient descent, an-
nealing, and quadratic programming.

morphQPV/baselines/. Each file named [baseline].py
in this directory represents a baseline. For example, ndd.py
corresponds to NDD and stat.py corresponds to Stat.
MorphQPV/execute_engine/. This directory contains the
methods for executing the sampling circuits and getting the
density matrix by simulation or quantum state tomography.

C.3.1 How to access. DOI: 10.5281/zenodo.10775069
GitHub: https://github.com/JanusQ/MorphQPV/

C.3.2 Hardware dependencies. The evaluation in the
paper is performed on a server with AMD EPYC 9554 64-
core Processor, 1511GB memory, and 32TB storage space.

Running the code requires an x86-64 machine with at least
32GB memory and 512GB storage space.

C.3.3 Software dependencies. The code has been tested
in Python 3.9. We list all required Python packages in
requirements.txt of the artifact.

C.4 Installation
1. Download the source code from the GitHub repository

(https://github.com/JanusQ/MorphQPV/).
2. Create a virtual environment with a Python version

at 3.9 by Anaconda.

conda create -n morphenv python =3.9

conda activate morphenv

3. Install required Python packages.

pip install -r requirements.txt

Please refer to the README.md in the artifact for a more de-
tailed description.

C.5 Using MorphQPV
Users can 1) describe a quantum program, 2) state the asser-
tion, and 3) verify the program by MorphQPV. We provide
an example code in the README.md of the source code. There
are hyper-parameters in each stage of the verification. we
introduce them in doc/morphconfig.md.

C.6 Reproducing Experimental Results
Scripts.The examples/ directory included the Python scripts
to reproduce the experimental results in the paper. Table 7
lists the relationship between the scripts and the experi-
ments. For example, run the following command at the root
directory of the artifact,

python examples/table4 -compare.py

686

https://github.com/JanusQ/MorphQPV/
https://github.com/JanusQ/MorphQPV/

MorphQPV: Exploiting Isomorphism inQuantum Programs to Facilitate Confident Verification ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Father the program is finished, we can get the results of
Table 4 in the paper. A detailed description is presented in
the doc/evaluation.md.
Results.The experimental results will be generated as graphs
or CSV files in the examples/ directory after running the
scripts.

Acknowledgments
This work was supported by the National Key Research and
Development Program of China (No. 2023YFF0905200). This
work was also funded Zhejiang Pioneer (Jianbing) Project
(No. 2023C01036) and the National Natural Science Founda-
tion of China under Grant (No. 61825205).

References
[1] Shaukat Ali, Paolo Arcaini, Xinyi Wang, and Tao Yue. Assessing the

effectiveness of input and output coverage criteria for testing quantum
programs. In 2021 14th IEEE Conference on Software Testing, Verification
and Validation (ICST), pages 13–23. IEEE, 2021.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C
Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL
Brandao, David A Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben
Chiaro, Roberto Collins, Willliam Courtney, Andrew Dunsworth, Ed-
ward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa
Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P Harri-
gan, Michael J Hartmann, Alan Ho, Markus Hoffmann, Trent Huang,
Travis S Humble, Sergei V Isakov, Evan Jeffrey, Zhan Jiang, Dvir Kafri,
Kostyantyn Kechedzhi, Julian Kelly, Paul V Klimov, Sergey Knysh,
Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark,
Erik Lucero, Dmitry Lyakh, Salvatore Mandra, Jarrod R McClean,
Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Ma-
soud Mohseni, Josh Mutus, Ofer Naaman, Matthhew Neeley, Charles
Neil, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C
Platt, Chris Quintana, Eleanor G Rieffel, Pedram Roushan, Nicholas C
Rubin, Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Kevin J
Sung, Matthew D Trevithick, Amit Vainsencher, Benjamin Villalonga,
Theodore White, Z Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut
Neven, and John M Martinis. Quantum supremacy using a pro-
grammable superconducting processor. Nature, 574(7779):505–510,
2019.

[3] DV Babukhin. Harrow-hassidim-lloyd algorithm without ancilla post-
selection. Physical Review A, 107(4):042408, 2023.

[4] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-
rani. Strengths and weaknesses of quantum computing. SIAM journal
on Computing, 26(5):1510–1523, 1997.

[5] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald
Weinfurter, and Anton Zeilinger. Experimental quantum teleportation.
Nature, 390(6660):575–579, 1997.

[6] Sergey Bravyi and Dmitri Maslov. Hadamard-free circuits expose
the structure of the clifford group. IEEE Transactions on Information
Theory, 67(7):4546–4563, 2021.

