
Parf: Adaptive Parameter Refining for Abstract Interpretation
Zhongyi Wang∗
Zhejiang University
Hangzhou, China

wzygomboc@zju.edu.cn

Linyu Yang∗
Zhejiang University
Hangzhou, China

linyu.yang@zju.edu.cn

Mingshuai Chen†
Zhejiang University
Hangzhou, China
m.chen@zju.edu.cn

Yixuan Bu
Zhejiang University
Hangzhou, China

yixuanbu@zju.edu.cn

Zhiyang Li
Zhejiang University
Hangzhou, China

misakalzy@zju.edu.cn

Qiuye Wang
Fermat Labs, Huawei Inc.

Dongguan, China
wangqiuye2@huawei.com

Shengchao Qin
Xidian University

Xi’an, China
shengchao.qin@gmail.com

Xiao Yi
Fermat Labs, Huawei Inc.

Hong Kong, China
yi.xiao1@huawei.com

Jianwei Yin
Zhejiang University
Hangzhou, China
zjuyjw@zju.edu.cn

ABSTRACT

Abstract interpretation is a key formal method for the static analysis
of programs. The core challenge in applying abstract interpretation
lies in the configuration of abstraction and analysis strategies en-
coded by a large number of external parameters of static analysis
tools. To attain low false-positive rates (i.e., accuracy) while pre-
serving analysis efficiency, tuning the parameters heavily relies on
expert knowledge and is thus difficult to automate. In this paper,
we present a fully automated framework called Parf to adaptively
tune the external parameters of abstract interpretation-based static
analyzers. Parf models various types of parameters as random
variables subject to probability distributions over latticed param-
eter spaces. It incrementally refines the probability distributions
based on accumulated intermediate results generated by repeatedly
sampling and analyzing, thereby ultimately yielding a set of highly
accurate parameter settings within a given time budget. We have
implemented Parf on top of Frama-C/Eva – an off-the-shelf open-
source static analyzer for C programs – and compared it against
the expert refinement strategy and Frama-C/Eva’s official configu-
rations over the Frama-C OSCS benchmark. Experimental results
indicate that Parf achieves the lowest number of false positives on
34/37 (91.9%) program repositories with exclusively best results on
12/37 (32.4%) cases. In particular, Parf exhibits promising perfor-
mance for analyzing complex, large-scale real-world programs.

CCS CONCEPTS

• Software and its engineering→ Automated static analysis.

∗Both authors contributed equally to this research.
†Corresponding author.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695487

KEYWORDS

Automatic parameter tuning, Static analysis, Program verification

ACM Reference Format:

Zhongyi Wang, Linyu Yang, Mingshuai Chen, Yixuan Bu, Zhiyang Li, Qi-
uye Wang, Shengchao Qin, Xiao Yi, and Jianwei Yin. 2024. Parf: Adaptive
Parameter Refining for Abstract Interpretation. In 39th IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE ’24), October

27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3691620.3695487

1 INTRODUCTION

The theory of abstract interpretation – ever since its inception in the
1970s by Cousot and Cousot [12] – has witnessed significant appli-
cations in the field of static program analysis, which aims to identify
potential runtime errors (RTEs) without executing the program.
Due to its core mechanism of safely approximating the concrete
program semantics, abstract interpretation-based static analysis fea-
tures soundness, i.e., true alarms of RTEs will not be missed, yet not
completeness, i.e., false alarms may be emitted. These false alarms
do not induce RTEs and thus may be eliminated by conducting
more accurate approximations at the cost of less efficient analysis.
State-of-the-art static analysis tools, such as Astrée [18], Frama-
C [20], Goblint [29], Mopsa [16], and Sparrow [26], integrate
multiple abstraction and analysis strategies encoded by various
external parameters, thereby enabling users to balance analysis
accuracy and efficiency by tuning these parameters.

Albeit with the extensive theoretical study of abstract interpreta-
tion, the picture is much less clear on its parameterization front: It is
challenging to find a set of high-precision parameters to achieve low
false-positive rates within a given time budget. The main reasons
are two-fold: (i) Off-the-shelf static analyzers often provide a wide
range of parameters subject to a huge and possibly infinite joint pa-
rameter space. For instance, the parameter setting in Fig. 1 consists
of 13 external parameters that are highly relevant to the accuracy
and efficiency of Frama-C/Eva; (ii) The process of seeking highly
accurate results typically requires multiple trials of parameter set-
ting and analysis, which generates a large amount of intermediate
information such as RTE alarms and analysis time. Nevertheless,

1082

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://orcid.org/0009-0008-1986-6070
https://orcid.org/0009-0007-3838-0538
https://orcid.org/0000-0001-9663-7441
https://orcid.org/0009-0000-4720-9758
https://orcid.org/0009-0000-5632-9479
https://orcid.org/0000-0001-5138-3273
https://orcid.org/0000-0003-3028-8191
https://orcid.org/0000-0002-4792-4433
https://orcid.org/0000-0003-4703-7348
https://doi.org/10.1145/3691620.3695487
https://doi.org/10.1145/3691620.3695487
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695487&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wang et al.

[eva] Option -eva-precision 3 detected, automatic configuration of the analysis:
option -eva-min-loop-unroll set to 0 (default value).
option -eva-auto-loop-unroll set to 64.
option -eva-widening-delay set to 2.
option -eva-partition-history set to 0 (default value).
option -eva-slevel set to 35.
option -eva-ilevel set to 24.
option -eva-plevel set to 70.
option -eva-subdivide-non-linear set to 60.
option -eva-remove-redundant-alarms set to true (default value).
option -eva-domains set to 'cvalue,equality,gauges,symbolic-locations'.
option -eva-split-return set to '' (default value).
option -eva-equality-through-calls set to 'none'.
option -eva-octagon-through-calls set to false (default value).

Figure 1: A typical parameter setting (under precision 3) of

Frama-C/Eva [9] with different parameter types: integer,

Boolean, string, and set-of-strings.

few static analyzers provide a fully automated approach to guiding
the refinement of abstraction strategies based on such information.
Therefore, the use of abstract interpretation-based static analysis
tools still relies heavily on expert knowledge and experience.

Some advanced static analysis tools attempt to address the above
challenges through various methods. Kästner et al. [18] summarize
the four most important abstraction mechanisms in Astrée and
recommend prioritizing the accuracy of related abstract domains,
which amounts to narrowing down the parameter space, though
Astrée currently does not support automatic parameter generation.
Goblint [28, 30] implements a simple, heuristic autotuning method
based on syntactical criteria, which can automatically activate or
deactivate abstraction techniques before analysis. However, this
method only generates an initial analysis configuration once and
does not dynamically adapt to refine the parameter configuration.
We defer a detailed survey of related work in this thread to Section 7.

This paper presents Parf – a fully automated framework to
adaptively tune the external parameters of static analyzers. Parf
models various types of parameters as random variables subject to
probability distributions over latticed parameter spaces. Within a
given time budget, Parf identifies a set of highly accurate parameter
settings by incrementally refining the distributions based on accu-
mulated intermediate results generated via repeatedly sampling
and analyzing. The core components in Parf are the representation
of probability distributions and the strategy to refine the distributions,
which together guarantee that the refined joint distribution gives a
parameter setting under which Parf either (i) yields more accurate
analysis in expectation (i.e., incrementality), or (ii) in case of analysis
failure, terminates with a higher probability (i.e., adaptivity).

We have implemented Parf on top of Frama-C/Eva and com-
pared it against the expert refinement strategy (by trying out in-
creasingly higher precisions) and Frama-C/Eva’s official configu-
rations over the Frama-C OSCS benchmark. Experimental results
show that Parf achieves the highest accuracy on 34/37 (91.9%) pro-
gram repositories with exclusively best results on 12/37 (32.4%)
cases. In particular, Parf exhibits promising performance for an-
alyzing complex, large-scale real-world programs. Moreover, we
show that Parf can be generalized to improve the performance of
other static analyzers such as Mopsa [16].

Contributions. Our main contributions are as follows:
• We present Parf, a new framework for adaptively tuning
external parameters of abstract interpretation-based static

analyzers. Parf is, to the best of our knowledge, the first fully
automated approach that supports incremental refinement
of such parameters. The technical novelty of Parf lies in
the representation of distributions over a latticed parameter
space and the incremental refinement strategy.
• We implement Parf and demonstrate its effectiveness and
generality on standard benchmarks. We show that Parf out-
performs state-of-the-art parameter-tuning strategies by dis-
covering parameter settings leading to more accurate analy-
sis, particularly for programs of a large scale.

2 BACKGROUND

2.1 Static Analysis via Abstract Interpretation

Static analysis is the process of analyzing a program without exe-
cuting its source code. The goal of static analysis is to identify and
help users eliminate potential runtime errors (RTEs) in the program,
e.g., division by zero, overflow in integer arithmetic, and invalid
memory accesses. Amongst others, abstract interpretation [12] is an
established technique widely used for sound static program analysis:
Instead of reasoning about potentially large sets of program states
and behaviors, it provides a mechanism to soundly approximate
the concrete semantics and thereby reasoning about the program
against abstract properties over a certain abstract domain. The
soundness nature guarantees that an abstract interpretation-based
static analyzer is capable of certifying the absence of RTEs in case
no RTE alarm is emitted. However, an alarm can be false positive
due to the abstraction, which does not actually incur RTEs and thus
may be excluded by conducting more accurate approximations.

