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Abstract
Quantum readout noise turns out to be the most significant
source of error, which greatly affects the measurement fi-
delity. Matrix-based calibration has been demonstrated to be
effective in various quantum platforms. However, existing
methodologies are fundamentally limited in either scala-
bility or accuracy. Inspired by the classical finite element
method (FEM), a formal method to model the complex inter-
action between elements, we present our calibration frame-
work named QuFEM. First, we apply a divide-and-conquer
strategy that formulates the calibration as a series of tensor
products with noise matrices. This matrices are iteratively
characterized together with the calibrated probability dis-
tribution, aiming to capture the inherent locality of qubit
interactions. Then, to accelerate the end-to-end calibration,
we propose a sparse tensor-product engine to exploit the
sparsity in the intermediate values. Our experiments show
that QuFEM achieves 2.5×103× speedup in the 136-qubit
calibration compared to the state-of-the-art matrix-based
calibration technique [50], and provides 1.2× and 1.4× fi-
delity improvement on the 18-qubit and 36-qubit real-world
quantum devices.

CCS Concepts: • Hardware→ Quantum technologies.
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1 Introduction
The paradigm of quantum computing exhibits a high poten-
tial to outperform classical computing in solving complex
problems, e.g., physical simulation [11], combinatorial opti-
mization [4, 17], and many instances from the realm of arti-
ficial intelligence [28, 34]. When solving these problems on
real-world quantum hardware, the computation inevitably
encounters various sources of error [12, 13, 35, 60], amongst
which, the readout error – noise incurred by reading the
output from quantum devices and transforming it to clas-
sical data – has been demonstrated as the most significant
source of error. This error amounts to 1%-10% per qubit op-
eration [14, 43, 52] for most physical quantum implementa-
tions, thus drastically hindering the application of quantum
computing.

The fidelity of readout can be improved by hardware-level
optimization techniques, including frequency fine-tuning [56]
and sapphire-based processor fabrication [3, 27, 59]. These
techniques make the states of qubits more distinguishable by
isolating them from external noises. Whereas a more cost-
efficient approach is to apply software-level optimization,
such as matrix-based calibration [45, 50], machine learn-
ing [29, 33], domain-specific patterns [53, 54], and Bayesian
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estimation [14]. For readout that yields a probability distribu-
tion, the matrix-based calibration method is experimentally
shown effective in superconducting [31], ion-trap [10], and
optical [63] quantum hardware, which is hence widely-used
in commercial quantum cloud platforms like IBMQ [23] and
Rigetti [47]. This approach mainly consists of two steps:
matrix characterization and matrix-vector multiplication
(MVM). The characterization step profiles matrix elements
by running benchmarking circuits on the quantum device
with various initial states (for a noise-free quantum device,
this step yields an identity matrix). The MVM step multi-
plies the resulting matrix with a probability vector of the
measured probability distribution derived from the raw data
after readout. The resultant probability vector is thereby
calibrated with higher fidelity.
Although the matrix-based calibration can be readily de-

ployed on the software stack, it is confronted with the trade-off
between scalability and calibration accuracy. In order to max-
imize the accuracy, i.e., to precisely characterize the matrix,
it requires exhaustively executing a tremendous number of
benchmarking circuits to cover all possiblemeasured outputs,
which is exponential in the number of qubits [9, 21, 45, 50].
For instance, obtaining such a matrix for 16 qubits requires
the execution of 6.5 × 104 (216) circuits, taking roughly 18.2
hours on the IBMQ Guadalupe quantum device. Beyond the
matrix characterization, the MVM step is also computation-
ally overwhelmed as the size of the matrix is exponential in
the number of qubits. As an example, M3 [37] – a calibration
method recently developed by IBMQ – exploits a pruning
strategy based on a threshold of Hamming distances. How-
ever, it still requires 1.9PB memory and more than a year to
conduct the MVM step for a 45-qubit quantum circuit output.

An orthogonal line of research aims at improving the scal-
ability of the calibration process at the cost of reduced accu-
racy. Based on the observation that the non-zero elements
of the calibration matrix distribute near its diagonal, sev-
eral approaches employ the idea to characterize the matrix
with fewer benchmarking circuits [9, 37, 50]. For instance,
both IBU [50] and Yang et al. [61] apply a qubit-independent
calibration matrix – calculated by the tensor product of a
series of 2 × 2 meta-matrices – and thereby can scale to
81-qubit circuits. These approaches, however, fail to model
the crosstalk between qubits, thus decreasing the readout
fidelity. For example, on the 7-qubit IBMQ Perth quantum
computer, excluding the crosstalk noise induces a reduc-
tion of the fidelity of the GHZ circuit [20] from 94.80% to
87.21%. Alternative techniques leverage the sparsity of the
calibration matrix to alleviate the high computational com-
plexity [37, 38]. Nonetheless, by pruning away elements that
are no larger than 10−3 (accounting for 87.26%), the fidelity
of the GHZ circuit reduces from 94.80% to 86.88%.

In this work, we propose QuFEM. The key novelty of it is
to extend classical FEM to a new formulation of the calibra-
tion process. FEM serves as a popular technique in system

studies that feature complex interactions between elements,
such as aerodynamics for weather prediction [1] and ther-
modynamics [49] for flight vehicle design. A main feature
of FEM is to partition the object into multiple pieces and
iteratively analyze the evolution of each piece independently,
which greatly reduces the analysis complexity meanwhile
keeps the analysis accurate. The state of the overall system is
gathered from these pieces. Readout calibration is, in essence,
a simulation that inverses the evolution caused by qubit in-
teractions, making it naturally suitable to be modeled by
FEM.
QuFEM also applies an iterative calibration to the read-

out output, which reformulates the calibration as a series
of tensor-product with multiple sub-noise matrices. These
sub-matrices try to capture interactions between groups of
qubits. The objective of the grouping scheme includes 1)
maximizing the locality within the group and 2) minimiz-
ing the interaction between different groups, which aims to
comprehensively cover more architectural details between
qubits, making QuFEM closer to the golden calibration.

To quickly and accurately characterize these sub-matrices,
we propose a generation approach that minimizes the num-
ber of benchmarking circuits. To be specific, QuFEM tries
to identify the critical circuits that exhibit high interactions
in some local regions. Considering the foundation that the
interaction is mainly static and sparse on the physical device,
the generation ends until the accuracy of the characterization
is kept at a stable value. On the other hand, to accelerate the
computation of calibration, i.e., a series of tensor-products,
we develop a sparse tensor-product engine. Different from
prior works that directly conduct pruning on the noise ma-
trix, our method prunes the intermediate values to ensure
higher characterization accuracy. In this manner, our sparse
engine only shows polynomial complexity, leading to a huge
reduction compared to prior works with exponential com-
plexity. In summary, QuFEM achieves a high speedup for
end-to-end calibration, meanwhile improving the fidelity of
measurement operations.

The main contributions of this work are as follows:
• We propose QuFEM, a framework for calibrating the mea-
surement error using FEM. Our reformulation features
an iterative process that provides a deeper understanding
of the characterization and the calibration.

• We propose an approach to minimize the benchmarking
circuits for noise matrix characterization. Instead of ex-
haustive characterization in an exponential time complex-
ity O(2𝑛). Our generation technique greatly reduces the
characterization time to polynomial complexity O(𝑛2).

• We propose a sparse computation engine to accelerate the
end-to-end calibration. Using our engine, the calibration
time is only cubic to the number of qubits O(𝑛3), so does
the memory requirement.
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step 2: matrix-vector multiplication.step 1: matrix characterization.
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Figure 1. Readout calibration using noise matrix.

In Section 5, we theoretically prove that QuFEM has no
more than polynomial complexity with respect to the num-
ber of qubits. In Section 6, we collect a dataset with 25M
real machine samples on across 4 quantum cloud platforms,
ranging from 7-qubit to 136-qubit quantum devices. The re-
sult suggests that QuFEM achieves 2.5×103× speedup in the
136-qubit calibration compared to the state-of-the-art matrix-
based calibration technique [50] and provides 1.2× and 1.4×
fidelity improvement on the 7-qubit and 18-qubit real-world
quantum devices. The source code and dataset of QuFEM are
publicly available on (https://github.com/JanusQ/QuFEM).