[7] Richard J Chen, Judy J Wang, Drew FK Williamson, Tiffany Y Chen,
Jana Lipkova, Ming Y Lu, Sharifa Sahai, and Faisal Mahmood. Algo-
rithmic fairness in artificial intelligence for medicine and healthcare.
Nature biomedical engineering, 7(6):719–742, 2023.

[8] Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun
Tsai, and Di-De Yen. An automata-based framework for verification
and bug hunting in quantum circuits. Proceedings of the ACM on
Programming Languages, 7(PLDI):1218–1243, 2023.

[9] D. Coppersmith. An approximate fourier transform useful in quantum
factoring, 2002.

[10] Jordan Cotler and Frank Wilczek. Quantum overlapping tomographya.
Physical review letters, 124(10):100401, 2020.

[11] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta.
Open quantum assembly language. arXiv preprint arXiv:1707.03429,
2017.

[12] Poulami Das, Christopher A Pattison, Srilatha Manne, Douglas M
Carmean, Krysta M Svore, Moinuddin Qureshi, and Nicolas Delfosse.
Afs: Accurate, fast, and scalable error-decoding for fault-tolerant
quantum computers. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 259–273. IEEE, 2022.

[13] Yuan Feng and Yingte Xu. Verification of nondeterministic quantum
programs. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 789–805, 2023.

[14] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum
random access memory. Physical review letters, 100(16):160501, 2008.

[15] DM Greenberger, MA Horne, and A Zeilinger. Going beyond bell’s
theorem, in “bell’s theorem, quantum theory, and conceptions of the
universe,” m. kafakos, editor, vol. 37 of. Fundamental Theories of Physics,
1989.

[16] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, page 212–219, New York, NY, USA,
1996. Association for Computing Machinery.

[17] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.
[18] Tianyi Hao, Kun Liu, and Swamit Tannu. Enabling high performance

debugging for variational quantum algorithms using compressed sens-
ing. In Proceedings of the 50th Annual International Symposium on
Computer Architecture, pages 1–13, 2023.

[19] Zhirui Hu, Peiyan Dong, Zhepeng Wang, Youzuo Lin, Yanzhi Wang,
and Weiwen Jiang. Quantum neural network compression. In Pro-
ceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–9, 2022.

[20] Yipeng Huang and Margaret Martonosi. Statistical assertions for vali-
dating patterns and finding bugs in quantum programs. In Proceedings
of the 46th International Symposium on Computer Architecture (ISCA),
pages 541–553, 2019.

[21] Yue Jia and Mark Harman. An analysis and survey of the develop-
ment of mutation testing. IEEE transactions on software engineering,
37(5):649–678, 2010.

[22] Richard Jozsa. Fidelity for mixed quantum states. Journal of modern
optics, 41(12):2315–2323, 1994.

[23] Subhash C. Kak. Quantum neural computing. In Peter W. Hawkes,
editor, Advances in Imaging and Electron Physics, volume 94. Elsevier,
1995.

[24] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review
on genetic algorithm: past, present, and future. Multimedia tools and
applications, 80:8091–8126, 2021.

[25] Irving Langmuir. Isomorphism, isosterism and covalence. Journal of
the American Chemical Society, 41(10):1543–1559, 1919.

[26] Gushu Li, Yufei Ding, and Yuan Xie. Towards efficient superconducting
quantum processor architecture design. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 1031–1045, 2020.

[27] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and
Yuan Xie. Projection-based runtime assertions for testing and debug-
ging quantum programs. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–29, 2020.

[28] Ji Liu, Gregory T Byrd, and Huiyang Zhou. Quantum circuits for
dynamic runtime assertions in quantum computation. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
1017–1030, 2020.

687

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

[29] Ji Liu and Huiyang Zhou. Systematic approaches for precise and ap-
proximate quantum state runtime assertion. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
179–193. IEEE, 2021.

[30] Cosmo Lupo and Seth Lloyd. Quantum-locked key distribution at
nearly the classical capacity rate. Physical review letters, 113(16):160502,
2014.

[31] Ryan O’Donnell and John Wright. Efficient quantum tomography. In
Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 899–912, 2016.

[32] Tirthak Patel, Abhay Potharaju, Baolin Li, Rohan Basu Roy, and Devesh
Tiwari. Experimental evaluation of nisq quantum computers: Error
measurement, characterization, and implications. In International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pages 1–15. IEEE, 2020.

[33] Tom Peham, Lukas Burgholzer, and Robert Wille. Equivalence check-
ing paradigms in quantum circuit design: A case study. In Proceedings
of the 59th ACM/IEEE Design Automation Conference, pages 517–522,
2022.

[34] Yuxiang Peng, Mingsheng Ying, and XiaodiWu. Algebraic reasoning of
quantum programs via non-idempotent kleene algebra. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 657–670, 2022.