Fig. 2 depicts an example of identifying potential runtime errors
in a C program using the abstract interpretation-based static ana-
lyzer Frama-C/Eva. Given a source C program to be analyzed as
in Fig. 2a, Frama-C/Eva emits, under a low-level precision, three
alarms signifying potential runtime errors including signed over-
flow and out-of-bound array index (see Fig. 2b). These alarms are
expressed as assertions written in the ANSI/ISO C specification lan-
guage (ACSL) [9]. Nonetheless, by increasing the analysis precision
to level 3, Frama-C/Eva suffices to rule out the two false-positive
alarms concerning signed overflow (see Fig. 2c). This is because
with -eva-precision 3, Frama-C/Eva unrolls the while loop and
calculate the value of the variable sum under the assertion index <
5, ensuring that no numerical overflow occurs.

To facilitate the effective use of the tool, Frama-C/Eva provides
various built-in precision levels, ranging from -eva-precision 0
to -eva-precision 11, each of which packs a group of fixed pa-
rameter valuations; see Fig. 1 for an example. To balance accuracy
and efficiency, the commonly adopted expert refinement strategy is
to tune the parameters by applying Frama-C/Evawith increasingly
higher precision levels. Such strategy is simple and effective in
many cases, yet often yields suboptimal results due to the lack of
flexibility in tuning individual parameters; see Section 5.

2.2 Parameterization of Static Analysis

Parameterization is a typical design approach to enhancing the
flexibility and applicability of static analysis tools. For instance, the
parameterization of Frama-C/Eva involves correctness parameters

and performance tuning parameters. Misusing the former may lead

1083

Parf: Adaptive Parameter Refining for Abstract Interpretation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

#include <stdio.h>
int main()
{
int array[5] = {1, 2, 3, 4, 5};
int index = 0, sum = 0;

while (index <= 10) {
sum += array[index];
sum *= 2;
index ++;

}

printf("Sum of array: %d", sum);
return 0;

}

(a) source C program to be analyzed

#include <stdio.h>
int main(void)
{
int array[5] = {1, 2, 3, 4, 5}, index = 0, sum = 0;
while (index <= 10) {
//@ assert Eva: index_bound: index < 5;
/*@ assert Eva: signed_overflow:

sum + array[index] <= 2147483647; */
sum += array[index];
//@ assert Eva: signed_overflow: sum * 2 <= 2147483647;
sum *= 2; index ++;

}
printf("Sum of array: %d", sum);
return 0;

}

(b) analysis result with -eva-precision 1

#include <stdio.h>
int main(void)
{
int array[5] = {1, 2, 3, 4, 5};
int index = 0, sum = 0;

while (index <= 10) {
//@ assert Eva: index_bound: index < 5;
sum += array[index];
sum *= 2;
index ++;

}
printf("Sum of array: %d", sum);
return 0;

}

(c) analysis result with -eva-precision 3

Figure 2: Identifying potential runtime errors in a C program via the abstract interpretation-based static analyzer Frama-C/Eva.

to unsound analysis results and therefore end-users can primarily
configure the latter to balance the accuracy and efficiency of abstract
interpretation-based static analysis. Throughout the rest of this
paper, we consider only performance tuning parameters.

Fig. 1 lists a typical parameter setting under -eva-precision 3
in Frama-C/Eva. This setting consists of parameter valuations that
are highly relevant to the accuracy and efficiency of abstract inter-
pretation. For instance, users can set the upper bound on the number
of times that Frama-C/Eva automatically unrolls a loop by config-
uring the value of -eva-auto-loop-unroll, thereby preventing
performance degradation caused by excessive loop unrolling; By
configuring the value of -eva-domains, users can specify a dedi-
cated set of abstract domains used in the analysis. More concretely,
the Frama-C/Eva command

frama-c *.c -eva -eva-auto-loop-unroll 4
-eva-domains cvalues,octagon,gauges

performs abstract interpretation-based static analysis over all C
program files in the current directory with loop unrolling limit 4
and abstract domains cvalues, octagon, and gauges. The latter
two abstract domains are commonly used to infer different forms
of relations between program variables, which both rely on the
cvalues domain. More detailed parameterization of Frama-C/Eva
can be found in the manual [9].

2.3 The Complete Lattice Structure

Complete lattices are an important mathematical tool used in for-
malizing the theory of abstract interpretation, as well as in struc-
turing the parameter spaces in our approach. A complete lattice

(𝐿, ⊑) consists of a (possibly infinite) carrier set 𝐿 and a partial
order ⊑ over 𝐿, where every subset 𝑆 ⊆ 𝐿 has both a greatest lower
bound

.
𝑆 ∈ 𝐿 (also known as the meet of 𝑆) and a least upper

bound

⊔
𝑆 ∈ 𝐿 (also known as the join of 𝑆). For just two elements

{𝑥,𝑦} ⊆ 𝐿, we denote their meet by 𝑥 ⊓ 𝑦 and their join by 𝑥 ⊔ 𝑦.
Moreover, we denote by ⊤ ≜

⊔
𝐿 as the greatest element of the

lattice, and by ⊥ ≜
. ∅ as the least element.

Given two complete lattices (𝐿, ⊑) and (𝐿′, ⊑′), a function 𝑓 : 𝐿 →
𝐿′ is monotonic if and only if it respects the partial orders, i.e., for
any 𝑥,𝑦 ∈ 𝐿, 𝑥 ⊑ 𝑦 implies 𝑓 (𝑥) ⊑′ 𝑓 (𝑦) (monotonically increasing)
or 𝑓 (𝑦) ⊑′ 𝑓 (𝑥) (monotonically decreasing).

3 PROBLEM FORMULATION

This section formalizes our parameter refining problem. To this
end, we first model parameter spaces as complete lattices and then
encode static analyzers as monotonic functions over these lattices.

3.1 Parameter Spaces

Given a finite sequence of parameters 𝑃 = (𝑃1, 𝑃2, . . . , 𝑃𝑛), we asso-
ciate each parameter 𝑃𝑖 with its corresponding parameter space 𝑃𝑆𝑖 ,
which is the (possibly infinite) set of all possible values of parameter
𝑃𝑖 . As shown in Fig. 1, commonly used parameters can be classified
into four types: (non-negative) integer, Boolean, string, and set-of-
strings. For instance, the parameter spaces of the four parameters
-eva-slevel (integer), -eva-octagon-through-calls (Boolean),
-eva-equality-through-calls (string), and -eva-domains (set-
of-strings) in Frama-C/Eva are as follows:

𝑃𝑆slevel = Z∞≥0 ,

𝑃𝑆octagon-through-calls = {false, true} ,

𝑃𝑆equality-through-calls = {‘none’, ‘formals’} ,

𝑃𝑆domains = P{𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} .

Here, Z∞≥0 ≜ N ∪ {∞} is the set of non-negative integers extended
with∞. Note that∞ is not a valid parameter value for the underly-
ing static analyzer; rather, it is a symbolic element used to enforce
a complete lattice structure of the parameter space (see below).
𝑃𝑆domains is the power set of the set of five commonly used abstract
domains, namely,

{cvalues, octagon, equality, gauges, symbolic-locations} .

Latticed Parameter Spaces. We observe that every parameter
space forms a complete lattice (𝑃𝑆𝑖 , ⊑):
• For an integer parameter, the partial order ⊑ coincides with
≤ over Z∞≥0 (where 𝑘 ≤ ∞ for any 𝑘 ∈ Z∞≥0); The operators
⊓ and ⊔ are then equivalent to min and max, respectively.
• For a Boolean parameter, the partial order ⊑ coincides with
implication⇒ over the Boolean domain, e.g., false⇒ true;
The operators ⊓ and ⊔ are then equivalent to logical connec-
tives ∧ and ∨, respectively.

1084

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wang et al.

Analyze

refined distribution RefineSample
parameter
settings results

initial
distribution

source program

final
distribution

final results

PARF

Figure 3: Architecture of the Parf framework. Parf adopts a multi-round iterative mechanism: In each iteration, Parf (i)

repeatedly samples parameter settings based on the initial or refined probability distribution of parameters, then (ii) uses these

parameter settings as inputs to the static analyzer to analyze the program, and finally (iii) utilizes the analysis results to refine
the probability distribution of parameters. Parf continues this process until the prescribed time budget is exhausted, upon

which it returns the analysis results of the final round together with the final probability distribution of parameters.

• Since all string parameters in our setting have only two
possible values, we map string parameters to the Boolean
domain and treat them as Boolean parameters.1
• For a set-of-strings parameter, ⊑ coincides with ⊆; The op-
erators ⊓ and ⊔ are then equivalent to set operations ∩ and
∪, respectively.

Next, we define the joint space of parameter settings as

𝑃𝑆 ≜ 𝑃𝑆1 × 𝑃𝑆2 × · · · × 𝑃𝑆𝑛 .

Notice that 𝑃𝑆 also forms a complete lattice (𝑃𝑆, ⪯), where ⪯ is the
point-wise lifting of ⊑ over individual parameters. Moreover, the
meet ⋏ and join ⋎ operators on (𝑃𝑆, ⪯) are

𝑝 ⋏ 𝑞 ≜ (𝑝1 ⊓ 𝑞1, 𝑝2 ⊓ 𝑞2, . . . , 𝑝𝑛 ⊓ 𝑞𝑛) ,
𝑝 ⋎ 𝑞 ≜ (𝑝1 ⊔ 𝑞1, 𝑝2 ⊔ 𝑞2, . . . , 𝑝𝑛 ⊔ 𝑞𝑛)

for any parameter settings 𝑝, 𝑞 ∈ 𝑃𝑆 with 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛)
and 𝑞 = (𝑞1, 𝑞2, . . . , 𝑞𝑛). For ease of presentation, we abuse the
notations ⊑, and ⊓,⊔ to denote the partial order ⪯ and operators
⋏,⋎, respectively, in the joint space as well.