2 Background
2.1 Quantum Readout
Quantum readout is an operation to read the information
from quantum bits (qubits) to classical bits. For most quan-
tum algorithms, their outputs are probability distributions
of bit strings obtained by executing the circuits multiple
times. The bit string is in a {0, 1}𝑁𝑞 space, where 𝑁𝑞 is the
number of qubits. The observed probability of a certain bit
string represents its amplitude in the measured quantum
superposition state. At the physical level, the readout is im-
plemented by probing the qubit system and estimating the
quantum state via physical quantity. For example, on the
superconducting transmon qubits [6], the readout operation
is realized by coupling the frequency of the qubit 𝜔𝑞 and the
frequency of readout resonator 𝜔𝑟 . For each individual qubit,
its state is classified by the frequency shift detected in the
readout resonator:

Δ𝜔𝑟 = 𝑔
2/|𝜔𝑞 − 𝜔𝑟 | (1)

where 𝑔 is a constant coupling strength [25]. By comparing
the drift with a threshold, we can discriminate whether each
bit is 0 or 1 in the bit string. The sources of the readout errors
include the imperfect operations [41], crosstalk [3, 24], and
environmental noise [32, 32]. An important error is qubit
interactions (e.g., crosstalk), which means the frequencies of
other qubits leak to the measured qubit, leading to imperfec-
tions in the frequency shift.

2.2 Matrix-based Calibration
Mathematically, readout error leads to perturbations in the
probability distribution. Such perturbation is formulated as

Table 1. Comparsion of 5 readout calibration techniques.
“Poly.” or “Exp.” means the technique has polynomial or ex-
ponential complexity, respectively.

Methodology
Real

Qubit-
independent Sparsity-aware FEM

Name IBU [50]
Yang et al. [61]

M3
[37]

Nation et
al. [38] QuFEM

Formulation
-

Noise matrix

Sc
al
ab
ilt
y Max qubit 20 80 45 14 ≥500

Charac. time
(one-shot)

Exp.
(×)

Linear
(✓)

Exp.
(×)

Exp.
(×)

Linear
(✓)

MVM time Exp. Exp. Exp. Exp. Poly.

A
cc
ur
ac
y

Generality All GHZ, BV All All All

HS distance 0 0.29 0.12 0.16 0.02

a linear transformation from the ideal distribution 𝑃𝑖𝑑𝑒𝑎𝑙 to
the measured distribution 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 :

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑀𝑃𝑖𝑑𝑒𝑎𝑙 , (2)

where𝑀 is defined as the noise matrix with the size of 2𝑁𝑞 ×
2𝑁𝑞 . Theoretically, the noise matrix can be characterized
by running benchmarking circuits with every basis state as
input. As shown in the step 1 of Figure 1, 2𝑁𝑞 benchmarking
circuits are executed, preparing all possible basis states (no
superposition). Similar to prior works [9, 21, 45, 50], here
we assume that the initial state is the ideal state, as it is
prepared by high-fidelity single-qubit gates. The noise matrix
is filled according to the output probability distribution after
execution:

𝑀 [𝑥] [𝑦] = 𝑃 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑥 | 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 = 𝑦). (3)

For example, in Figure 1, 4 (22) circuits are executed for a
2-qubit system. The element in (3,0) is 0.02, which means
that when the ideal state is |00⟩, the probability of observing
|11⟩ is 0.02.

𝑀 [3] [0] = 𝑃 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 11 |𝑝𝑟𝑒𝑝𝑎𝑟𝑒 = 00) = 0.02.

After getting the noise matrix 𝑀 , we can calibrate any
measured probability distribution from this quantum device
using its inverse 𝑀−1, namely calibration matrix. The cal-
ibration is conducted via an MVM operator between the
measured distribution and the calibration matrix:

𝑃𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 = 𝑀−1𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 . (4)

The step 2 in Figure 1 is an example of a 2-qubit calibration.

2.3 Existing Readout Calibration Techniques
Table 1 lists the recent studies for readout calibration. They
propose different formulations to simplify the noise matrix
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characterization, which can be categorized into two types:
qubit-independent method and sparsity-aware method. The
qubit-independent method includes IBU [50] and Yang et
al. [61], which calculates the noise matrix by computing the
tensor product of a series of meta-matrices (2×2 matrix of
single-qubit). M3 [50] and Nation et al. [38] are sparsity-
aware methods that exploit the underlying sparse patterns
of the noise matrix. We provide a comparison with regard to
scalability and accuracy in Table 1. The accuracy is defined
as the Hilbert-Schmidt distance [58] between the real noise
matrix𝑀 and the formulated matrix𝑀 ′:

𝐷𝐻𝑆 (𝑀,𝑀′) = 1 − |𝑇𝑟 (𝑀† 𝑀′) |
𝑑2 , (5)

where 𝑑 is the dimension of the matrices.
In terms of scalability, the qubit-independent methods ex-

hibit a linear number of circuits to characterize the noise
matrix, which only needs to execute 2𝑁𝑞 benchmarking cir-
cuits [50, 61]. However, they have to introduce linear equa-
tion solvers [2, 48] to calculate the inverse matrix (calibration
matrix), which limits the upper bound to 80 qubits when cal-
ibrating without exploiting sparsity. On the other hand, the
sparsity-aware methods prune the matrix under a thresh-
old of Hamming distance [37, 38]. However, they show a
low compression ratio as most small matrix elements are
important for calibration accuracy and cannot be pruned. For
example, M3 [37] fails to handle 45-qubit calibration when
setting the threshold of Hamming distance to 3, as it requires
1.9PB (∼ (1000×∑3

𝑖=0𝐶
𝑖
45)2×8Bit) memory to store the noise

matrix in sparse column format. Moreover, the matrices used
in M3 need to be characterized for each calibration, which
further increases the complexity.

In terms of accuracy, the qubit-independent methods fail
to capture the error caused by qubit interactions, e.g., crosstalk.
More importantly, the inaccuracy accumulateswith the length
of the tensor product increases. For example, the scalability
of IBU [50] is limited by its low accuracy. As it employs qubit-
independent noise matrices, it shows 0.55 Hilbert-Schmidt
distance compared to the real noise matrix with 80 qubits on
[39], leading to no fidelity improvement in the calibration. Be-
sides, IBU and Yang et al. [61] mainly work on GHZ [20] and
BV [7] algorithms because they consist of fewer bit-strings
with non-zero probabilities, which limits the generality. The
sparsity-aware methods show a smaller Hilbert-Schmidt dis-
tance. However, it is still not precise enough for calibration
as many important small matrix elements are pruned. For ex-
ample, it still exhibits around 0.12 Hilbert-Schmidt distance
compared to the 80-qubit real noise matrix.

3 QuFEM Formulation
Motivated by the limitations of prior methods [37, 50, 50, 61],
we propose QuFEM that is inspired by FEM. Figure 2 (a)
shows a typical application of FEM in fluid mechanics that
analyzes the deformation of a sponge under compression.

iter. 1

iter. 2

iter. 3

before pressing

after pressing

formulated

independently qubits in device

Pmeasued

iter .2

iter .1

iter .3

Pcalibrated

···
·

·

·

qubit

group

lattices in sponge
analyzed

independently

lattice

group

···

iter. 1 iter. 2

iter. 3

(a) Modeling the deformation of a sponge under compression by FEM.

(b) Methodology of QuFEM inspired from FEM.

Figure 2. Extending traditional FEM to QuFEM.

The force distribution of the sponge exhibits locality. In this
case, FEM applies a divide-and-conquer strategy. To simplify
the modeling complexity, FEM partitions the sponge into
multiple lattices and analyzes each lattice independently. By
iteratively putting states of lattices all together, the evolution
of the sponge is analyzed.
Inspired by it, QuFEM iteratively calibrates the readout

following the FEM workflow. Figure 2 (b) presents an exam-
ple of it. As the noise between qubits also exhibits locality,
we divide qubits into multiple qubit groups. The noise of
each group is formulated independently. Moreover, QuFEM
adopts the mesh adaption method [5, 19], which employs
different grouping schemes in the iterations to thoroughly
cover the qubit interactions. In Section 3.1, we present the
mathematical equation to calibrate the given measured prob-
ability distribution of each circuit. We then introduce the
characterization flow and the specific calibration flow to ob-
tain calibration data and compute the equation, respectively.