[35] Wenhui Ren, Weikang Li, Shibo Xu, Ke Wang, Wenjie Jiang, Feitong
Jin, Xuhao Zhu, Jiachen Chen, Zixuan Song, Pengfei Zhang, et al.
Experimental quantum adversarial learning with programmable su-
perconducting qubits. Nature Computational Science, 2(11):711–717,
2022.

[36] Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht, Sara Fridovich-
Keil, Moritz Hardt, John Miller, and Ludwig Schmidt. A meta-analysis
of overfitting in machine learning. Advances in Neural Information
Processing Systems, 32, 2019.

[37] Joschka Roffe. Quantum error correction: an introductory guide. Con-
temporary Physics, 60(3):226–245, jul 2019.

[38] Stack Exchange Inc. Stack Overflow - Where Developers Learn, Share,
& Build Careers, 2023.

[39] Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T Chong,
and Ronghui Gu. Gleipnir: toward practical error analysis for quantum
programs. In Proceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, pages
48–64, 2021.

[40] Rasit Onur Topaloglu. Quantum logic locking for security. J, 6(3):411–
420, 2023.

[41] Giacomo Torlai, Christopher J Wood, Atithi Acharya, Giuseppe Carleo,
Juan Carrasquilla, and Leandro Aolita. Quantum process tomography
with unsupervised learning and tensor networks. Nature Communica-
tions, 14(1):2858, 2023.

[42] Laura Von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan
Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrom-
mer, Annika Pick, Rajkumar Ramamurthy, et al. Informed machine
learning–a taxonomy and survey of integrating prior knowledge into
learning systems. IEEE Transactions on Knowledge and Data Engineer-
ing, 35(1):614–633, 2021.

[43] Chunhao Wang and Leonard Wossnig. A quantum algorithm for
simulating non-sparse hamiltonians. arXiv preprint arXiv:1803.08273,
2018.

[44] Dong Wang and Jeremy Levitt. Automatic assume guarantee analysis
for assertion-based formal verification. In 2005 Asia and South Pacific
Design Automation Conference, page 561–566, New York, NY, USA,
2005. Association for Computing Machinery.

[45] HanruiWang, Zirui Li, Jiaqi Gu, YongshanDing, David Z Pan, and Song
Han. Qoc: quantum on-chip training with parameter shift and gradient
pruning. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pages 655–660, 2022.

[46] Jiyuan Wang, Fucheng Ma, and Yu Jiang. Poster: Fuzz testing of
quantum program. In 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST), pages 466–469. IEEE, 2021.

[47] Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. Quito: a
coverage-guided test generator for quantum programs. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 1237–1241. IEEE, 2021.

[48] Chun-Yu Wei, Yuan-Hung Tsai, Chiao-Shan Jhang, and Jie-Hong R
Jiang. Accurate bdd-based unitary operator manipulation for scalable
and robust quantum circuit verification. In Proceedings of the 59th
ACM/IEEE Design Automation Conference (DAC), pages 523–528, 2022.

[49] Amanda Xu, Abtin Molavi, Lauren Pick, Swamit Tannu, and Aws
Albarghouthi. Synthesizing quantum-circuit optimizers. Proceedings
of the ACM on Programming Languages (PLDI), 7:835–859, 2023.

[50] Shifan Xu, Connor T Hann, Ben Foxman, Steven M Girvin, and Yong-
shan Ding. Systems architecture for quantum random access memory.
In Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 526–538, 2023.

[51] Yinyu Ye. On the complexity of approximating a kkt point of quadratic
programming. Mathematical programming, 80(2):195–211, 1998.

[52] Mingsheng Ying. Floyd–hoare logic for quantum programs. ACM
Transactions on Programming Languages and Systems (TOPLAS),
33(6):1–49, 2012.

[53] Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu. Qfast:
Conflating search and numerical optimization for scalable quantum
circuit synthesis. In 2021 IEEE International Conference on Quantum
Computing and Engineering (QCE), pages 232–243. IEEE, 2021.

[54] Nengkun Yu and Jens Palsberg. Quantum abstract interpretation. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 542–558,
2021.

[55] Charles Yuan, Christopher McNally, and Michael Carbin. Twist: Sound
reasoning for purity and entanglement in quantum programs. Pro-
ceedings of the ACM on Programming Languages (POPL), 6:1–32, 2022.

[56] Zijun Zhang. Improved adam optimizer for deep neural networks. In
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), pages 1–2. Ieee, 2018.

[57] Li Zhou, Nengkun Yu, and Mingsheng Ying. An applied quantum
hoare logic. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
1149–1162, 2019.

688