3.2 The Static Analyzer

Next, we show how a static analyzer can be formulated as a mono-
tonic function over the latticed joint parameter space 𝑃𝑆 . To this
end, we abstract the procedure of executing static analysis on some
program prog with some parameter setting 𝑝 ∈ 𝑃𝑆 as a function
receiving these two parameters and returning a set of (RTE) alarms:

Analyze : Prog × 𝑃𝑆 → P(𝐴uni) , (prog, 𝑝) ↦→ 𝐴𝑝

where Prog denotes the set of all valid source programs, 𝐴uni de-
notes the universe of all possible alarms that can be emitted by the
analyzer (which is determined by running the analyzer with the
1For string-typed parameters with 𝑘 > 2 possible values: If the parameter exhibits a
total order in terms of precision as per Eq. (1), its space can be mapped to {0, 1, . . . , 𝑘 −
1} and thus be treated as an integer-typed parameter. See example in Section 5.4.

least precise parameter setting), and 𝐴𝑝 ⊆ 𝐴uni denotes the set of
all alarms emitted under parameter setting 𝑝 .

Static Analyzer asMonotonic Function. Note that the codomain
of the function Analyze, i.e., P(𝐴uni), is naturally equipped with a
complete lattice structure (P(𝐴uni), ⊆). Our incremental refining
framework requires that the underlying static analyzer exhibits
monotonicity over the parameters, that is, for all source programs
prog ∈ Prog and pairs of parameter settings 𝑝1, 𝑝2 ∈ 𝑃𝑆 ,
𝑝1 ⊑ 𝑝2 implies Analyze(prog, 𝑝2) ⊆ Analyze(prog, 𝑝1) (1)

namely, a greater parameter setting (in the latticed joint parameter
space) induces fewer alarms and thereby more accurate analysis.
Note that monotonicity is a reasonable and commonly adopted
assumption in most state-of-the-art static analyzers [35];2 it is also
the rationale behind the aforementioned expert refinement strategy
where increasing the precision level yields more accurate analysis.

The complete lattice structure of the joint parameter space and
the monotonicity of static analyzers allow us to compare different
parameter settings in terms of accuracy (within a given time budget),
which forms the basis of our parameter refining problem:

Problem Statement. Given a source program prog ∈ Prog,
a time budget 𝑇 ∈ R>0, an abstraction interpretation-based
static analyzer Analyze, and the joint space of parameter set-
tings 𝑃𝑆 of Analyze, find a parameter setting 𝑝 ∈ 𝑃𝑆 such that
Analyze(prog, 𝑝) returns as few alarms as possible within 𝑇 .

We remark that finding the optimum parameter setting – which
amounts to a brute-force search over a possibly infinite joint param-
eter space – is often intractable in practice. We thus aim to develop
a fully automated framework to derive parameter settings that
2Frama-C/Eva exhibits monotonicity on most target programs; a corner case is given
in [9, Section 6.7], where adding a new domain may unpredictably induce new alarms.

1085

Parf: Adaptive Parameter Refining for Abstract Interpretation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

𝑷𝒃𝒂𝒔𝒆𝒊 𝑷𝒅𝒆𝒍𝒕𝒂𝒊 𝑷𝒊⊕ =

Figure 4: Constructing 𝑃𝑖 from 𝑃𝑖base and 𝑃
𝑖
delta via ⊕. The three

columns, from left to right, are 𝑃𝑖base, 𝑃
𝑖
delta, and 𝑃𝑖 , respec-

tively; The four rows, from top to bottom, correspond to an in-

teger parameter, a Boolean parameterwith 𝑃𝑟 [𝑃𝑖base = 0] = 1, a
Boolean parameter with 𝑃𝑟 [𝑃𝑖base = 1] = 1, and a set-of-strings

parameter 𝑃domains
over P{𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5}, respectively.

yield more accurate analysis than those by the expert refinement
strategy. Our framework treats the underlying static analyzer as a
black-box function, and thus can be integrated with any abstraction
interpretation-based static analyzer (see Section 4). For clarity, we
take the open-source C analyzer Frama-C/Eva as an example; its
extension to other static analyzers is investigated in Section 5.

4 THE PARAMETER REFINING FRAMEWORK

This section presents our Parf framework for Adaptive Parameter
ReFining. Fig. 3 illustrates the architecture of Parf: It models ex-
ternal parameters of a static analyzer as random variables subject
to probability distributions over latticed parameter spaces. It incre-
mentally refines the probability distributions based on accumulated
intermediate results generated by repeatedly sampling and analyz-
ing, thereby ultimately yielding a set of highly accurate parameter
settings within a given time budget.

The key components in Parf are the representation of probability

distributions and the strategy to refine the distributions; they two
cooperate to guarantee that the refined joint distribution produces a
parameter setting under which Parf either (i) yields more accurate
analysis in expectation (i.e., incrementality), or (ii) in case of analysis
failure, terminates with a higher probability (i.e., adaptivity).

4.1 Probability Distributions of Parameters

Consider the joint parameter space 𝑃𝑆 spanned by a fixed set of
parameters {𝑃1, 𝑃2, . . . , 𝑃𝑛}. We represent every parameter 𝑃𝑖 as
a random variable with sample space 𝑃𝑆𝑖 . More concretely, 𝑃𝑖 is a
(measurable) function of the form

• 𝑃𝑖 : 𝑃𝑆𝑖 → Z∞≥0 for an integer parameter,
• 𝑃𝑖 : 𝑃𝑆𝑖 → {0, 1} for a Boolean parameter, and

• 𝑃𝑖 : 𝑃𝑆𝑖 → {0, 1}𝑐 , i.e., a 𝑐-dimensional random vector, for
a set-of-strings parameter with cardinality 𝑐 . Here, 𝑐 is the
number of available strings in the set.

For Frama-C/Eva, the only considered set-of-strings parameter is
-eva-domains, which represents the employed abstract domains.

The (ordered) sequence of parameters is then an 𝑛-dimensional
random vector 𝑃 = (𝑃1, 𝑃2, ..., 𝑃𝑛) with sample space 𝑃𝑆 :

𝑃 : 𝑃𝑆 → Z∞≥0 × · · · × Z
∞
≥0︸ ︷︷ ︸

integer parameters

× {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
Boolean parameters

× {0, 1}𝑐

where 𝑐 is the cardinality of the unique set-of-strings parameter
-eva-domains. For cases with 𝑘 > 1 set-of-strings parameters, the
codomain of 𝑃 is naturally extended by ×{0, 1}𝑐1 × · · · × {0, 1}𝑐𝑘−1 .

Refinable Probability Distribution. As shown in Fig. 3, Parf
adopts an iterative Sample-Analyze-Refinemechanism to achieve
a high-precision (joint) probability distribution of parameter set-
tings within a given time budget. Therefore, the underlying proba-
bility distribution needs to feature two abilities: (i) it can effectively
retain the accumulated knowledge during the iterative procedure,
and (ii) it can efficiently explore the uncharted parameter space.

To this end, we represent every random variable 𝑃𝑖 of the 𝑖-th
parameter as a combination of a base random variable and a delta
random variable:

𝑃𝑖 = 𝑃𝑖base︸︷︷︸
for retaining

⊕ 𝑃𝑖delta︸︷︷︸
for exploring

(2)

where 𝑃𝑖base is be dedicated to retaining the accumulated knowledge
whilst 𝑃𝑖delta is used to explore the parameter space; they share the
same sample space and range with 𝑃𝑖 . 𝑃𝑖base follows a one-point
distribution, i.e., 𝑃𝑟 [𝑃𝑖base = 𝑝𝑖] = 1 for some sample 𝑝𝑖 ∈ 𝑃𝑆𝑖 ; The
distribution of 𝑃𝑖delta depends on the parameter type:

• For an integer parameter, 𝑃𝑖delta ∼ Poisson(𝜆) with 𝜆 ∈ R>0.
• For a Boolean parameter, 𝑃𝑖delta ∼ Bernoulli(𝑞); 𝑞 ∈ [0, 1].
• For a set-of-strings parameter with cardinality 𝑐 , 𝑃𝑖delta fol-
lows a 𝑐-dimensional independent joint Bernoulli distribu-
tion: 𝑃𝑖delta ∼ Bernoulli(𝑞1) × · · · × Bernoulli(𝑞𝑐).

We now illustrate by Fig. 4 how to construct 𝑃𝑖 from 𝑃𝑖base and
𝑃𝑖delta via the binary operator ⊕ as in Eq. (2):

• For an integer parameter, ⊕ is equivalent to +: Suppose
𝑃𝑟 [𝑃𝑖base = 𝑝𝑖] = 1 for some non-negative integer 𝑝𝑖 ∈ Z∞≥0,
𝑃𝑖 = 𝑃𝑖base ⊕ 𝑃

𝑖
delta is then a rightward shift of 𝑃𝑖delta by 𝑝

𝑖 .
• For a Boolean parameter, ⊕ simulates logical disjunction∨: If
𝑃𝑟 [𝑃𝑖base = 0] = 1, then 𝑃𝑖 = 𝑃𝑖delta; otherwise if 𝑃𝑟 [𝑃

𝑖
base =

1] = 1, then 𝑃𝑖 = 𝑃𝑖base.
• For a set-of-strings parameter with cardinality 𝑐 , ⊕ is the
point-wise lifting of ∨ to 𝑐-dimensional random vectors; see
Fig. 4 for an example of 𝑃domains.