3.1 Calibration Formulation
QuFEM divides the qubits involved in the measured circuit
output into multiple groups. We define the circuit output
𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 as 𝑃1, and the calibration output 𝑃𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 as 𝑃𝐿+1.
QuFEM reformulates the calibration as an iterative process
with a series of sub-noise matrices.

Iter. 1: 𝑃2 = (𝑀1,1 ⊗ 𝑀1,2 ⊗ · · ·𝑀1,𝐾 )−1𝑃1,

Iter. 2: 𝑃3 = (𝑀2,1 ⊗ 𝑀2,2 ⊗ · · ·𝑀2,𝐾 )−1𝑃2,

· · · ,
Iter. 𝐿: 𝑃𝐿+1 = (𝑀𝐿,1 ⊗ 𝑀𝐿,2 ⊗ · · ·𝑀𝐿,𝐾 )−1𝑃𝐿,

(6)
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where 𝑀𝑖, 𝑗 is the sub-noise matrix of the 𝑗 th qubit group
in the 𝑖 th iteration. ⊗ is the tensor-product to composite
these sub-noise matrices. 𝑃2 to 𝑃𝐿 serve as the intermedi-
ate probability distributions that iteratively approximate the
ideal probability distribution. We use 𝑔𝑖, 𝑗 to notate the 𝑗 th
qubit group in the 𝑖 th iteration.𝐺𝑖 = {𝑔𝑖,1, · · · , 𝑔𝑖,𝐾 } denotes
the grouping scheme of 𝑖 th iteration. 𝐿 and 𝐾 represent the
number of the iterations and the number of the groups, re-
spectively.

The 𝑖 th iteration calibrates 𝑃𝑖 to 𝑃𝑖+1. We define that 𝑝𝑖 (𝑥)
is the probability of observing bit-string 𝑥 in distribution 𝑃𝑖 .
We have:

𝑃𝑖 =
∑︁

𝑝𝑖 (𝑥) |𝑥⟩ ,
where each bit-string 𝑥 can be segmented to sub-bit-strings
according to the grouping scheme of the 𝑖 th iteration :

|𝑥⟩ = |𝑥𝑖,1⟩ |𝑥𝑖,2⟩ · · · |𝑥𝑖,𝐾 ⟩ .

𝑥𝑖, 𝑗 is the sub-bit-string of qubit group 𝑔𝑖, 𝑗 . We can rewrite
the calibration in each iteration according to the segment as
follows:

𝑃𝑖+1 = (𝑀𝑖,1 ⊗ · · · ⊗ 𝑀𝑖,𝐾 )−1𝑃𝑖

= (𝑀−1
𝑖,1 ⊗ · · · ⊗ 𝑀−1

𝑖,𝐾 )𝑃𝑖 (7)

= (𝑀−1
𝑖,1 ⊗ · · · ⊗ 𝑀−1

𝑖,𝐾 )
(∑︁

𝑥∈𝑁𝑍𝑖
𝑝𝑖 (𝑥) |𝑥𝑖,1⟩ · · · |𝑥𝑖,𝐾 ⟩

)
=
∑︁

𝑥∈𝑁𝑍𝑖
𝑝𝑖 (𝑥)

(
𝑀−1
𝑖,1 |𝑥𝑖,1⟩ ⊗ · · · ⊗ 𝑀−1

𝑖,𝐾 |𝑥𝑖,𝐾 ⟩
)
,

where 𝑁𝑍𝑖 is the bit-strings with non-zero probabilities of
distribution 𝑃𝑖 . For example, assuming that distribution 𝑃1
has two non-zero probabilities of 𝑝1 (000) and 𝑝1 (011) and
the qubits groups include 𝑔1,1 = {𝑞1, 𝑞2}, 𝑔1,2 = {𝑞3}, Equa-
tion (7) is written as:

𝑃2 = (𝑀1,1 ⊗ 𝑀1,2)−1𝑃1

= 𝑝1 (000) (𝑀−1
1,1 |00⟩ ⊗ 𝑀−1

1,2 |0⟩)
+ 𝑝1 (011) (𝑀−1

1,1 |01⟩ ⊗ 𝑀−1
1,2 |1⟩),

Equation (7) provides two advantages. First, its time complex-
ity is linear to the size of non-zero probabilities 𝑁𝑍𝑖 , which
is typically below the number of shots in the readout. Second,
the MVM of each group is independently performed with a
constant time as the size of sub-noise matrices is determined.

3.2 QuFEM Overview
QuFEM consists of a characterization flow and a calibration
flow, presented in Algorithm 1 and Algorithm 2, respectively.
The characterization flow aims to generate the necessary pa-
rameters for calibration, i.e., the grouping scheme𝐺𝑖 and the
benchmarking probability distributions 𝐵𝑃𝑖 in each iteration
for sub-noise matrix generation. In line 1, the characteri-
zation flow executes a set of benchmarking circuits. The
outputs of these circuits serve as the benchmarking prob-
ability distributions 𝐵𝑃1 that are used to analyze the noisy
perturbation. In lines 2-13, the algorithm then iteratively

Algorithm 1 Characterization flow
Input: quantum device
Output: calibration parameters 𝐶𝑃 = [𝐺1, · · · ,𝐺𝐿],

[𝐵𝑃1, · · · , 𝐵𝑃𝐿]
1: obtain initial benchmarking probability distributions
𝐵𝑃1 by executing benchmarking circuits on the device

2: for 𝑖 = 1 to L do
3: obtain grouping scheme𝐺𝑖 by partitioning a weighted

qubit graph based on 𝐵𝑃𝑖
4: record 𝐺𝑖 and 𝐵𝑃𝑖 in 𝐶𝑃
5: for 𝑃 in 𝐵𝑃𝑖 do
6: {𝑄𝑀 } = measured qubits of 𝑃
7: obtain noise matrix according to {𝑄𝑀 },𝐺𝑖 and 𝐵𝑃𝑖
8: update 𝑃 based on Equation (7)
9: put 𝑃 into 𝐵𝑃𝑖+1
10: end for
11: end for

Algorithm 2 Calibration flow
Input: measured probability distribution 𝑃1, calibration pa-

rameters 𝐶𝑃 = [𝐺1, · · · ,𝐺𝐿], [𝐵𝑃1, · · · , 𝐵𝑃𝐿]
Output: calibrated probability distribution 𝑃𝐿+1
1: 𝑄𝑀 = measured qubits of 𝑃
2: for 𝑖 = 1 to L do
3: obtain noise matrix based on 𝑄𝑀 , 𝐺𝑖 and 𝐵𝑃𝑖
4: calculate 𝑃𝑖+1 based on Equation 7
5: end for

constructs the grouping scheme and the benchmarking prob-
ability distributions 𝐵𝑃𝑖 for each iteration. Specifically, for
𝑖 th iteration, in line 1, it constructs a weighted graph and par-
titions qubits based on 𝐵𝑃𝑖 , generating a grouping scheme𝐺𝑖 .
𝐺𝑖 and 𝐵𝑃𝑖 will be used in the 𝑖 th iteration in the calibration
flow. In lines 6-12, for each probability in 𝐵𝑃𝑖 , the algorithm
collects the measured qubits and updates the probability
distribution using Equation (7).