We can now lift the binary operator ⊕ to random vectors as

𝑃 = 𝑃base ⊕ 𝑃delta ≜
(
𝑃1base ⊕ 𝑃

1
delta, . . . , 𝑃

𝑛
base ⊕ 𝑃

𝑛
delta

)
.

1086

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wang et al.

Algorithm 1 Parf: Adaptive Parameter Refining
Input: The source program 𝑝𝑟𝑜𝑔, initial probability distribution

of parameters 𝑃init, and time budget 𝑇 .
Output: Final probability distribution of parameters 𝑃final.
1: 𝑃base, 𝑃delta ← Extract(𝑃init) ;
2: 𝑡𝑖𝑚𝑒, 𝐴uni ← Analyze(𝑝𝑟𝑜𝑔, 𝑃base) ;
3: 𝑇𝑟 ←Max(𝑡𝑖𝑚𝑒 × 𝛼 , 𝑇 × 𝛽) ;
4: 𝑐𝑜𝑢𝑛𝑡 ← 0 ;
5: repeat
6: 𝑝_𝑙𝑖𝑠𝑡 ← Sample(𝑃base ⊕ 𝑃delta, 𝑛𝑢𝑚sample) ;
7: 𝑅_𝑙𝑖𝑠𝑡 ← MapAnalyze(𝑝𝑟𝑜𝑔, 𝑝_𝑙𝑖𝑠𝑡, 𝑇𝑟) ;
8: 𝑃base, 𝑃delta ← Refine(𝑝_𝑙𝑖𝑠𝑡, 𝑅_𝑙𝑖𝑠𝑡, 𝐴uni, 𝑃base, 𝑃delta) ;
9: 𝑇,𝑇𝑟 , 𝑐𝑜𝑢𝑛𝑡 ← 𝑇 −𝑇𝑟 ,𝑇𝑟 × 2, 𝑐𝑜𝑢𝑛𝑡 + 1 ;
10: until 𝑇 ≤ 0 or 𝑐𝑜𝑢𝑛𝑡 = 𝑛𝑢𝑚refine ;
11: 𝑃final ← 𝑃base ;
12: return 𝑃final ;

Throughout the rest of this section, we will show how to refine
𝑃base and 𝑃delta in a way such that the composed random variable
vector 𝑃 ensures incrementality and adaptivity.

4.2 The Parf Algorithm

Algorithm 1 outlines the workflow of Parf: Lines 1-4 correspond
to the initialization of variables and the basic analysis of the source
program; Lines 5-10 describe the iterative Sample-Analyze-Refine
procedure; Lines 11-12 acquire and return the final distribution.

In Line 1, Parf extracts 𝑃base and 𝑃delta from the initial joint
probability distribution 𝑃init specifying the initial parameter set-
tings. Here, 𝑃base follows a one-point distribution, corresponding to
a unique set of parameters, which is actually the default parameter
setting of Frama-C/Eva. In Line 2, we analyze the program using
the default parameter setting and record the analysis time 𝑡𝑖𝑚𝑒 and
the universe set of alarms 𝐴uni. Note that, due to the monotonic-
ity assumption (see Section 3.2), alarms obtained in subsequent
analyses using refined parameter settings will be subsets of 𝐴uni.
In Line 3, we set the initial time budget 𝑇𝑟 for every round of the
Sample-Analyze-Refine process based on two hyper-parameters
𝛼 and 𝛽 . In Line 4, we initialize a counter 𝑐𝑜𝑢𝑛𝑡 .

Lines 5-10 represent the iterative Sample-Analyze-Refine pro-
cess in Parf. In Line 6, Parf samples 𝑛𝑢𝑚sample (a hyper-parameter)
times based on the distribution determined by 𝑃base ⊕ 𝑃delta and
returns a list 𝑝_𝑙𝑖𝑠𝑡 storing all the parameter settings. In Line 7,
Parf separately analyzes the program with each parameter set-
ting in 𝑝_𝑙𝑖𝑠𝑡 and obtains a list of results 𝑅_𝑙𝑖𝑠𝑡 . Each element of
𝑅_𝑙𝑖𝑠𝑡 is a pair ⟨𝑝,𝐴⟩ storing the parameter setting together with its
corresponding analysis alarms. The time of MapAnalyze is limited
to 𝑇𝑟 . In Line 8, Parf utilizes the information from 𝑝_𝑙𝑖𝑠𝑡 , 𝑅_𝑙𝑖𝑠𝑡 ,
and 𝐴uni to refine the random vectors 𝑃base and 𝑃delta for the next
round of analysis. In Line 9, the left time budget and counter are
updated, and the time budget of the next round is doubled due
to the increase in parameter precision. The loop terminates when
either the time budget 𝑇 is exhausted or the number of refinement
iterations reaches the hyper-parameter 𝑛𝑢𝑚refine. Then the one-
point distributed 𝑃base is returned as the final distribution, which
corresponds to a unique set of parameters.

Algorithm 2 Refine: Incremental Refining
Input: List of parameter settings 𝑝_𝑙𝑖𝑠𝑡 , list of results 𝑅_𝑙𝑖𝑠𝑡 , uni-

verse alarms 𝐴uni, and 𝑃base, 𝑃delta.
Output: Refined distributions 𝑃

′
base and 𝑃

′
delta.

1: /* Step 1: Refine 𝑃base */
2: 𝑃

′
base ← 𝑃base ;

3: for all 𝑎 ∈ 𝐴uni do
4: 𝑃𝑎 ← ⊤ ;
5: for all ⟨𝑝,𝐴⟩ ∈ 𝑅_𝑙𝑖𝑠𝑡 and 𝑎 ∉ 𝐴 do

6: 𝑝𝑎 ← 𝑝𝑎 ⊓ 𝑝 ;
7: end for

8: if 𝑝𝑎 ≠ ⊤ then

9: 𝑃
′
base ← 𝑃

′
base ⊔ 𝑝𝑎 ;

10: end if

11: end for

12:
13: /* Step 2: Refine 𝑃delta */
14: 𝜂scale ← 2×|𝑅_𝑙𝑖𝑠𝑡 |+1

|𝑝_𝑙𝑖𝑠𝑡 | ;

15: 𝑃
′
delta ← 𝜂scale ⊗ 𝑃delta ;

16: return 𝑃base, 𝑃delta ;

Remark. Although Frama-C/Eva per se does not support parallel
analysis, our Parf algorithm allows for parallelization. Specifically,
in Line 6 of Algorithm 1, Parf generates a list 𝑝_𝑙𝑖𝑠𝑡 containing
parameter settings obtained through the Sample function in one go;
Then, in Line 7, Parf uses each parameter setting in 𝑝_𝑙𝑖𝑠𝑡 for static
analysis. As these analyses share no data/control-flow dependencies,
they can be threaded in parallel across multiple processes. ◁

4.3 The Refinement Strategy

Algorithm 2 describes our incremental strategy to refine the proba-
bility distribution of parameter setting, i.e., 𝑃base ⊕ 𝑃delta, based on
the list of parameter settings 𝑝_𝑙𝑖𝑠𝑡 , list of results 𝑅_𝑙𝑖𝑠𝑡 , and uni-
verse set of alarms 𝐴uni. The refinement strategies for 𝑃base (Step
1, Lines 2-11) and 𝑃delta (Step 2, Lines 14-15) are detailed below.

Refine 𝑃base. The refining method for 𝑃base involves two nested
loops: In the inner loop (Lines 5-7), Parf calculates the “parameter
setting with lowest precision” 𝑝𝑎 that can eliminate the given false
alarm 𝑎; In the outer loop (Lines 3-11), Parf calculates the “parame-
ter setting with lowest precision” 𝑃

′
base that can eliminate all newly

discovered false alarms in this Sample-Analyze-Refine round. The
core idea of the refining method for 𝑃base can be formalized as

𝑃
′
base =

⊔
𝑎∈𝐴uni

𝑝𝑎 =
⊔

𝑎∈𝐴uni

(/
⟨𝑝,𝐴⟩∈𝑅_𝑙𝑖𝑠𝑡

𝑎∉𝐴

𝑝

)
. (3)

Here,
.

⟨𝑝,𝐴⟩∈𝑅_𝑙𝑖𝑠𝑡, 𝑎∉𝐴
𝑝 represents the greatest lower bound (for the

lowest precision) of all sampled parameter settings 𝑝 which can
eliminate false alarm 𝑎 (signified by 𝑎 ∉ 𝐴);

⊔
𝑎∈𝐴uni

𝑝𝑎 represents the

least upper bound (for eliminating all false alarms) of all such 𝑝𝑎 .

Remark. Our assumption on the monotonicity of the underlying
analyzer is crucial to guarantee the improvement of precision using
our refinement strategy: Without monotonicity, the (outer) least

1087

Parf: Adaptive Parameter Refining for Abstract Interpretation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

(c)(b)

(e)(d)

(a) Pbase and sampled parameter settings
-eva-loop-unroll

-e
va

-s
le

ve
l

1482 20 26

1

9

17

25

-eva-loop-unroll

-e
va

-s
le

ve
l

1482 20 26

1

9

17

25

-eva-loop-unroll

-e
va

-s
le

ve
l

1482 20 26

1

9

17

25

-eva-loop-unroll

-e
va

-s
le

ve
l

1482 20 26

1

9

17

25

-eva-loop-unroll

-e
va

-s
le

ve
l

1482 20 26

1

9

17

25

a sampled parameter setting

a sampled parameter setting which can
eliminate a specific false alarm

new base parameter setting

old base parameter setting

a sampled parameter setting which can
not eliminate a specific false alarm
the minimum-precision parameter
setting for a specific false alarm

Figure 5: Incremental refinement of 𝑃base.

upper bound in Eq. (3) may introduce again a false alarm ruled out
by the (inner) greatest lower bound. ◁

We demonstrate the refinement of 𝑃base by means of the follow-
ing example and Fig. 5.

Example 4.1 (Refinement of 𝑃base). Consider two integer param-
eters -eva-slevel and -eva-loop-unroll encoded by random
vector 𝑃 in a two-dimensional parameter space 𝑃𝑆 = 𝑃𝑆slevel ×
𝑃𝑆 loop-unroll as shown in Fig. 5(a)-(e). Suppose we have 𝑃base =

(4, 4), the universe set of alarms 𝐴uni = {𝑎1, 𝑎2, 𝑎3}, the list of sam-
pled parameter settings 𝑝_𝑙𝑖𝑠𝑡 = (𝑝𝑠1, 𝑝𝑠2, 𝑝𝑠3, 𝑝𝑠4, 𝑝𝑠5, 𝑝𝑠6) (see
Fig. 5(a)), and the list of analysis results:

𝑅_𝑙𝑖𝑠𝑡 = (⟨𝑝𝑠1, 𝐴1⟩, ⟨𝑝𝑠2, 𝐴2⟩, ⟨𝑝𝑠3, 𝐴3⟩, ⟨𝑝𝑠4, 𝐴4⟩, ⟨𝑝𝑠5, 𝐴5⟩, ⟨𝑝𝑠6, 𝐴6⟩)
= (⟨(12, 14), {𝑎2}⟩, ⟨(16, 21), {𝑎2}⟩, ⟨(24, 19), ∅⟩,
⟨(26, 12), {𝑎1}⟩, ⟨(20, 16), ∅⟩, ⟨(18, 9), {𝑎1}⟩)

i.e., false alarm𝑎1 can be eliminated by analyses of {𝑝𝑠1, 𝑝𝑠2, 𝑝𝑠3, 𝑝𝑠5},
𝑎2 by {𝑝𝑠3, 𝑝𝑠4, 𝑝𝑠5, 𝑝𝑠6}, and𝑎3 by {𝑝𝑠1, 𝑝𝑠2, 𝑝𝑠3, 𝑝𝑠4, 𝑝𝑠5, 𝑝𝑠6}. Then
Fig. 5(b)-(d) visualizes the computation of 𝑝𝑎1, 𝑝𝑎2, and 𝑝𝑎3 (Lines
5-7 of Algorithm 2):

𝑝𝑎1 = 𝑝𝑠1 ⊓ 𝑝𝑠2 ⊓ 𝑝𝑠3 ⊓ 𝑝𝑠5 = (12, 14) ,
𝑝𝑎2 = 𝑝𝑠3 ⊓ 𝑝𝑠4 ⊓ 𝑝𝑠5 ⊓ 𝑝𝑠6 = (18, 9) ,
𝑝𝑎3 = 𝑝𝑠1 ⊓ 𝑝𝑠2 ⊓ 𝑝𝑠3 ⊓ 𝑝𝑠4 ⊓ 𝑝𝑠5 ⊓ 𝑝𝑠6 = (12, 9) .

Fig. 5(e) depicts the computation of 𝑃
′
base (Lines 3-11 of Algorithm 2):

𝑃
′
base = 𝑃base ⊔ 𝑝𝑎1 ⊔ 𝑝𝑎2 ⊔ 𝑝𝑎3 = (18, 14)

𝑃
′
base thus is the least precise parameter setting that can eliminate

all newly discovered false alarms in the current iteration. ◁

Note that, according to the definition of ⊔, 𝑃base ⊑ 𝑃 ′base always
holds. This means that 𝑃base is incrementally refined.

Refine 𝑃delta. We use the number of (successfully) completed anal-
yses, e.g., |𝑅_𝑙𝑖𝑠𝑡 |, and the number of generated parameter settings,
e.g., |𝑝_𝑙𝑖𝑠𝑡 | = 𝑛𝑢𝑚sample, to refine 𝑃delta in each round, yielding a
scaling factor 𝜂scale as in Line 14 of Algorithm 2. A larger value of
𝜂scale indicates that more analyses have been completed within time
𝑇𝑟 , suggesting that a more extensive exploration of the parameter
space (by scaling up 𝑃delta) is possible, and vice versa.

More concretely, we define the scaling operator ⊗ as

𝜂scale ⊗ 𝑃delta =

(
𝜂scale ⊗ 𝑃1delta, · · · , 𝜂scale ⊗ 𝑃

𝑛
delta

)
, (4)

where each component is subject to the distribution type of 𝑃𝑖delta:

• If 𝑃𝑖delta ∼ Poisson(𝜆), then

𝜂scale ⊗ 𝑃𝑖delta ∼ Poisson (𝜂scale × 𝜆) .

• If 𝑃𝑖delta ∼ Bernoulli(𝑞), then

𝜂scale ⊗ 𝑃𝑖delta ∼ Bernoulli

(
1 − (1 − 𝑞)𝜂scale

)
.

• For a set-of-strings parameter with cardinality 𝑐 , ⊗ is, again,
the point-wise lifting of ⊗ to 𝑐-dimensional random vectors.

Observe that the refinement of 𝑃𝑖delta as per Eq. (4) features the
following quantitative properties: (i) When 𝜂scale < 1, i.e., more
than a half of analyses fail, we have 𝐸 [𝜂scale ⊗ 𝑃𝑖delta] < 𝐸 [𝑃𝑖delta],
meaning that the scope of exploration is “shrunk” in expectation in
the next iteration; (ii) Otherwise if 𝜂scale > 1, we have 𝐸 [𝜂scale ⊗
𝑃𝑖delta] > 𝐸 [𝑃𝑖delta], meaning that Parf will “extend” the scope of
exploration in expectation.

Incrementality and Adaptivity. By means of separately repre-
senting and refining the distributions 𝑃base and 𝑃delta, Parf features
incrementality and adaptivity. The former guarantees that “reward-
less analyses with low-precision parameters do not occur”, since we
have 𝑃base ⊑ 𝑃 ′base. The latter allows for an adaptive and quantita-
tive control of the exploration scope, thus avoiding analysis failures
while enabling effective search of high-precision parameters.

Remark. Parf is not confined to Frama-C/Eva; rather, it can be
readily integrated with any static analyzer exhibiting monotonicity
over the parameters. This is because (i) Parf treats the static ana-
lyzer as a black box, and (ii) Parf covers a wide range of parameter
types commonly used in static analyzers. Moreover, we can extend
Parf without substantial changes to incorporate extra types of
parameters, e.g., real-valued parameters, by formulating a latticed
parameter space with Gaussian distributions. As an example, we
interface Parf with the static analyzer Mopsa [16] in Section 5.

Moreover, due to its black-box nature, Parf exhibits no strong
correlation with abstract interpretation and thus can be paired with
other static analysis techniques. We opt for abstract interpretation
as it is a typical analysis technique featuring monotonicity. ◁

1088

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wang et al.

5 IMPLEMENTATION AND EXPERIMENTS

The experiments aim to answer the following research questions:
RQ1: How does Parf compare against other parameter-selecting

strategies?
RQ2: How does Parf perform on different hyper-parameters?
RQ3: Can Parf be generalized to other static analyzers?
RQ4: Can Parf improve Frama-C in verification competitions?

To answer RQ1, RQ2, and RQ4, we implement Parf as a plu-
gin of Frama-C, which is an open-source collaborative platform
dedicated to scalable source-code analysis of C programs [22]. For
RQ3, we further integrate Parfwith the static analyzerMopsa [16].
Parf supports parallelization across multiple processes: We adopt
a four-process parallelization mechanism for RQ1, RQ2, and RQ3,
and a single process for RQ4.3 The experiments for RQ1, RQ2,
and RQ4 are conducted on an 8-core Apple M2 processor with
16GB RAM running 64-bit macOS Sonoma 14; RQ3 is evaluated
on a 16-core Intel i7 processor with 16GB RAM running Arch
Linux (as Mopsa [16] runs only on Linux). Experimental results
reported in this paper can be found in the Docker image at https:
//hub.docker.com/r/parfdocker/parf.

5.1 Experimental Settings

Settings of Parf. Parf provides an optional interface for setting
the initial parameter distribution, which allows users to provide a
prior probability distribution 𝑃init based on their own experience. In
absence of user-specified 𝑃init, Parf sets 𝑃base and 𝑃delta to default
values (see [32, Table 1]). In our experiments, we use such default
initial distribution and set the hyper-parameters 𝛼 , 𝛽 , 𝑛𝑢𝑚sample,
and numrefine in Algorithm 1 to 0.1, 2, 4, and 7, respectively. We
examine the effect of these hyper-parameters in RQ2.

Benchmarks. The first benchmark suite we use is the Frama-C offi-
cial Open Source Case Study (OSCS) benchmarks4 [3]. It includes
many real-world C projects, such as the X509 parser project (a
Frama-C-verified static analyzer) [13, 33]. Table 1 lists the detailed
information about the benchmarks as described below:
• Benchmark name: Name of each benchmark in C.
• LOC (lines of code): Size of each benchmark’s source files.
• #statements: The number of statements analyzed by Frama-
C in each benchmark. A statement is the smallest syntactic
functional element of the target program [8].
• -eva-precision: This index reflects how fast each bench-
mark can be analyzed. A larger number indicates that the
analysis can terminate in less time under the same parameter
settings; see details in Section 5.2.

The second suite is collected from the verification tasks of SV-
COMP 2022 [2, 6, 7], where Frama-C participated in the NoOver-
flows [1] category with a specific version called Frama-C-SV.