Algorithm 2 presents the calibration flow, taking the static
output from the characterization flow. In line 1, it obtains
measured qubits. Starting from 𝑃1, in lines 2-5, it follows
Equation (6) to iteratively calibrate 𝑃𝑖 to 𝑃𝑖+1. In line 2, the
calibration obtains the sub-noise matrices based on 𝑄𝑀 and
calibration parameters, i.e.,𝐺𝑖 and 𝐵𝑃𝑖 . Line 3 calculates 𝑃𝑖+1
based on Equation 7.
For a target quantum device, the calibration parameters

are static. Besides, we highlight two features of QuFEM: 1)
the benchmarking probability distributions 𝐵𝑃1 are probabil-
ity distributions obtained by running benchmarking circuits,
while the rest distributions 𝐵𝑃𝑖 in each iteration are updated
using Equation (7); 2) the sub-noise matrices are dynamically
generated in both characterization flow and calibration flow,
according to the measured qubits of the readout to maximize
the fidelity, which is motivated by the fact that interactions

952



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tan et al.

calculate sub-noise matrices based

on                 and measured qubits

calculate sub-noise matrices based 
on                 and 

calculate sub-noise matrices based 
on                 and 

characterization flow
benchmarking circuits

execute

=

=

calculate weighted graph and 

partition qubits

=

calculate weighted graph and 

partition qubits 

=

=

calibrate with Equation (7)

for each       in 

outputstatic

calibration flow
quantum program

execute

=

calibrate with Equation (7)

=

=

=

iter = 1

iter = 2
iter = 2

iter = 1

calibrate with Equation (7)

=

=

Figure 3. Example of QuFEM with 2 iterations.

always change under different combinations of measured
qubits.
Figure 3 presents a 2-iteration example. In the character-

ization flow, the first iteration obtains a grouping scheme
𝐺1 based on benchmarking probability distribution 𝐵𝑃1. 𝐵𝑃1
and 𝐺1 are stored for the calibration flow. Then, each prob-
ability distribution of 𝐵𝑃1 is updated to construct 𝐵𝑃2. The
second iteration outputs the partition scheme𝐺2 of qubits,
derived from 𝐵𝑃2. The characterization flow finally outputs
𝐶𝑃 = [𝐺1,𝐺2], [𝐵𝑃1, 𝐵𝑃2], which serves as calibration param-
eters. In the calibration flow, given any measured probability
distribution 𝑃1 with the measured qubits 𝑄𝑀 , the first iter-
ation obtains the sub-noise matrices based on 𝑄𝑀 , 𝐺1, 𝐵𝑃1,
and updates 𝑃1 to 𝑃2 using Equation (7). The second itera-
tion follows the same steps that generate sub-noise matrices
based on 𝑄𝑀 , 𝐺2, 𝐵𝑃3, and calibrate 𝑃2 to 𝑃3. 𝑃3 is the resul-
tant probability for this two-iteration calibration.

3.3 Characterization Flow
The characterization flow involves two key techniques. The
first technique constructs the weighted graph to quantify
qubit interactions and partition qubits, generating the group-
ing scheme in each iteration. The second technique calculates
the sub-noise matrices for calibration.

Weighted graph construction and qubit partition.We
apply different grouping schemes in the calibration formula-
tion to cover local interactions between qubits. The schemes

er
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r o
f q

1 (
%

)

state of q1

0 1
state of q2

0 1
state of q3
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state of q4
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the error also depends on 
the readout of q5.

the error of q1 depends 
on its own operation.

Figure 4. Example of state-dependent and readout-
dependent noises on the IBMQ Perth quantum device.

aim to maximize the locality in groups. To this end, we quan-
tify the interactions between qubits by a weighted graph.
The quantification is based on the benchmarking probability
distributions, initially obtained by executing benchmarking
circuits with the methods that will be introduced in Sec-
tion 4.1. Each qubit is prepared into a state, while sub-sets
of them are measured in the circuits. For each shot of the
circuit execution, the operation and the readout output of a
qubit are recorded as a triple:
• ideal ∈ {0, 1,∅}. This value records the ideal (initial)
basis state that the qubit is prepared in the circuit.

• measured ∈ {0, 1,∅}. This value records the measured
output of the qubit in this shot.

• ef ∈ {0, 1}. This is the abbreviation of the error flag,
where 0 means the measured output matches the ideal
result, and 1 means the error occurs.

∅means the qubit is not measured and has no output. In this
case, it cannot have readout error (𝑖𝑑𝑒𝑎𝑙 = ∅, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =

∅, 𝑒 𝑓 = 0). For example, a benchmarking circuit prepares
qubit 𝑞2 into |1⟩, respectively. When the 𝑞1 is not measured
and the output of 𝑞2 is |0⟩, the assignments of the triples are:

(𝑞1 .𝑖𝑑𝑒𝑎𝑙 = ∅, 𝑞1 .𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = ∅, 𝑞1 .𝑒 𝑓 = 0),
(𝑞2 .𝑖𝑑𝑒𝑎𝑙 = 1, 𝑞2 .𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 0, 𝑞2 .𝑒 𝑓 = 1) .

According to the recorded triples, we observe the read-
out error is state-independent, which means that the error
varies when the qubit stays in different states. Besides, the
interactions from one qubit to another vary under differ-
ent operations, i.e., state preparation and readout, leading
to different readout errors. For example, Figure 4 presents
the readout error of qubit 𝑞1 under the prepared states and
readout operation of different qubits on the IBMQ Perth
quantum device. The readout error of qubit 𝑞1 increases by
0.12% when it is in |1⟩ compared to when it is in |0⟩. The
error of qubit 𝑞1 also decreases by around 0.11% when qubit
𝑞5 is not measured. This observation matches the mathemat-
ical equation of the readout in Equation 1, where the noisy
readout is described as an equation involving both the states
and the readout frequency of other qubits.
We quantify the interaction from an operation of a qubit

to an operation of another qubit based on this observation.
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Figure 5. Example of a grouping scheme on our 18-qubit
custom quantum device.

An interaction 𝑞𝑖 .𝑖𝑑𝑒𝑎𝑙 = 𝑥 → 𝑞 𝑗 .𝑖𝑑𝑒𝑎𝑙 = 𝑦 is defined as:
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑞𝑖 .𝑖𝑑𝑒𝑎𝑙 = 𝑥 → 𝑞 𝑗 .𝑖𝑑𝑒𝑎𝑙 = 𝑦) =��𝑝 (𝑞 𝑗 .𝑒 𝑓 = 1 | 𝐶1,𝐶2) − 𝑝 (𝑞 𝑗 .𝑒 𝑓 = 1 | 𝐶2)

��
𝐶1 : 𝑞𝑖 .𝑖𝑑𝑒𝑎𝑙 = 𝑥, 𝐶2 : 𝑞 𝑗 .𝑖𝑑𝑒𝑎𝑙 = 𝑦,

(8)

where 𝑥 ∈ {0, 1,∅}, 𝑦 ∈ {0, 1}. Equation (8) characterizes
the correlation between the 𝑞𝑖 .𝑖𝑑𝑒𝑎𝑙 = 𝑥 and the readout
error of 𝑞 𝑗 . For example, the interaction

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑞1 .𝑖𝑑𝑒𝑎𝑙 = 0 → 𝑞2 .𝑖𝑑𝑒𝑎𝑙 = 1) =
���2.27% − 2.08%

��� = 0.19%

means that qubit 𝑞1 increases the readout error of qubit 𝑞2 by
0.19% (from 2.08% to 2.27%), indicating a potential interaction
when qubits 𝑞1 and 𝑞2 are both prepared into state |1⟩. In
this manner, we define the weight between two qubits by
collecting all cases of interactions.

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑞𝑖 , 𝑞 𝑗 ) =
∑︁

𝑥∈{0,1,∅},𝑦∈{0,1}
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑞𝑖 .𝑖𝑑𝑒𝑎𝑙 = 𝑥 → 𝑞 𝑗 .𝑖𝑑𝑒𝑎𝑙 = 𝑦)

+
∑︁

𝑥∈{0,1,∅},𝑦∈{0,1}
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑞 𝑗 .𝑖𝑑𝑒𝑎𝑙 = 𝑥 → 𝑞𝑖 .𝑖𝑑𝑒𝑎𝑙 = 𝑦)

(9)

We then construct a qubit graph. The edge of the graph is
labeled by the weight in Equation (9). We leverage the MAX-
CUT solver to partition qubits in the graph into groups [18].
The partition aims to maximize the locality in the group, i.e.,
the summation of the weights in the group. Such a group-
ing scheme ensures that, in each iteration, the formulated
sub-noise matrices try to comprehensively capture the in-
teractions between qubits, rendering them closer to the real
noise matrix.
Figure 5 presents an example of the grouping scheme on

the topology of our 18-qubit custom superconducting de-
vice [62]. Three cases are observed to make qubits in the
same group: qubits that share the same readout resonator
(e.g., qubits 𝑞14 − 𝑞17); qubits that show similar readout fre-
quencies (e.g., qubits 𝑞4 and 𝑞9); qubits that have overlapping
in the shift region of frequencies (e.g., qubits𝑞1 and𝑞8). These
observations are also demonstrated in the results from other
quantum devices and can be used as prior knowledge to
facilitate the partition.