Baselines and Time Budget. We compare our approach Parf against
three baselines: Default, Official, and Expert, which correspond
to three existing parameter-selecting strategies. The Default strat-
egy uses default parameter settings of Frama-C/Eva or Mopsa

3For the latter, parallelization does not make a difference for SV-COMP as it counts
the total CPU time for all processes.
4We filtered out several projects which contain, e.g., configuration issues or test suites.

to perform static analysis; The Official strategy uses official pa-
rameter settings provided by Frama-C together with the OSCS
benchmarks, which can be considered as “high quality” parame-
ter settings; Expert is a dynamic parameter-tuning strategy for
Frama-C/Eva, which sequentially increases the parameters from
-eva-precision 0 to -eva-precision 11 for analysis until the
given time budget is exhausted or the highest precision level is
reached. We set the total time budget for each benchmark to 1 hour.

5.2 RQ1: Parf vs. Other Strategies

Table 1 shows our experimental results in response of RQ1. Let us
first illustrate the evaluation method for analysis results of the four
parameter-selection strategies: Default, Expert, Official, and
Parf. We mark the result with the least number of alarms and not
tied with the other three as the exclusively best. For instance, the
analysis result of the Parf strategy for the first benchmark 2048
has 4 alarms. We also mark the results with the same least number
of alarms as tied-best. Given that some analysis results contain
thousands of alarms, it is unfair and unreasonable to distinguish
two results based on minor differences in the number of alarms.
Therefore, we mark multiple sets of results with ≤ 1% difference in
the number of alarms from the least one as tied-best. For instance,
the Expert and Parf analysis results for benchmark miniz-ex1
contain 1832 and 1828 alarms as tied-best respectively (1832 −
1828 ≤ 0.01 × 1832). We adopt the same convention for RQ3.

Table 1 shows that Parf significantly outperforms other strate-
gies for Frama-C in terms of accuracy on the OSCS dataset: Overall,
Parf achieves the best results (i.e., exclusively best or tied-best)
on 34/37 (91.9%) benchmarks, while the Default, Expert, and Of-
ficial strategies achieve the best results on 3/37, 23/37, and 8/37
benchmarks, respectively. Furthermore, over 12/37 (32.4%) bench-
marks, Parf achieves exclusively best results, while the competitors
achieve exclusively best results only on 0 or 1 specific benchmark.

The above results exhibit the capacity of Parf to achieve high-
accuracy analysis results in various real-world scenarios, rather
than specific scenarios. This is because the OSCS benchmarks pos-
sess diversity and representativeness, with project sizes ranging
from 338 to 51,007 LOC and numbers of analyzed statements rang-
ing from 36 to 13,029. Moreover, the values in the -eva-precision
column intuitively reflect the analysis complexity for a given bench-
mark, as they are the highest -eva-precision parameter values
identified by Expert strategy within 1 hour. Therefore, benchmarks
with lower complexity require less analysis time under the same pa-
rameters, resulting in higher values in the -eva-precision column
within the given time. Meanwhile, the range of -eva-precision
also indicates the diversity of the OSCS benchmarks.

Interestingly, among around half (18/37) of the OSCS benchmarks
with high -eva-precision values (≥ 9), Parf achieves tied-best
results in almost all cases, with only one exclusively best (bench-
mark tutorials). Considering that Parf achieves the exclusively best
results on 12/37 (32.4%) benchmarks, Parf performs exclusively
best on 57.9% of the remaining 19 benchmarks with low-to-medium
-eva-precision values (≤ 8). The reason behind this observation
is as follows. On one hand, benchmarks with high -eva-precision
values have low analysis complexity, allowing various strategies to
readily find high-accuracy or even themost accurate analysis results

1089

https://hub.docker.com/r/parfdocker/parf
https://hub.docker.com/r/parfdocker/parf

Parf: Adaptive Parameter Refining for Abstract Interpretation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Experimental results in terms of RQ1 and RQ3.

OSCS Benchmark Details #Alarms of Frama-C (RQ1) #Alarms of Mopsa (RQ3)

Benchmark name LOC #statements -eva-precision Default Expert Official Parf Default Parf

2048 440 329 6 7 5 7 4 141 67

chrony 37177 41 11 9 7 8 7 – –
debie1 8972 3243 2 33 3 1 19 8245 5656

genann 1183 1042 9 236 69 77 69 1308 1308
gzip124 8166 4835 1 802 885 866 810 – –
hiredis 7459 87 11 9 0 9 0 43 43
icpc 1302 424 11 9 1 1 1 11 10

jsmn-ex1 1016 1219 11 58 1 1 1 1762 1253

jsmn-ex2 1016 311 11 68 1 1 1 87 86

kgflags-ex1 1455 474 11 11 0 11 0 280 280
kgflags-ex2 1455 736 10 33 19 33 19 386 386
khash 1016 206 11 14 2 14 2 19 19
kilo 1276 1078 2 523 445 688 429 5299 5290
libspng 4455 2377 6 186 122 122 113 – –
line-following-robot 6739 857 11 1 1 1 1 – –
microstrain 51007 3216 6 1177 616 646 598 6237 6196
mini-gmp 11706 628 6 83 71 83 71 513 491

miniz-ex1 10844 3659 1 2291 1832 2291 1828 3020 3004
miniz-ex2 10844 5589 1 2742 2220 2742 2172 3916 3899
miniz-ex3 10844 3747 1 577 552 577 442 2808 2792
miniz-ex4 10844 1246 4 258 217 258 189 162 162
miniz-ex5 10844 3430 1 425 402 425 377 1575 1474

miniz-ex6 10844 2073 1 220 198 220 173 1197 1075

monocypher 25263 4126 1 606 570 568 606 TO TO
papabench 12254 36 11 1 1 1 1 – –
qlz-ex1 1168 229 11 68 11 68 11 82 82
qlz-ex2 1168 75 11 8 8 8 8 50 50
qlz-ex3 1168 294 8 94 82 94 75 – –
qlz-ex4 1168 164 11 17 13 17 13 – –
safestringlib 29271 13029 6 855 256 300 356 – –
semver 1532 728 9 29 22 25 22 3556 2850

solitaire 338 396 11 216 18 213 18 700 663

stmr 781 500 6 63 58 59 58 1391 1391
tsvc 5610 5478 4 413 355 379 356 – –
tutorials 325 89 11 5 1 5 0 – –
tweetnacl-usable 1204 659 11 126 25 30 25 667 657

x509-parser 9457 3112 3 208 198 198 187 364 339

Overall (tied-best+exclusively best) 3/37 23/37 8/37 34/37 (91.9%) 14/27 (51.9%) 26/27 (96.3%)
Overall (exclusively best) 0/37 1/37 1/37 12/37 (32.4%) 0/27 (0.0%) 12/27 (44.4%)

within the given time. Therefore, Parf can only achieve tied-best
results with them. On the other hand, benchmarks with low-to-
medium -eva-precision values have high analysis complexity,
making it difficult for Default, Official, and Expert strategies to
avoid analysis failure and find the most accurate parameters. How-
ever, Parf’s adaptivity enables it to handle such challenging tasks.
In summary, this demonstrates that Parf is particularly suitable for

analyzing complex, large-scale real-world programs.
Note that, as the computation in Parf is randomized, we repeat-

edly conduct two experiments with Parf, limiting the analysis time
budget of each benchmark to 30 minutes in each experiment, and
select the better analysis result (the same applies to RQ3). This is to
simulate the real situation of experts using static analyzers: trying
to find the best analysis result within a given total time budget.
However, this cannot completely eliminate randomness; Parf still
has the possibility to fail to find the best analysis result within the
time limit (e.g., benchmarks debie1, monocypher, and safestringlib).

Running Time under Different Strategies. Table 2 shows the timings
(averaged over the OSCS benchmarks) of (i) identifying the final
parameter setting 𝑝 and (ii) analyzing the source program under 𝑝 .

As formulated in Section 3, the application scenario of our approach
is to automatically find a highly accurate parameter setting within a
given time budget. In this context, we find it less interesting to com-
pare the analysis time under the specific parameter setting produced
by different strategies (bottom row of Table 2), since parameters
of higher precision typically require more time to perform static
analysis. In contrast, we are concerned with the time for identifying

high-precision parameter settings (first row of Table 2), where (i) The
Default strategy provides low-precision parameters in no time but
suffers from significantly low accuracy; (ii) The Official strategy
yields high-precision parameters prepared by Frama-C officially
for the OSCS benchmarks, but it does not specify the human effort
and time invested in identifying these parameters. This implies
that manually selecting parameters is still necessary for programs
beyond OSCS; (iii) The Expert strategy represents a simple yet ef-
fective automated dynamic parameter-tuning strategy employed by
experts, which achieves results with significantly higher accuracy
than the Default and Official strategies within a reasonable time
budget (1 hour in our case); (iv) Parf identifies the most accurate
parameter settings in 91.9% benchmarks only with around half of
the time used by Expert (the only automated, dynamic competitor).

1090

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wang et al.

(0.0
67,
1.3
3)

(0.0
67,
2)

(0.0
67,
3)

(0.1
,1.3

3)
(0.1

,2)
(0.1

,3)

(0.1
5,1
.33
)
(0.1

5,2
)
(0.1

5,3
)

12

14

16

(𝛼, 𝛽)

#a
la
rm

s

#alarms
identif. time

selected config.

0

500

1,000

id
en
tif
.t
im

e
(s
)

2 3 4 5 6 7 8 9 10

12

14

16

𝑛𝑢𝑚sample

#a
la
rm

s

3 4 5 6 7 8

12

14

16

𝑛𝑢𝑚refine

#a
la
rm

s

Figure 6: Effect of hyper-parameters on the performance of Parf in terms of accuracy (#alarms) and efficiency (time).

Table 2: Average timings of the experiments in terms of RQ1.

Phase

Average Time for Frama-C (s)

Default Expert Official Parf

Identification of 𝑝 0.00 2340.59 – 1315.97

Analysis under 𝑝 9.00 465.05 21.78 78.92

Remark. Our Parf strategy adopts a four-process parallelization
mechanism. We remark that a similar mechanism does not apply to
the other parameter-selecting strategies: (i) The parameters given
by Default and Official are fixed; (ii) For the Expert strategy,
parallelizing the trials with different precision levels does often not
bring observable enhancement in efficiency, since it is still the trial
with the highest precision level that consumes significantly more
time than those with lower precision levels. ◁

5.3 RQ2: Effect of Hyper-Parameters

Fig. 6 depicts the effect of hyper-parameters on Parf’s performance
– averaged over 18/37 OSCS benchmarks (with -eva-precision ≥
9)5 – in terms of accuracy (#alarms) and efficiency (time for identi-
fying the final parameter setting):
• Effect of 𝛼 ∈ (0, 1) and 𝛽 > 1: These two hyper-parameters
control the initial time budget 𝑇𝑟 for every round of the
Sample-Analyze-Refine process in the Parf algorithm. We
observe that Parf is not sensitive to the values of 𝛼 and 𝛽 .
• Effect of 𝑛𝑢𝑚sample: This parameter upper-bounds the num-
ber of samples in one refinement iteration. Observe that
both the analysis accuracy and the time remain stable for
𝑛𝑢𝑚sample ≥ 6 (due to the time budget 𝑇𝑟 per iteration). In
our other experiments, we set 𝑛𝑢𝑚sample = 4 due to our
4-process parallelization; 𝑛𝑢𝑚sample ≥ 6 yields similar accu-
racy with slightly more time.
• Effect of𝑛𝑢𝑚refine: This parameter upper-bounds the number
of refinement iterations. We observe similar performance
stability for 𝑛𝑢𝑚refine ≥ 6. In our other experiments, we set
𝑛𝑢𝑚refine = 7 to a relatively large number to make full use of
the time budget for more refinement iterations;𝑛𝑢𝑚refine = 5
yields higher efficiency with similar accuracy.

Overall, we do not observe significant sensitivity of Parf to these
hyper-parameters (except for small values of 𝑛𝑢𝑚sample, 𝑛𝑢𝑚refine).
5This subset of benchmarks features a relatively low analysis complexity and thus our
evaluation of RQ2 can be completed in a reasonable amount of time.

Table 3: SV-COMP verification results in terms of RQ4. A

more detailed explanation is provided in [32, Section 5.5].

Setting

Verification Result

Score

correct wrong unknown failure

Frama-C-SVprecision11 146 3 272 33 186
Frama-C-SVParf 151 3 300 0 196

The specific configuration of hyper-parameters (marked by dashed
lines in Fig. 6) in our other experiments is not finely tuned.

5.4 RQ3: Generality of Parf

In this experiment, we demonstrate the generality of Parf by in-
terfacing it with another static analyzer Mopsa [16]. The param-
eters considered for Mopsa and their distributions are described
in [32, Table 4]. We use the same hyper-parameter values as for
Frama-C/Eva except that we set numrefine = 3 to ensure that most
analyses can terminate within the time budget (sinceMopsa runs
much slower than Frama-C/Eva on the OSCS benchmarks).

The last two columns of Table 1 demonstrate how our Parf strat-
egy improves the performance of Mopsa.6 Observe that Mopsa
fails to analyze some OSCS benchmarks which either run out of
time (marked by TO) or have language features, data types, and/or
symbols not supported byMopsa (marked by –). For the rest bench-
marks, Parf achieves the best results on 26/27 (96.3%) program
repositories with exclusively best results on 12/27 (44.4%) cases,
which significantly outperforms Mopsa’s Default strategy.

Overall, this experiment demonstrates that Parf can be general-
ized to improve the performance of other static analyzers.

5.5 RQ4: Improving Frama-C in SV-COMP

Table 3 shows that Parf can slightly improve the performance of
Frama-C in SV-COMP. Since the analysis resource for each verifica-
tion task is limited to 15minutes of CPU time, Frama-C-SVprecision11
strategy uses a fixed highest -eva-precision 11 parameter for
analysis. We set the experimental strategy of Frama-C-SVParf as:
(i) identifying the final parameter setting 𝑝 via Parf within 7.5
minutes, and (ii) analyzing under 𝑝 within the left 7.5 minutes.

6The Official and Expert strategies are unavailable in this experiment since Mopsa
provides neither official parameter settings for OSCS benchmarks, nor built-in precision
levels (like -eva-precision in Frama-C/Eva) for applying the Expert strategy.

1091

Parf: Adaptive Parameter Refining for Abstract Interpretation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

The experimental results show that Parf can eliminate all anal-
ysis failures and successfully verify 5 more tasks, thus slightly
improving the total score from 186 to 196. This is because (i) Most
analyses using -eva-precision 11 parameter of the verification
tasks under the NoOverflows category can terminate within 15 min-
utes, as discussed in Section 5.2, so it is difficult for Parf strategy
to obtain more accurate analysis results; (ii) Parf adaptively finds
5 high-accuracy analysis results among 33 Frama-C-SVprecision11
analysis failures, thus successfully verifying these 5 tasks.

6 LIMITATIONS AND FUTURE WORK

We pinpoint several scenarios for which the proposed Parf frame-
work is inadequate and provide potential solutions thereof.

First, Parf treats the underlying static analyzer as a black box.
Although this feature facilitates the portability and generality of
Parf (as discussed in Section 4), it does not exploit analyzer-specific
functionalities and/or internal results, e.g., the data/control-flow
analysis of Frama-C [20] to further improve the quality of the gen-
erated parameters. It is therefore worth investigating to what extent
we can enhance parameter refining by leveraging a white/grey-box
model, as is the use of Sparrow [26] in Bingo [27]. As an example,
one may utilize the call graph of a program – as an intermediate
result of a static analyzer – to achieve more fine-grained parameter
tuning, e.g., setting analysis parameters for individual functions of
a program (aka, the problem of function-level refining).

Second, Parf does not employ the syntactic or semantic char-
acteristics of the source program, e.g., the maximum number of
loop iterations. However, we foresee that machine-learning models
and techniques may be developed to learn a good parameter setting

based on such characteristics, which can then be used as the initial
(distribution of) parameter setting of Parf.

Third, Parf models different parameters as independent random
variables. Taking into account the dependencies between parame-
ters is expected to reduce the search space and thereby accelerate
the parameter refining process. To this end, we need to extend Parf
to admit the representation of stochastic dependencies.

7 RELATEDWORK

Adaptive Parameter Tuning. Automatic parameter-tuning tech-
niques have witnessed numerous applications in many fields, in-
cluding database [5] and big data [14, 25] systems, machine learning
hyper-parameter tuning [23, 24], mathematical software [34], and
symbolic execution engines [10]. Ourwork is dedicated to providing
automated parameter-tuning support for static analyzers.

We emphasize that our Parf framework is inspired by Sym-
Tuner [10], an adaptive parameter tuning framework for symbolic
executors based on a formulated discrete sample space of external
parameters. It updates sampling probability according to symbolic
executing behaviors. Whereas symbolic execution can stop at any
time and yield useful intermediate information, a static analyzer
only produces complete outcomes until the whole analysis termi-
nates. Considering the inherent feature of static analyzer, we have
designed a novel representation of probability distributions and
refinement strategy to ensure the incrementality and adaptivity of
the parameter probability distribution. These properties effectively
avoid analysis failure and rewardless analysis.

Improving Static Analysis Tools. Many static analyzers inte-
grated parameterization strategies, such as Astrée [18] and Gob-
lint [29]. Kästner et al. [17] summarize the four most important
abstraction mechanisms in Astrée and recommend prioritizing the
accuracy of related abstract domains, which amounts to narrowing
down the parameter space. However, these mechanism are not fully
automated since and need directives provided by the user. Saan et
al. [28, 30] implement in Goblint a simple, heuristic autotuning
method based on syntactical criteria, which can automatically acti-
vate or deactivate abstraction techniques before analysis. However,
this method only generates an initial analysis configuration once
and does not dynamically adapt to refine the parameter configura-
tion. Salvi et al. [31] present an approach to coupling model-based
testing with static analysis based on a tool coupling between As-
trée and BTCEmbeddedTester

®; but this method cannot tune the
parameters of the static analyzer.

Probability-Based Algorithms. In the past several years, re-
searchers have presented numerous approaches to filter alarms
of static analysis tools. These works leverage probabilistic methods
to obtain prior knowledge of alarms, in order to determine whether
a generated alarm is really caused by potential bugs instead of the
upper approximation introduced by the analyzer.

Raghothaman et al. [27] proposed Bingo, a system that utilizes
Bayesian inference [4, 21] to decide the confidence of each alarm.
Their model is refined through ground truth labels provided by
users in each iteration. Heo et al. [15] proposed Drake, a proba-
bilistic framework to identify alarms relative to a certain program
change, thus helping improve the efficacy of discovering true bugs.
Several probabilistic reasoning techniques [11, 19] have recently
been proposed to incorporate external feedback on semantic facts,
thereby reducing user efforts on alarm inspection.

Different from our task, the above works mainly focus on check-
ing the alarm list and determining true positives. They only run the
static analyzer once and conduct no adjustments on input parame-
ters, though both tasks aim to optimize the final analysis results.