Dynamic noisematrix generation.The grouping schemes
in different iterations aim to capture different noises. To
achieve this, after qubit partition in each iteration, we apply
calibration to the benchmarking probability distributions.

This eliminates the captured noises in the grouping scheme,
so the grouping scheme of the following iterations will focus
on the remaining noises.

This calibration is based on group scheme 𝐺𝑖 = {𝑔𝑖,1, · · · ,
𝑔𝑖,𝐾 }. As interactions vary in the circuits with different mea-
sured qubits, we dynamically generate sub-noise matrices
for each probability distribution. We define the set of qubits
that is measured as 𝑄𝑀 . Then, for each group 𝑔𝑖, 𝑗 , we define:

𝑔∩ = 𝑄𝑀 ∩ 𝑔𝑖, 𝑗 , 𝑔∅ = 𝑔𝑖, 𝑗 − 𝑔∩ (10)

where 𝑔∩ represents the overlapped qubits of 𝑔𝑖, 𝑗 and𝑄𝑀 . 𝑔∅
consists of the rest of the qubits of the group. Similar to Equa-
tion (3), the sub-noise matrix formulates the perturbation
caused by noise. Its element is defined as:
𝑀𝑖, 𝑗 [𝑥] [𝑦] = 𝑃 (𝑔∩ .𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑥 | 𝑔∩ .𝑖𝑑𝑒𝑎𝑙 = 𝑦, 𝑔∅ .𝑖𝑑𝑒𝑎𝑙 = ∅) .

The conditional probability is estimated based on the bench-
marking probability distribution 𝐵𝑃𝑖 of this iteration. Here,
we additionally introduce condition 𝑔∅.𝑖𝑑𝑒𝑎𝑙 = ∅ to ensure
that the matrix generation considers the unmeasured qubits.
Moreover, as the measured outputs of qubits only depend on
the operations of qubits, we can formulate the equation into:

𝑀𝑖, 𝑗 [𝑥] [𝑦] =
∏
𝑞∈𝑔∩

𝑃 (𝑞.𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑥𝑞 | 𝑔∩ .𝑖𝑑𝑒𝑎𝑙 = 𝑦,

𝑔∅ .𝑖𝑑𝑒𝑎𝑙 = ∅),
(11)

where 𝑥𝑞 is the bit of qubit 𝑞 in bit-string 𝑥 .
For example, assuming qubit group 𝑔1,1 = {𝑞1, 𝑞2, 𝑞3}, and

measured qubit set 𝑄𝑚 = {𝑞1, 𝑞3, 𝑞4}, we can obtain that
𝑔∩ = {𝑞1, 𝑞3}, and 𝑔∅ = {𝑞2}. The corresponding matrix
element in (3, 0) is
𝑀1,1 [3] [0] = 𝑃 (𝑞1 .𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 1 | 𝑔∩ .𝑖𝑑𝑒𝑎𝑙 = 00, 𝑔∅ .𝑖𝑑𝑒𝑎𝑙 = ∅)

·𝑃 (𝑞3 .𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 1 | 𝑔∩ .𝑖𝑑𝑒𝑎𝑙 = 00, 𝑔∅ .𝑖𝑑𝑒𝑎𝑙 = ∅) .

3.4 Calibration Flow
The calibration flow follows the two-step iteration to cali-
brate the target probability distribution. In each iteration,
it first calculates the sub-noise matrices based on Equation
(10) and Equation (11). The grouping scheme 𝑔𝑖, 𝑗 of Equation
(10) comes from the characterization flow. The conditional
probabilities of Equation (11) are computed based on the
benchmarking probability distributions 𝐵𝑃𝑖 from the char-
acterization flow. Second, the calibration flow applies MVM
following Equation (7). If there are remaining iterations, it
goes to the next iteration with the MVM result.

The static grouping schemes and calibration datasets are
based on the fact that the qubit interactions are constant.
This consistency holds in current quantum hardware since
current quantum operations (including readout) rely on the
ability of the hardware to implement stable (constant) sys-
tem Hamiltonian. Physically, the interactions are determined
after the deployment and do not change unless the readout
frequencies of qubits change. For example, the constant in-
teraction of trapped-ion hardware is demonstrated in [42].
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Figure 7. Example of benchmarking circuit generation.

Grouping aims to capture such inherent interactions. Overall,
the noise matrix describes the perturbation from the ideal
probability distribution to the noisy distribution according to
Equation (3). We can follow FEM to model this perturbation
inside the qubit groups by small sub-noise matrices. We then
adopt different grouping schemes to capture the interactions
across the groups.

4 QuFEM Implementation
4.1 Benchmarking Circuit Generation
QuFEM employs more flexible benchmarking circuits to char-
acterize the readout noise accurately. The circuit involves all
qubits of the device, where each qubit is operated with three
possible options:
1) the qubit is set to |0⟩ and measured;
2) the qubit is set to |1⟩ and measured;
3) the qubit is set to a random state (|0⟩ or |1⟩) and not

measured.
Compared to prior works [9, 37, 50] that only have options 1)
and 2), QuFEM includes option 3) to characterize the readout-
dependent interactions.

To reduce the number of benchmarking circuits and main-
tain high accuracy, we identify the circuits that enable the
high qubit interactions and profile their execution results,
while the circuits with low interactions mainly involve qubit-
independent errors so that their outputs can be easily mod-
eled without program executions. Clearly, we start by ran-
domly generating a number of circuits (4 times the number
of qubits) to obtain an initial value of interactions between
every two qubits. After that, we maintain a table to record

the updated interaction values and the numbers of circuits
involved in these interactions. For example, in Figure (7),
there are 70 benchmarking circuits that apply options 1) and
3) to qubits 𝑞1 and 𝑞2, respectively (involving interaction
𝑞1 .𝑖𝑑𝑒𝑎𝑙 = 0 → 𝑞2.𝑖𝑑𝑒𝑎𝑙 = ∅). We record 𝑛𝑢𝑚 = 70 and
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 = 0.22, where 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 is estimated based on these
70 circuits and Equation (8)). Next, we define a metric 𝜃 to
distinguish the critical interaction.

𝜃 =
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑞𝑖 .𝑖𝑑𝑒𝑎𝑙 = 𝑥 → 𝑞 𝑗 .𝑖𝑑𝑒𝑎𝑙 = 𝑦)
𝑛𝑢𝑚(𝑞𝑖 .𝑖𝑑𝑒𝑎𝑙 = 𝑥 → 𝑞 𝑗 .𝑖𝑑𝑒𝑎𝑙 = 𝑦)

(12)

Essentially, the interaction is static and only depends on
the physical device. We can estimate it more precisely by
executing more benchmarking circuits. In other words, 𝜃 nat-
urally decreases with the number of benchmarking circuits.
Based on this foundation, we set a threshold 𝛼 to specify the
desired accuracy. For the interaction with 𝜃 > 𝛼 , we itera-
tively execute circuits involving it and update the table. For
example, as shown in Figure 7, there is an interaction that
exceeds the threshold. Thus, we prepare a number of circuits
with 𝑞1.𝑖𝑑𝑒𝑎𝑙 = 0, 𝑞2.𝑖𝑑𝑒𝑎𝑙 = ∅ and collect their outputs.
In this manner, we keep executing circuits until 𝜃s of all
interactions are less than threshold 𝛼 . Overall, Equation (12)
ensures that to exceed the threshold, significant interactions
require more benchmarking circuit executions, while for
interactions that are close to 0, the circuit executions are
unnecessary as the output distribution of each qubit is the
same as the single-qubit benchmarking circuit.

4.2 Sparse Tensor-Product Engine
The iterative calibration based on Equation (7) involves mul-
tiple tensor-products of MVM results that have exponential
complexity. However, we observe that the non-zero elements
of the sub-noise matrix mainly distribute near the diagonal.
Such sparsity will accumulate to a higher degree during
the tensor-products. We, therefore, propose a sparse tensor-
product engine to accelerate the computation. The engine
first calculates every MVM of 𝑀−1

𝑖, 𝑗 |𝑥𝑖, 𝑗 ⟩. When applying
tensor-products to these MVM results, the engine prunes
intermediate values based on a threshold 𝛽 . Figure 6 presents
an example. ① For the non-zero probability (0.47) under state
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Figure 8. Number of intermediate values exceeding the
threshold.

000, the engine calculates the MVM of𝑀−1
1,1 |00⟩ and𝑀−1

1,2 |0⟩;
② It then calculates the tensor product of the MVM results;
③ The intermediate values from tensor-product are pruned
through a threshold 𝛽 . Similarly, the engine executes ①②③
for the non-zero probability (0.53) under state 011 and ag-
gregates the pruned intermediate values.

Instead of directly pruning on the noisematrix, the QuFEM
engine chooses to prune the intermediate values so that we
can achieve higher characterization accuracy. Moreover, the
number of pruned intermediate values grows along the chain
of multiple tensor-products, which actually brings a huge
reduction in computational complexity. To demonstrate this,
Figure 8 provides the number of elements exceeding dif-
ferent thresholds along the chain of multiple tensor prod-
ucts, using the real data from benchmarking circuits. We
observe that the complexity of our technique lies within
a polynomial complexity O(𝑁 3

𝑞 ) when the number of ten-
sor products is less than 200. The setting of the threshold
is mainly determined by the probability of one bit-flip er-
ror in the readout, which usually ranges from 1.0% to 10.0%
[14, 43, 52]. Since most previous works model less than 2
bit-flips (1.0%2 = 10−4), a threshold of 10−5 is enough to
achieve a higher accuracy.

5 QuFEM Complexity
Three parameters of the quantum device determine the com-
plexity of QuFEM: the number of qubits 𝑁𝑞 , the readout
error rate (quantified via the average interaction ¯𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 ),
and the number of iterations 𝐿. Empirically, we find that
setting the maximum number of qubits in the qubit groups
to 3 is enough to formulate the noise matrix precisely. Thus,
we regard this parameter as a constant value.

The time of the characterization depends on the number
of executed circuits, which is determined by the threshold 𝛼
and the average interaction ¯𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 . There are 6𝑁 2

𝑞 possible
interactions between qubits in total. The worst case is that
the benchmarking circuits for these interactions have no
overlapping. To reach threshold 𝛼 , each interaction requires
O(𝛼/ ¯𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡) benchmarking circuits. Therefore, the upper
bound of the time complexity is O(6𝑁 2

𝑞𝛼/ ¯𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡).
The time and memory consumption of the calibration is

concentrated in the matrix generation and the tensor product
engine. The conditional probability of the matrix generation

Table 2. Specification of 5 quantum devices used in the
evaluation.

7 qubits

36 qubits

18 qubits

79 qubits 136 qubits

>98%

96-98%

readout

fidelity

94-96%

<94%

not used

Platform #Qubits 1-q fidelity 2-q fidelity Instructions

136 94.6 ± 3.1% 94.6 ± 3.0% 𝐼𝐷, 𝑅𝑋, 𝑅𝑌, 𝑅𝑍, 𝐻,𝐶𝑋
Quafu [39]

18 95.9 ± 1.3% 95.9 ± 1.3% 𝐼𝐷, 𝑅𝑋, 𝑅𝑌, 𝑅𝑍, 𝐻,𝐶𝑋

Rigetti [46] 79 99.5 ± 1.1% 90.0 ± 6.4% 𝐶𝑃𝐻𝐴𝑆𝐸,𝑋𝑌

Self-developed 36 99.9 ± 0.1% 98.7 ± 0.8% 𝑈 3,𝐶𝑍
IBMQ [44] 7 99.9 ± 0.1% 99.2 ± 0.1% 𝐶𝑋, 𝐼𝐷, 𝑅𝑍, 𝑆𝑋,𝑋

has been offline calculated. Since the size of the sub-noise
matrix is constant, the matrix generation shows a linear com-
plexity O(𝑁𝑞). In MVM, the size of intermediate values is
cubic to the number of qubits O(𝑁 3

𝑞 ). Overall, for 𝐿 itera-
tions, the time complexity of the calibration isO(𝐿𝑁𝑞 +𝐿𝑁 3

𝑞 ).
The memory is mainly used to store sub-noise matrices and
intermediate values. As the memory of each iteration can be
reused, the overall memory complexity is O(𝑁𝑞 + 𝑁 3

𝑞 ).

6 Evaluation
6.1 Experimental Setup
Platforms.We evaluate QuFEM on 5 quantum computers
(cf. Table 2) with the number of qubits ranging from 7 to 136,
where, in particular, the 36-qubit platform is based on our
self-developed device consisting of 36 Xmon qubits arranged
in a 6×6 grid topology.We execute the benchmarking circuits
on these platforms and then characterize the noise matrix.
All software experiments are performed on a server with
two AMD EPYC 2.25GHz 64-core CPUs and 1.6TB memory.
All programs use a single thread on these CPUs. The mem-
ory usage is profiled by the memory_profiler package [16].
The time- and memory-out are set to 10 hours and 1.0TB,
respectively; we provide rough estimations (marked by ∼)
of the required time, memory, and number of benchmarking
circuits in case of time/memory-out.
QuFEM implementation and configuration. We have
implemented QuFEM with Python (3.9.13) and the NumPy
package (1.23.1). In the default configuration of QuFEM, we
set both the iteration number 𝐿 and the maximum number
of qubits 𝐾 in a group to 2. The thresholds are set as 𝛼 =

2.5×10−5 for matrix chracterizaion and 𝛽 = 10−5 for pruning.
Alternative parameter settings are evaluated in Section 6.4.
Each circuit is sampled 2000 times to obtain the probability
distribution.
Baselines.We compare QuFEM against state-of-the-art read-
out calibration approaches, including IBU [50], M3 [37],
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Table 3. Number of circuits used for readout characteriza-
tion.

#Qubits IBU [50] CTMP [9] M3 [37] Golden
(baseline) QuFEM

7 14 14 128 128 110
18 36 36 8356 ∼ 2.5 × 105 594
27 54 54 73813 ∼ 5.8 × 1010 704
36 ∼ 72 ∼ 72 131064 ∼ 6.8 × 1017 720
49 ∼ 98 ∼ 98 ∼ 2.4 × 105 ∼ 5.8 × 1014 728
79 ∼ 158 ∼ 158 ∼ 6.3 × 105 ∼ 6.0 × 1024 826
136 ∼ 272 ∼ 272 ∼ 1.8 × 106 ∼ 8.7 × 1041 1380
𝑁𝑞 O(2𝑁𝑞) O(2𝑁𝑞) O(𝑁 3.1

𝑞 ) O(2𝑁𝑞 ) O(7.6𝑁𝑞)

CTMP [9], and Q-BEEP [53]. The baseline is defined as the
golden (real) noise matrix derived from Equation (3). For M3
and IBU, we set the threshold of Hamming distances to 3.
We set the iteration number of IBU to 105 and its tolerance
threshold to 10−5, respectively. For Q-BEEP, the number of
iterations1 is set to 20.
Benchmarks.We evaluate QuFEM over 7 well-known quan-
tum algorithms, including GHZ [20], variational quantum
classifier (VQC) [17], Bernstein-Vazirani (BV) [7], Simon’s
[15], quantum support vector machines (QSVM) [51], Hamil-
tonian simulation (HS), and Deutsch-Jozsa (DJ) algorithms.
These algorithms are executed only on the 7-qubit and the
18-qubit platforms, where the aim is to quantify the fidelity
improvement after calibration. The real fidelity is defined
as the Hellinger fidelity [30] capturing its similarity to the
noise-free simulated distribution. Considering that the fi-
delity turns neglectable on circuits with a large number of
qubits, for platforms with more than 18 qubits, we evaluate
the calibration time and memory usage of these methods
through 1000 probability distributions in the shape of Gauss-
ian (30%), uniform (30%), and spike-like (40%) distributions;
each distribution involves 200 bit-strings with non-zero prob-
ability.