8 CONCLUSION

We have presented a novel framework called Parf for adaptively
tuning external parameters of abstract interpretation-based static
analyzers. Parf is – to the best of our knowledge – the first fully
automated approach that supports incremental refinement of such
parameters. The effectiveness of Parf has been demonstrated on
a collection of standard benchmarks. Future directions include ex-
tending Parf to cope with function-level refining and dependencies
between parameters, and encoding the algorithms into a probabilis-
tic programming paradigm using Bayesian inference [4, 21].

ACKNOWLEDGMENTS

This work has been partially funded by the ZJNSF Major Program
(No. LD24F020013), by the CCF-Huawei Populus Grove Fund (No.
CCF-HuaweiFM202301), by the Fundamental Research Funds for
the Central Universities of China (No. 226-2024-00140), and by the
ZJU Education Foundation’s Qizhen Talent program. The authors
would like to thank Shenghua Feng for helpful discussions and the
anonymous reviewers for their constructive feedback.

1092

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wang et al.

REFERENCES

[1] 2022. Benchmark Verification Tasks of SV-COMP 2022. https://sv-comp.sosy-
lab.org/2022/benchmarks.php. Accessed: 2024-06-08.

[2] 2022. Collection of SV-COMP 2022 Verification Tasks. https://gitlab.com/sosy-
lab/benchmarking/sv-benchmarks. Accessed: 2024-06-08.

[3] 2024. Open source case studies for Frama-C. https://git.frama-c.com/pub/open-
source-case-studies. Accessed: 2024-06-08.

[4] Nathanael L. Ackerman, Cameron E. Freer, and Daniel M. Roy. 2019. On the
Computability of Conditional Probability. J. ACM 66, 3 (2019), 23:1–23:40.

[5] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In SIGMOD Conference. ACM, 1009–1024.

[6] Dirk Beyer. 2022. Progress on Software Verification: SV-COMP 2022. In TACAS

(2). Lecture Notes in Computer Science, Vol. 13244. Springer, 375–402.
[7] Dirk Beyer and Martin Spiessl. 2022. The Static Analyzer Frama-C in SV-COMP

(Competition Contribution). In TACAS (2) (Lecture Notes in Computer Science,

Vol. 13244). Springer, 429–434.
[8] David Bühler. 2017. Structuring an Abstract Interpreter through Value and State

Abstractions:EVA, an Evolved Value Analysis for Frama-C. (Structurer un inter-

préteur abstrait au moyen d’abstractions de valeurs et d’états :Eva, une analyse

de valeur évoluée pour Frama-C). Ph. D. Dissertation. University of Rennes 1,
France.

[9] David Bühler, Pascal Cuoq, and Boris Yakobowski. [n. d.]. Eva - the Evolved Value
Analysis Plug-In.

[10] Sooyoung Cha, Myungho Lee, Seokhyun Lee, and Hakjoo Oh. 2022. SYMTUNER:
Maximizing the Power of Symbolic Execution by Adaptively Tuning External
Parameters. In ICSE. ACM, 2068–2079.

[11] Tianyi Chen, Kihong Heo, and Mukund Raghothaman. 2021. Boosting static
analysis accuracy with instrumented test executions. In ESEC/SIGSOFT FSE. ACM,
1154–1165.

[12] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In POPL. ACM, 238–252.

[13] Arnaud Ebalard, Patricia Mouy, and Ryad Benadjila. 2019. Journey to a RTE-free
X. 509 parser. In Symposium sur la sécurité des technologies de l’information et des

communications (SSTIC 2019).
[14] Anastasios Gounaris, Georgia Kougka, Rubén Tous, Carlos Tripiana Montes, and

Jordi Torres. 2017. Dynamic Configuration of Partitioning in Spark Applications.
IEEE Trans. Parallel Distributed Syst. 28, 7 (2017), 1891–1904.

[15] Kihong Heo, Mukund Raghothaman, Xujie Si, and Mayur Naik. 2019. Continu-
ously reasoning about programs using differential Bayesian inference. In PLDI.
ACM, 561–575.

[16] Matthieu Journault, Antoine Miné, Raphaël Monat, and Abdelraouf Ouadjaout.
2019. Combinations of Reusable Abstract Domains for a Multilingual Static
Analyzer. In VSTTE (Lecture Notes in Computer Science, Vol. 12031). Springer,
1–18.

[17] Daniel Kaestner, Stephan Wilhelm, Christoph Mallon, Stefana Schank, Christian
Ferdinand, and Laurent Mauborgne. 2023. Automatic sound static analysis for

integration verification of AUTOSAR software. Technical Report. SAE Technical
Paper.

[18] Daniel Kästner, Reinhard Wilhelm, and Christian Ferdinand. 2023. Abstract
Interpretation in Industry - Experience and Lessons Learned. In SAS (Lecture

Notes in Computer Science, Vol. 14284). Springer, 10–27.
[19] Hyunsu Kim, Mukund Raghothaman, and Kihong Heo. 2022. Learning proba-

bilistic models for static analysis alarms. In Proceedings of the 44th International

Conference on Software Engineering. 1282–1293.
[20] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris

Yakobowski. 2015. Frama-C: A software analysis perspective. Formal Aspects

Comput. 27, 3 (2015), 573–609.
[21] Lutz Klinkenberg, Christian Blumenthal, Mingshuai Chen, Darion Haase, and

Joost-Pieter Katoen. 2024. Exact Bayesian Inference for Loopy Probabilistic
Programs using Generating Functions. Proc. ACM Program. Lang. 8, OOPSLA1,
Article 127 (2024), 31 pages.

[22] Nikolai Kosmatov and Julien Signoles. 2016. Frama-C, A Collaborative Framework
for C Code Verification: Tutorial Synopsis. In RV (Lecture Notes in Computer

Science, Vol. 10012). Springer, 92–115.
[23] Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Jixiang Li, Ji Liu, Ce Zhang, and

Bin Cui. 2022. Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale.
Proc. VLDB Endow. 15, 6 (2022), 1256–1265.

[24] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,
Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter.
2022. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
Optimization. J. Mach. Learn. Res. 23 (2022), 54:1–54:9.

[25] Jiaheng Lu, Yuxing Chen, Herodotos Herodotou, and Shivnath Babu. 2019.
Speedup Your Analytics: Automatic Parameter Tuning for Databases and Big
Data Systems. Proc. VLDB Endow. 12, 12 (2019), 1970–1973.

[26] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. 2012.
Design and implementation of sparse global analyses for C-like languages. In
PLDI. ACM, 229–238.

[27] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018.
User-guided program reasoning using Bayesian inference. In PLDI. ACM, 722–
735.

[28] Simmo Saan, Julian Erhard, Michael Schwarz, Stanimir Bozhilov, Karoliine Holter,
Sarah Tilscher, Vesal Vojdani, and Helmut Seidl. 2024. Goblint: Abstract Inter-
pretation for Memory Safety and Termination - (Competition Contribution). In
TACAS (3) (Lecture Notes in Computer Science, Vol. 14572). Springer, 381–386.

[29] Simmo Saan, Michael Schwarz, Kalmer Apinis, Julian Erhard, Helmut Seidl, Ralf
Vogler, and Vesal Vojdani. 2021. Goblint: Thread-Modular Abstract Interpretation
Using Side-Effecting Constraints - (Competition Contribution). In TACAS (2)

(Lecture Notes in Computer Science, Vol. 12652). Springer, 438–442.
[30] Simmo Saan, Michael Schwarz, Julian Erhard, Manuel Pietsch, Helmut Seidl,

Sarah Tilscher, and Vesal Vojdani. 2023. Goblint: Autotuning Thread-Modular
Abstract Interpretation - (Competition Contribution). In TACAS (2) (Lecture Notes

in Computer Science, Vol. 13994). Springer, 547–552.
[31] Sayali Salvi, Daniel Kästner, Tom Bienmüller, and Christian Ferdinand. 2014.

True Error or False Alarm? Refining Astrée’s Abstract Interpretation Results by
Embedded Tester’s Automatic Model-Based Testing. In SAFECOMP Workshops

(Lecture Notes in Computer Science, Vol. 8696). Springer, 84–96.
[32] Zhongyi Wang, Linyu Yang, Mingshuai Chen, Yixuan Bu, Zhiyang Li, Qiuye

Wang, Shengchao Qin, Xiao Yi, and Jianwei Yin. 2024. Parf: Adaptive Parameter
Refining for Abstract Interpretation. CoRR abs/2409.05794 (2024). https://doi.
org/10.48550/arXiv.2409.05794

[33] Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun
Li, Shing-Chi Cheung, and Cong Tian. 2024. Enchanting Program Specifica-
tion Synthesis by Large Language Models using Static Analysis and Program
Verification. CoRR abs/2404.00762 (2024).

[34] Mengyuan Zhang, Wotao Yin, Mengchang Wang, Yangbin Shen, Peng Xiang,
You Wu, Liang Zhao, Junqiu Pan, Hu Jiang, and KuoLing Huang. 2023. MindOpt
Tuner: Boost the Performance of Numerical Software by Automatic Parameter
Tuning. CoRR abs/2307.08085 (2023).

[35] Yifan Zhang, Yuanfeng Shi, and Xin Zhang. 2024. Learning Abstraction Selection
for Bayesian Program Analysis. Proc. ACM Program. Lang. 8, OOPSLA1 (2024),
954–982.

1093

https://sv-comp.sosy-lab.org/2022/benchmarks.php
https://sv-comp.sosy-lab.org/2022/benchmarks.php
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
https://doi.org/10.48550/arXiv.2409.05794
https://doi.org/10.48550/arXiv.2409.05794