6.2 Evaluation of Scalability
Characterization step.Table 3 depicts the number of bench-
marking circuits executed for the readout characterization.
To better present the trend of the computation time as the
number of qubits changes, we apply interpolation to the
results based on the evaluated quantum devices. The charac-
terization of M3 is conducted for each algorithm output, and
therefore we report the average number of benchmarking
circuits for calibrating the algorithm outputs. Compared to
M3 which has the time complexity of O(𝑁 3.1

𝑞 ), QuFEM ex-
hibits a lower (linear) time complexity of O(7.6𝑁𝑞), thereby
yielding, e.g., on the 136-qubit device, a reduction in the
number of circuits from 1.8 × 106 to 1380 (1, 304.3× reduc-
tion). These 1380 circuits can be executed in 13.8 seconds.
Such reduction is attributed to the technique in QuFEM for
eliminating redundant circuit executions. Observe that the

Table 4. Calibration time (in seconds) on the classical com-
puter.

#Qubits IBU [50] CTMP [9] M3 [37] Q-BEEP [53] QuFEM

7 0.37 0.017 0.024 0.029 0.029
18 1.52 30.56 1.78 92280.92 0.70
27 6.45 5231.45 134.14 ∼ 2.6 × 107 1.48
36 101.56 ∼ 1.9 × 106 645.11 ∼ 7.6 × 109 2.20
49 509.47 ∼ 3.7 × 108 ∼ 5.4 × 103 ∼ 2.8 × 1013 5.56
79 1924.27 ∼ 6.5 × 1013 ∼ 1.1 × 106 ∼ 4.8 × 1021 24.58
136 ∼ 4.2 × 105 ∼ 6.0 × 1023 ∼ 2.3 × 1010 ∼ 2.1 × 1037 169.65
𝑁𝑞 O(1.1𝑁𝑞 ) O(1.5𝑁𝑞 ) O(1.2𝑁𝑞 ) O(1.8𝑁𝑞 ) O(𝑁𝑞2)O(𝑁𝑞2)O(𝑁𝑞2)

Table 5.Memory consumption in megabytes.

#Qubits IBU [50] CTMP [9] M3 [37] Q-BEEP [53] QuFEM

7 73.27 0.19 34.10 38.80 5.10
18 78.84 45.56 17953.20 193.61 8.40
27 84.54 271.24 108751.20 ∼ 318.98 16.20
36 98.30 ∼ 2.3 × 103 331243.45 ∼ 444.35 46.90
49 124.56 ∼ 3.8 × 104 ∼ 6.2 × 106 ∼ 625.44 90.41
79 285.74 ∼ 2.6 × 107 ∼ 1.6 × 107 ∼ 1.0 × 103 127.14
136 ∼ 9.7 × 103 ∼ 6.1 × 1012 ∼ 4.7 × 108 ∼ 1.8 × 103 366.42
𝑁𝑞 O(1.1𝑁𝑞 ) O(1.2𝑁𝑞 ) O(1.2𝑁𝑞 ) O(13.9𝑁𝑞) O(𝑁 3

𝑞 )

qubit-independent methods IBU and CTMP require only 272
circuits on the 136-qubit device, but they inherently ignore
the crosstalk and thus lead to potential calibration failures
(see Section 6.3). QuFEM requires around 5× benchmarking
circuits compared to IBU and CTMP. However, it provides
the ability to model the qubit interaction and thereby achieve
higher fidelity.
MVM step. Table 4 depicts the calibration overhead av-
eraged over the 7 algorithms. It is shown that, on all the
evaluated configurations, QuFEM exhibits the highest cali-
bration efficiency; in fact, it features an exponential speedup
in terms of time complexity: For instance, QuFEM calibrates
the 18-qubit algorithm outputs in only 0.70 second, yielding a
speedup of 1.3×105×, 2.5×, 43.7×, and 2.2× against Q-BEEP,
M3, CTMP, and IBU, respectively. Such speedup turns more
significant as the number of qubits increases, e.g., 5.0×1012×
against Q-BEEP on the 49-qubit fabricated distributions. The
efficiency of QuFEM essentially benefits from the use of small
noise matrices and the pruning strategy, whilst M3, IBU, and
CTMP represent the noisy readout process as a single noise
matrix. For Q-BEEP, the exponential complexity stems from
the procedure of iteratively updating a state graph with an
exponentially increasing number of nodes.

Table 5 presents the memory consumption of different ap-
proaches, amongst which QuFEM requires the least amount
of memory without ever reaching the time limit (cf. Q-BEEP,
which requires estimatedly less memory yet times out on
49-, 79-, and 136-qubit devices). For example, the calibration
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Table 6. The calibration time of QuFEM (in seconds) on the
200- to 500-qubit quantum computers.

Distribution 200 qubits 300 qubits 400 qubits 500 qubits

Gaussian 30.79 37.76 41.07 46.67
Spike-like 38.79 42.32 48.40 55.46
Uniform 40.29 51.65 64.16 75.44
Average 36.62 43.91 51.21 59.19

via QuFEM on the 18-qubit circuit output requires 8.4MB of
memory, amounting to 2,137.3×, 9.4×, and 23.0× memory
reduction against M3, IBU, and Q-BEEP, respectively. Simi-
larly, on the 136-qubit circuit output, QuFEM requires 0.4GB
of memory, while M3 and IBU are estimated to use around
470.0TB and 9.7GB, respectively. Notice that, during calibra-
tion, the memory is mainly used to store noise matrices and
probability distributions. To reduce memory usage, QuFEM
employs significantly small matrices and applies pruning to
reduce the size of the probability distributions. As an exam-
ple, for 136-qubit calibration via QuFEM, the total size of the
noise matrices of each iteration is

136︸︷︷︸
#qubits

/ 2︸︷︷︸
#qubits per groups

× 2︸︷︷︸
#iterations

× 4 × 4︸︷︷︸
matrix size

= 2, 176.

In contrast, the size of the M3 noise matrix is 4.7 × 108 on
average since the space of bit strings grows exponentially in
the number of qubits with Hamming distance 3.
MVM for future quantum devices. To further demon-
strate the scalability, we simulate QuFEM calibration on 200-
to 500-qubit fabricated distributions; the corresponding cal-
ibration time is shown in Table 6. Due to limited time and
memory usage, the aforementioned state-of-the-art methods
do not calibrate on future quantum devices. We configure
the levels of readout error and crosstalk to be the same as
on the 136-qubit real-world device. As reported in Table 6,
QuFEM can calibrate the 500-qubit circuit outputs in around
1 minutes. It is also worth noting that, among the three types
of distribution, the uniform distribution requires the most
computational time, e.g., the calibration of the 500-qubit
uniform distribution takes 1.4× and 1.6× longer than the
spike-like and the Gaussian distributions, respectively. This
may stem from the fact that the spike-like and the Gaussian
distributions have more bit-strings with small probabilities,
thus generating more small values that can be pruned during
the computation.

6.3 Evaluation of Accuracy
Fidelity improvement of various algorithms. In Fig-
ure 9 (a), we evaluate the calibration performance of QuFEM
in terms of accuracy against the competitors on a 7-qubit
device. To this end, we define the relative fidelity of a circuit
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(c) Fidelity improvement when calibrating partial 
measurement output on the 79-qubit device.
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Figure 9. Evaluation on the fidelity improvement.
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Overall, QuFEM exhibits an average of 1.004×, 1.1×, 1.1×,
and 1.3× relative fidelity improvement compared to M3, Q-
BEEP, CTMP, and IBU, respectively. This result suggests that
QuFEM can more accurately model the readout evolution.

We carry the comparison further to an 18-qubit device (on
which Q-BEEP times out), as shown in Figure 9 (b). In this
case, QuFEM also demonstrates an average improvement
in relative fidelity of 1.003×, 1.2×, and 1.4× compared to
M3, CTMP, and IBU, respectively. Compared to the 7-qubit
setting, the fidelity turns worse on the 18-qubit device when
we do not calibrate because it has more gates and crosstalk.

Remark that the relative fidelity falling below 1 marks
calibration failure. In Figure 9 (a), Q-BEEP fails the calibra-
tion for VQC and QSVM because it is tailored for specific
algorithms like GHZ and BV that show specific structures
in the measured distributions; IBU fails the calibration for
it does not consider crosstalk noises. The latter turns more
prominent in Figure 9 (b) – especially for the VQC and QSVM
algorithms, which have a large number of 2-qubit gates in-
ducing even higher readout crosstalk noises – where both
IBU and CTMP encounter calibration failures. In contrast,
the relative fidelities of QuFEM on the 18-qubit device are
stable for VQC and QSVM.
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Figure 10. Evaluation in 10-qubit to 131-qubit GHZ outputs.

Fidelity improvement on the partial measurement out-
put. QuFEM has the ability to generate noise matrices for
different combinations of qubits, considering the variance of
crosstalk. We compare QuFEM to the golden-matrix-based
calibration and IBU on the 79-qubit device of Rigetti. To bet-
ter demonstrate the variance of readout crosstalk, we choose
the algorithms that involve higher crosstalk noise, includ-
ing BV, GHZ, and DJ algorithms. 10 circuits are executed
for each algorithm. These circuits measure 10 logical qubits.
The mapping from logical qubits to physical qubits is de-
termined through a random selection. As a result, QuFEM
shows an average 1.4× fidelity improvement in different lev-
els of crosstalk noise, as shown in Figure 9 (c). This suggests
that QuFEM has stable fidelity improvement in different
combinations of qubits. In addition, QuFEM (1.43) also has
an average 0.03 relative fidelity improvement compared to
IBU (1.40). In these algorithms, we even observe that the
calibration performance of QuFEM exceeds calibration with
the golden noise matrix. This is because QuFEM can bet-
ter characterize the noise matrix with a limited number of
circuit executions, while the conventional method to charac-
terize the golden matrix suffers from the trade-off between
accuracy and efficiency.
Evaluation in 10-qubit to 131-qubit GHZ outputs.We
compare the fidelity of the GHZ outputs calibrated byQuFEM,
M3, and IBU in Figure 10. IBU shows the minimum fidelity
as it ignores the qubit interactions, which shows no fidelity
improvement when the number of qubits reaches 80, while
QuFEM shows the maximum fidelity, achieving 1.6× fidelity
improvement compared to M3 (from 11.70% to 18.86%) and
2.8× improvement compared to IBU (from 6.79% to 18.86%).

6.4 Evaluation of Parameter Setting
Evaluation of the number of qubits in the group and
the number of iterations. Figure 11 (a) evaluates the max-
imum number of qubits in the group and the number of
iterations 𝐿 when calibrating the algorithm outputs on the
18-qubit device. We observe that setting both parameters to 2
is enough for QuFEM to reach themaximum fidelity improve-
ment on the 18-qubit Quafu quantum device, after which
the fidelity improvement converge. This is attributed to our
MAX-CUT-based partition strategy that aims to maximize
the interaction formulated in the qubit groups.

(a) Fidelities under different 
settings on the 18-qubit device.
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Figure 12. Evaluation of different thresholds.

We define the optimal parameters to calibrate a quantum
device as the configuration that uses the minimum calibra-
tion time to achieve the maximum fidelity Improvement.
We present these optimal parameters on different quantum
devices in Figure 11 (b). We observe that the configuration
mainly depends on the average readout error rate of qubits
instead of the number of qubits. For example, the 136-qubit
Quafu quantum device has the most qubits, but it requires
a smaller number of qubits in the groups (3) compared to
the 36-qubit self-developed device (5) as it has a low level of
readout noise. This may result from the fact that the qubit
interactions show locality in the processor topology.
Evaluation of threshold 𝛼 in generating the bench-
marking circuits. Compared to M3, QuFEM requires fewer
benchmarking circuits. Clearly, according to Figure 12 (a),
we observe when increasing the threshold, a smaller number
of benchmarking circuits are needed to fulfill the stopping
conditions, which may lead to less accuracy in the noise
matrix generation. When the characterization threshold in-
creases from 10−7 to 2.5 × 10−5, the relative fidelity remains
virtually unchanged and the number of required circuits is
reduced 4.4× on the 18-qubit device, respectively. There is
also a similar trend on the 7-qubit device. For both devices,
2.5× 10−5 could be a sweet point, after which there is a large
fidelity drop.
Evaluation of threshold 𝛽 in the pruning. Figure 12 (b)
tests different pruning thresholds on the 18-qubit and 36-
qubit devices. Setting the threshold to 10−5 achieves 5.5×
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Figure 13. Ablation study of the techniques used in QuFEM,
(a) and (b) are performed on the 7-qubit device.

speedup on the 18-qubit device, which leads to a 0.001 fi-
delity reduction compared to the calibration with golden
fidelity. We prune these small elements that originate in
noise, leading to non-obvious fidelity reduction. We observe
that speedup is significant on quantum devices with more
qubits. For example, when the pruning threshold is set to
10−5, the speedup on the 36-qubit device is 1.4× than the 18-
qubit device. This is because they have higher proportions
of small elements that can be pruned on a 36-qubit quantum
computer. Compared to the drop in the computation time,
the accuracy does not decrease until the pruning threshold
is set to 10−5, which could be a good choice to balance the
efficiency and the accuracy.

6.5 Ablation Study
Ablation of the generation of the benchmarking cir-
cuits. Figure 13 (a) illustrates the comparison between ran-
domly generating the benchmarking circuits and selecting
them by QuFEM. On the 7-qubit device, when both QuFEM
and the random selection reach themaximumfidelity, QuFEM
shows a 1.7× reduction of data size (713) compared to the
random method (1231), which effectively reduces the overall
search space. The improvement demonstrates that QuFEM
has the ability to identify the benchmarking circuit, captur-
ing a higher degree of qubit interactions.
Ablation of grouping schemes. Figure 13 (b) presents the
comparison between the random grouping scheme and the
QuFEM grouping scheme. The results show that QuFEM has
a 0.05 fidelity improvement (1.36) compared to the random
partition strategy (1.31) when the number of iterations is
1. This can be attributed to effectively identifying the great
crosstalk in each qubit group. Moreover, QuFEM only uses
2 iterations to reach a close-to-optimal improvement, while
the random strategy takes more than 5 iterations.
Ablation of pruning. Figure 13 (c) evaluates the accel-
eration of our sparse tensor-product engine compared to
M3 [37]. On the 18-qubit device, benefiting from the finite
element method, QuFEM provides a 3.9× speedup compared
to M3. By pruning the small intermediate values below the
threshold, QuFEM provides an additional 5.5× speedup. In

addition, the pruning results in better speedups on the 36-
qubit device, reaching 293.3× overall speedup.

7 Related Work
Matrix-based readout calibration. Current matrix-based
techniques mainly focus on improving the scalability [9, 37,
50] and accuracy [8, 36, 50]. To improve the scalability, meth-
ods like M3 [37] and Yang. etc. [61] exploit the sparsity of
the assignment matrix, while they show limitation as few
matrix elements can be pruned. Other methods model only
qubit-independent error [9, 50], leading to a large accuracy
loss. Bayesian unfolding [8, 36, 50] aims to improve the lim-
ited calibration accuracy due to using single circuit output
to fill in the matrix elements. QuFEM employs conditional
probabilities to estimate fewer benchmarking circuit outputs
while providing higher accuracy compared to these methods.
Other readout error optimization techniques. Readout
error has been observed to be a dominant source of error
that requires careful calibration [40]. The optimization of it
can be conducted by exploiting the patterns of the circuit
outputs [22, 53, 55], partial measurement [14], and neural
network [29, 33] Recently, many meaningful works have
been proposed to characterize the noisy process [9, 22, 26, 57].
For example, the relaxation error can be detected by tracing
the evolution during themeasurement is observed to increase
the readout fidelity [33]. Besides, [26] models the error in BV
and quantum amplitude estimation algorithms and calibrates
outputs by numerical simulation. QuFEM can be applied
before these techniques to provide further readout error
optimization.

8 Conclusion
Quantum readout error emerges as the predominant source
of errors, which greatly reduces the measurement fidelity.
The efficacy of matrix-based calibration has been substanti-
ated across diverse quantum platforms. Nonetheless, prevail-
ing methodologies suffer from limitations either in terms of
scalability or precision. Drawing inspiration from FEM, we
propose QuFEM to calibrate the measurement error. First,
we formulate the calibration as a series of tensor-product op-
erations involving sub-noise matrices, where the matrix is it-
eratively updated with the probability distribution. Then, we
introduce how to generate the benchmarking circuits with
low time complexity for characterization. Finally, a sparse
tensor-product engine exploits the inherent sparsity during
the tensor-product to provide an end-to-end acceleration for
calibration.
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